Properties

Label 98.6.a.a.1.1
Level $98$
Weight $6$
Character 98.1
Self dual yes
Analytic conductor $15.718$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,6,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,-10,16,-84,40,0,-64,-143] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(15.7176143417\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -10.0000 q^{3} +16.0000 q^{4} -84.0000 q^{5} +40.0000 q^{6} -64.0000 q^{8} -143.000 q^{9} +336.000 q^{10} -336.000 q^{11} -160.000 q^{12} -584.000 q^{13} +840.000 q^{15} +256.000 q^{16} +1458.00 q^{17} +572.000 q^{18} -470.000 q^{19} -1344.00 q^{20} +1344.00 q^{22} -4200.00 q^{23} +640.000 q^{24} +3931.00 q^{25} +2336.00 q^{26} +3860.00 q^{27} +4866.00 q^{29} -3360.00 q^{30} +7372.00 q^{31} -1024.00 q^{32} +3360.00 q^{33} -5832.00 q^{34} -2288.00 q^{36} +14330.0 q^{37} +1880.00 q^{38} +5840.00 q^{39} +5376.00 q^{40} -6222.00 q^{41} +3704.00 q^{43} -5376.00 q^{44} +12012.0 q^{45} +16800.0 q^{46} +1812.00 q^{47} -2560.00 q^{48} -15724.0 q^{50} -14580.0 q^{51} -9344.00 q^{52} -37242.0 q^{53} -15440.0 q^{54} +28224.0 q^{55} +4700.00 q^{57} -19464.0 q^{58} -34302.0 q^{59} +13440.0 q^{60} -24476.0 q^{61} -29488.0 q^{62} +4096.00 q^{64} +49056.0 q^{65} -13440.0 q^{66} -17452.0 q^{67} +23328.0 q^{68} +42000.0 q^{69} +28224.0 q^{71} +9152.00 q^{72} -3602.00 q^{73} -57320.0 q^{74} -39310.0 q^{75} -7520.00 q^{76} -23360.0 q^{78} +42872.0 q^{79} -21504.0 q^{80} -3851.00 q^{81} +24888.0 q^{82} +35202.0 q^{83} -122472. q^{85} -14816.0 q^{86} -48660.0 q^{87} +21504.0 q^{88} -26730.0 q^{89} -48048.0 q^{90} -67200.0 q^{92} -73720.0 q^{93} -7248.00 q^{94} +39480.0 q^{95} +10240.0 q^{96} +16978.0 q^{97} +48048.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −10.0000 −0.641500 −0.320750 0.947164i \(-0.603935\pi\)
−0.320750 + 0.947164i \(0.603935\pi\)
\(4\) 16.0000 0.500000
\(5\) −84.0000 −1.50264 −0.751319 0.659939i \(-0.770582\pi\)
−0.751319 + 0.659939i \(0.770582\pi\)
\(6\) 40.0000 0.453609
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) −143.000 −0.588477
\(10\) 336.000 1.06253
\(11\) −336.000 −0.837255 −0.418627 0.908158i \(-0.637489\pi\)
−0.418627 + 0.908158i \(0.637489\pi\)
\(12\) −160.000 −0.320750
\(13\) −584.000 −0.958417 −0.479208 0.877701i \(-0.659076\pi\)
−0.479208 + 0.877701i \(0.659076\pi\)
\(14\) 0 0
\(15\) 840.000 0.963943
\(16\) 256.000 0.250000
\(17\) 1458.00 1.22359 0.611794 0.791017i \(-0.290448\pi\)
0.611794 + 0.791017i \(0.290448\pi\)
\(18\) 572.000 0.416116
\(19\) −470.000 −0.298685 −0.149343 0.988786i \(-0.547716\pi\)
−0.149343 + 0.988786i \(0.547716\pi\)
\(20\) −1344.00 −0.751319
\(21\) 0 0
\(22\) 1344.00 0.592028
\(23\) −4200.00 −1.65550 −0.827751 0.561096i \(-0.810380\pi\)
−0.827751 + 0.561096i \(0.810380\pi\)
\(24\) 640.000 0.226805
\(25\) 3931.00 1.25792
\(26\) 2336.00 0.677703
\(27\) 3860.00 1.01901
\(28\) 0 0
\(29\) 4866.00 1.07443 0.537214 0.843446i \(-0.319477\pi\)
0.537214 + 0.843446i \(0.319477\pi\)
\(30\) −3360.00 −0.681610
\(31\) 7372.00 1.37778 0.688892 0.724864i \(-0.258097\pi\)
0.688892 + 0.724864i \(0.258097\pi\)
