Properties

Label 98.6.a.f
Level $98$
Weight $6$
Character orbit 98.a
Self dual yes
Analytic conductor $15.718$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,14,32,42,-56,0,-128,652] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{130}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + (\beta + 7) q^{3} + 16 q^{4} + 21 q^{5} + ( - 4 \beta - 28) q^{6} - 64 q^{8} + (14 \beta + 326) q^{9} - 84 q^{10} + (21 \beta - 147) q^{11} + (16 \beta + 112) q^{12} + ( - 6 \beta + 70) q^{13}+ \cdots + (4788 \beta + 104958) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 14 q^{3} + 32 q^{4} + 42 q^{5} - 56 q^{6} - 128 q^{8} + 652 q^{9} - 168 q^{10} - 294 q^{11} + 224 q^{12} + 140 q^{13} + 294 q^{15} + 512 q^{16} - 1302 q^{17} - 2608 q^{18} + 1442 q^{19}+ \cdots + 209916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−11.4018
11.4018
−4.00000 −15.8035 16.0000 21.0000 63.2140 0 −64.0000 6.75088 −84.0000
1.2 −4.00000 29.8035 16.0000 21.0000 −119.214 0 −64.0000 645.249 −84.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.6.a.f 2
3.b odd 2 1 882.6.a.bl 2
4.b odd 2 1 784.6.a.r 2
7.b odd 2 1 98.6.a.c 2
7.c even 3 2 98.6.c.f 4
7.d odd 6 2 14.6.c.b 4
21.c even 2 1 882.6.a.bt 2
21.g even 6 2 126.6.g.e 4
28.d even 2 1 784.6.a.bc 2
28.f even 6 2 112.6.i.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.6.c.b 4 7.d odd 6 2
98.6.a.c 2 7.b odd 2 1
98.6.a.f 2 1.a even 1 1 trivial
98.6.c.f 4 7.c even 3 2
112.6.i.b 4 28.f even 6 2
126.6.g.e 4 21.g even 6 2
784.6.a.r 2 4.b odd 2 1
784.6.a.bc 2 28.d even 2 1
882.6.a.bl 2 3.b odd 2 1
882.6.a.bt 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 14T_{3} - 471 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 14T - 471 \) Copy content Toggle raw display
$5$ \( (T - 21)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 294T - 207711 \) Copy content Toggle raw display
$13$ \( T^{2} - 140T - 13820 \) Copy content Toggle raw display
$17$ \( T^{2} + 1302 T + 255321 \) Copy content Toggle raw display
$19$ \( T^{2} - 1442 T - 832679 \) Copy content Toggle raw display
$23$ \( T^{2} - 2646 T - 3982671 \) Copy content Toggle raw display
$29$ \( T^{2} - 1668 T - 221724 \) Copy content Toggle raw display
$31$ \( T^{2} - 14798 T + 51820201 \) Copy content Toggle raw display
$37$ \( T^{2} - 5182 T - 67586399 \) Copy content Toggle raw display
$41$ \( T^{2} - 5124 T - 207761436 \) Copy content Toggle raw display
$43$ \( T^{2} + 4520 T - 53598320 \) Copy content Toggle raw display
$47$ \( T^{2} - 14994 T - 31633911 \) Copy content Toggle raw display
$53$ \( T^{2} - 24006 T + 99125289 \) Copy content Toggle raw display
$59$ \( T^{2} + 38850 T - 104901255 \) Copy content Toggle raw display
$61$ \( T^{2} - 23618 T + 45084961 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1560411719 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1817230464 \) Copy content Toggle raw display
$73$ \( T^{2} - 47138 T + 285929761 \) Copy content Toggle raw display
$79$ \( T^{2} + 40970 T - 130962095 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 1030366224 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 2383102881 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 8307517724 \) Copy content Toggle raw display
show more
show less