Properties

Label 98.6.a.e
Level $98$
Weight $6$
Character orbit 98.a
Self dual yes
Analytic conductor $15.718$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-8,0,32,0,0,0,-128,-118] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{46}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + \beta q^{3} + 16 q^{4} - 7 \beta q^{5} - 4 \beta q^{6} - 64 q^{8} - 59 q^{9} + 28 \beta q^{10} + 476 q^{11} + 16 \beta q^{12} + 71 \beta q^{13} - 1288 q^{15} + 256 q^{16} - 66 \beta q^{17} + \cdots - 28084 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 128 q^{8} - 118 q^{9} + 952 q^{11} - 2576 q^{15} + 512 q^{16} + 472 q^{18} - 3808 q^{22} + 7392 q^{23} + 11782 q^{25} + 2788 q^{29} + 10304 q^{30} - 2048 q^{32} - 1888 q^{36}+ \cdots - 56168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.78233
6.78233
−4.00000 −13.5647 16.0000 94.9526 54.2586 0 −64.0000 −59.0000 −379.810
1.2 −4.00000 13.5647 16.0000 −94.9526 −54.2586 0 −64.0000 −59.0000 379.810
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.6.a.e 2
3.b odd 2 1 882.6.a.bo 2
4.b odd 2 1 784.6.a.y 2
7.b odd 2 1 inner 98.6.a.e 2
7.c even 3 2 98.6.c.g 4
7.d odd 6 2 98.6.c.g 4
21.c even 2 1 882.6.a.bo 2
28.d even 2 1 784.6.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.6.a.e 2 1.a even 1 1 trivial
98.6.a.e 2 7.b odd 2 1 inner
98.6.c.g 4 7.c even 3 2
98.6.c.g 4 7.d odd 6 2
784.6.a.y 2 4.b odd 2 1
784.6.a.y 2 28.d even 2 1
882.6.a.bo 2 3.b odd 2 1
882.6.a.bo 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 184 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 184 \) Copy content Toggle raw display
$5$ \( T^{2} - 9016 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 476)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 927544 \) Copy content Toggle raw display
$17$ \( T^{2} - 801504 \) Copy content Toggle raw display
$19$ \( T^{2} - 406456 \) Copy content Toggle raw display
$23$ \( (T - 3696)^{2} \) Copy content Toggle raw display
$29$ \( (T - 1394)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 3710176 \) Copy content Toggle raw display
$37$ \( (T - 12090)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 231634656 \) Copy content Toggle raw display
$43$ \( (T - 9724)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 856881376 \) Copy content Toggle raw display
$53$ \( (T - 4310)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 434675896 \) Copy content Toggle raw display
$61$ \( T^{2} - 86337400 \) Copy content Toggle raw display
$67$ \( (T - 20236)^{2} \) Copy content Toggle raw display
$71$ \( (T - 29792)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 127369216 \) Copy content Toggle raw display
$79$ \( (T + 33176)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 12534264 \) Copy content Toggle raw display
$89$ \( T^{2} - 5006024704 \) Copy content Toggle raw display
$97$ \( T^{2} - 315762400 \) Copy content Toggle raw display
show more
show less