\(32\) −1024.00 −0.176777
\(33\) 3360.00 0.537099
\(34\) −5832.00 −0.865207
\(35\) 0 0
\(36\) −2288.00 −0.294239
\(37\) 14330.0 1.72085 0.860423 0.509581i \(-0.170200\pi\)
0.860423 + 0.509581i \(0.170200\pi\)
\(38\) 1880.00 0.211202
\(39\) 5840.00 0.614825
\(40\) 5376.00 0.531263
\(41\) −6222.00 −0.578057 −0.289028 0.957321i \(-0.593332\pi\)
−0.289028 + 0.957321i \(0.593332\pi\)
\(42\) 0 0
\(43\) 3704.00 0.305492 0.152746 0.988265i \(-0.451188\pi\)
0.152746 + 0.988265i \(0.451188\pi\)
\(44\) −5376.00 −0.418627
\(45\) 12012.0 0.884268
\(46\) 16800.0 1.17062
\(47\) 1812.00 0.119650 0.0598251 0.998209i \(-0.480946\pi\)
0.0598251 + 0.998209i \(0.480946\pi\)
\(48\) −2560.00 −0.160375
\(49\) 0 0
\(50\) −15724.0 −0.889484
\(51\) −14580.0 −0.784932
\(52\) −9344.00 −0.479208
\(53\) −37242.0 −1.82114 −0.910570 0.413355i \(-0.864357\pi\)
−0.910570 + 0.413355i \(0.864357\pi\)
\(54\) −15440.0 −0.720548
\(55\) 28224.0 1.25809
\(56\) 0 0
\(57\) 4700.00 0.191607
\(58\) −19464.0 −0.759735
\(59\) −34302.0 −1.28289 −0.641445 0.767169i \(-0.721665\pi\)
−0.641445 + 0.767169i \(0.721665\pi\)
\(60\) 13440.0 0.481971
\(61\) −24476.0 −0.842201 −0.421101 0.907014i \(-0.638356\pi\)
−0.421101 + 0.907014i \(0.638356\pi\)
\(62\) −29488.0 −0.974240
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 49056.0 1.44015
\(66\) −13440.0 −0.379786
\(67\) −17452.0 −0.474961 −0.237481 0.971392i \(-0.576322\pi\)
−0.237481 + 0.971392i \(0.576322\pi\)
\(68\) 23328.0 0.611794
\(69\) 42000.0 1.06201
\(70\) 0 0
\(71\) 28224.0 0.664466 0.332233 0.943197i \(-0.392198\pi\)
0.332233 + 0.943197i \(0.392198\pi\)
\(72\) 9152.00 0.208058
\(73\) −3602.00 −0.0791109 −0.0395555 0.999217i \(-0.512594\pi\)
−0.0395555 + 0.999217i \(0.512594\pi\)
\(74\) −57320.0 −1.21682
\(75\) −39310.0 −0.806956
\(76\) −7520.00 −0.149343
\(77\) 0 0
\(78\) −23360.0 −0.434747
\(79\) 42872.0 0.772869 0.386435 0.922317i \(-0.373706\pi\)
0.386435 + 0.922317i \(0.373706\pi\)
\(80\) −21504.0 −0.375659
\(81\) −3851.00 −0.0652170
\(82\) 24888.0 0.408748
\(83\) 35202.0 0.560883 0.280441 0.959871i \(-0.409519\pi\)
0.280441 + 0.959871i \(0.409519\pi\)
\(84\) 0 0
\(85\) −122472. −1.83861
\(86\) −14816.0 −0.216015
\(87\) −48660.0 −0.689246
\(88\) 21504.0 0.296014
\(89\) −26730.0 −0.357704 −0.178852 0.983876i \(-0.557238\pi\)
−0.178852 + 0.983876i \(0.557238\pi\)
\(90\) −48048.0 −0.625272
\(91\) 0 0
\(92\) −67200.0 −0.827751
\(93\) −73720.0 −0.883849
\(94\) −7248.00 −0.0846055
\(95\) 39480.0 0.448816
\(96\) 10240.0 0.113402
\(97\) 16978.0 0.183213 0.0916067 0.995795i \(-0.470800\pi\)
0.0916067 + 0.995795i \(0.470800\pi\)
\(98\) 0 0
\(99\) 48048.0 0.492705
\(100\) 62896.0 0.628960
\(101\) −99204.0 −0.967667 −0.483833 0.875160i \(-0.660756\pi\)
−0.483833 + 0.875160i \(0.660756\pi\)
\(102\) 58320.0 0.555031
\(103\) 131644. 1.22267 0.611333 0.791373i \(-0.290634\pi\)
0.611333 + 0.791373i \(0.290634\pi\)
\(104\) 37376.0 0.338852
\(105\) 0 0
\(106\) 148968. 1.28774
\(107\) 48852.0 0.412499 0.206250 0.978499i \(-0.433874\pi\)
0.206250 + 0.978499i \(0.433874\pi\)
\(108\) 61760.0 0.509504
\(109\) −56374.0 −0.454478 −0.227239 0.973839i \(-0.572970\pi\)
−0.227239 + 0.973839i \(0.572970\pi\)
\(110\) −112896. −0.889604
\(111\) −143300. −1.10392
\(112\) 0 0
\(113\) 8742.00 0.0644043 0.0322021 0.999481i \(-0.489748\pi\)
0.0322021 + 0.999481i \(0.489748\pi\)
\(114\) −18800.0 −0.135486
\(115\) 352800. 2.48762
\(116\) 77856.0 0.537214
\(117\) 83512.0 0.564007
\(118\) 137208. 0.907140
\(119\) 0 0
\(120\) −53760.0 −0.340805
\(121\) −48155.0 −0.299005
\(122\) 97904.0 0.595526
\(123\) 62220.0 0.370823
\(124\) 117952. 0.688892
\(125\) −67704.0 −0.387560
\(126\) 0 0
\(127\) 315992. 1.73847 0.869234 0.494401i \(-0.164612\pi\)
0.869234 + 0.494401i \(0.164612\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −37040.0 −0.195973
\(130\) −196224. −1.01834
\(131\) 24666.0 0.125580 0.0627900 0.998027i \(-0.480000\pi\)
0.0627900 + 0.998027i \(0.480000\pi\)
\(132\) 53760.0 0.268550
\(133\) 0 0
\(134\) 69808.0 0.335848
\(135\) −324240. −1.53120
\(136\) −93312.0 −0.432604
\(137\) 303234. 1.38031 0.690155 0.723662i \(-0.257542\pi\)
0.690155 + 0.723662i \(0.257542\pi\)
\(138\) −168000. −0.750951
\(139\) −250586. −1.10007 −0.550034 0.835142i \(-0.685385\pi\)
−0.550034 + 0.835142i \(0.685385\pi\)
\(140\) 0 0
\(141\) −18120.0 −0.0767557
\(142\) −112896. −0.469848
\(143\) 196224. 0.802439
\(144\) −36608.0 −0.147119
\(145\) −408744. −1.61448
\(146\) 14408.0 0.0559399
\(147\) 0 0
\(148\) 229280. 0.860423
\(149\) −60594.0 −0.223596 −0.111798 0.993731i \(-0.535661\pi\)
−0.111798 + 0.993731i \(0.535661\pi\)
\(150\) 157240. 0.570604
\(151\) 124448. 0.444166 0.222083 0.975028i \(-0.428714\pi\)
0.222083 + 0.975028i \(0.428714\pi\)
\(152\) 30080.0 0.105601
\(153\) −208494. −0.720054
\(154\) 0 0
\(155\) −619248. −2.07031
\(156\) 93440.0 0.307412
\(157\) −76040.0 −0.246203 −0.123101 0.992394i \(-0.539284\pi\)
−0.123101 + 0.992394i \(0.539284\pi\)
\(158\) −171488. −0.546501
\(159\) 372420. 1.16826
\(160\) 86016.0 0.265631
\(161\) 0 0
\(162\) 15404.0 0.0461154
\(163\) 124256. 0.366310 0.183155 0.983084i \(-0.441369\pi\)
0.183155 + 0.983084i \(0.441369\pi\)
\(164\) −99552.0 −0.289028
\(165\) −282240. −0.807065
\(166\) −140808. −0.396604
\(167\) 72420.0 0.200940 0.100470 0.994940i \(-0.467965\pi\)
0.100470 + 0.994940i \(0.467965\pi\)
\(168\) 0 0
\(169\) −30237.0 −0.0814370
\(170\) 489888. 1.30009
\(171\) 67210.0 0.175770
\(172\) 59264.0 0.152746
\(173\) 441552. 1.12167 0.560837 0.827926i \(-0.310479\pi\)
0.560837 + 0.827926i \(0.310479\pi\)
\(174\) 194640. 0.487370
\(175\) 0 0
\(176\) −86016.0 −0.209314
\(177\) 343020. 0.822974
\(178\) 106920. 0.252935
\(179\) −10692.0 −0.0249417 −0.0124709 0.999922i \(-0.503970\pi\)
−0.0124709 + 0.999922i \(0.503970\pi\)
\(180\) 192192. 0.442134
\(181\) 546064. 1.23893 0.619465 0.785024i \(-0.287349\pi\)
0.619465 + 0.785024i \(0.287349\pi\)
\(182\) 0 0
\(183\) 244760. 0.540272
\(184\) 268800. 0.585308
\(185\) −1.20372e6 −2.58581
\(186\) 294880. 0.624975
\(187\) −489888. −1.02445
\(188\) 28992.0 0.0598251
\(189\) 0 0
\(190\) −157920. −0.317361
\(191\) −575976. −1.14241 −0.571204 0.820808i \(-0.693523\pi\)
−0.571204 + 0.820808i \(0.693523\pi\)
\(192\) −40960.0 −0.0801875
\(193\) −413938. −0.799912 −0.399956 0.916534i \(-0.630975\pi\)
−0.399956 + 0.916534i \(0.630975\pi\)
\(194\) −67912.0 −0.129551
\(195\) −490560. −0.923859
\(196\) 0 0
\(197\) −494946. −0.908641 −0.454320 0.890838i \(-0.650118\pi\)
−0.454320 + 0.890838i \(0.650118\pi\)
\(198\) −192192. −0.348395
\(199\) −520364. −0.931482 −0.465741 0.884921i \(-0.654212\pi\)
−0.465741 + 0.884921i \(0.654212\pi\)
\(200\) −251584. −0.444742
\(201\) 174520. 0.304688
\(202\) 396816. 0.684244
\(203\) 0 0
\(204\) −233280. −0.392466
\(205\) 522648. 0.868610
\(206\) −526576. −0.864556
\(207\) 600600. 0.974225
\(208\) −149504. −0.239604
\(209\) 157920. 0.250076
\(210\) 0 0
\(211\) 183284. 0.283412 0.141706 0.989909i \(-0.454741\pi\)
0.141706 + 0.989909i \(0.454741\pi\)
\(212\) −595872. −0.910570
\(213\) −282240. −0.426255
\(214\) −195408. −0.291681
\(215\) −311136. −0.459044
\(216\) −247040. −0.360274
\(217\) 0 0
\(218\) 225496. 0.321364
\(219\) 36020.0 0.0507497
\(220\) 451584. 0.629045
\(221\) −851472. −1.17271
\(222\) 573200. 0.780591
\(223\) 1.27746e6 1.72023 0.860115 0.510100i \(-0.170392\pi\)
0.860115 + 0.510100i \(0.170392\pi\)
\(224\) 0 0
\(225\) −562133. −0.740257
\(226\) −34968.0 −0.0455407
\(227\) 1.28764e6 1.65856 0.829279 0.558835i \(-0.188752\pi\)
0.829279 + 0.558835i \(0.188752\pi\)
\(228\) 75200.0 0.0958034
\(229\) −350936. −0.442221 −0.221110 0.975249i \(-0.570968\pi\)
−0.221110 + 0.975249i \(0.570968\pi\)
\(230\) −1.41120e6 −1.75901
\(231\) 0 0
\(232\) −311424. −0.379867
\(233\) 836154. 1.00901 0.504506 0.863408i \(-0.331675\pi\)
0.504506 + 0.863408i \(0.331675\pi\)
\(234\) −334048. −0.398813
\(235\) −152208. −0.179791
\(236\) −548832. −0.641445
\(237\) −428720. −0.495796
\(238\) 0 0
\(239\) 774336. 0.876869 0.438434 0.898763i \(-0.355533\pi\)
0.438434 + 0.898763i \(0.355533\pi\)
\(240\) 215040. 0.240986
\(241\) 1.15285e6 1.27859 0.639293 0.768963i \(-0.279227\pi\)
0.639293 + 0.768963i \(0.279227\pi\)
\(242\) 192620. 0.211428
\(243\) −899470. −0.977172
\(244\) −391616. −0.421101
\(245\) 0 0
\(246\) −248880. −0.262212
\(247\) 274480. 0.286265
\(248\) −471808. −0.487120
\(249\) −352020. −0.359806
\(250\) 270816. 0.274047
\(251\) −1.35801e6 −1.36056 −0.680282 0.732951i \(-0.738142\pi\)
−0.680282 + 0.732951i \(0.738142\pi\)
\(252\) 0 0
\(253\) 1.41120e6 1.38608
\(254\) −1.26397e6 −1.22928
\(255\) 1.22472e6 1.17947
\(256\) 65536.0 0.0625000
\(257\) 317742. 0.300083 0.150042 0.988680i \(-0.452059\pi\)
0.150042 + 0.988680i \(0.452059\pi\)
\(258\) 148160. 0.138574
\(259\) 0 0
\(260\) 784896. 0.720077
\(261\) −695838. −0.632276
\(262\) −98664.0 −0.0887985
\(263\) 1.05101e6 0.936951 0.468475 0.883477i \(-0.344804\pi\)
0.468475 + 0.883477i \(0.344804\pi\)
\(264\) −215040. −0.189893
\(265\) 3.12833e6 2.73651
\(266\) 0 0
\(267\) 267300. 0.229467
\(268\) −279232. −0.237481
\(269\) −1.18958e6 −1.00234 −0.501169 0.865349i \(-0.667097\pi\)
−0.501169 + 0.865349i \(0.667097\pi\)
\(270\) 1.29696e6 1.08272
\(271\) 1.43008e6 1.18287 0.591435 0.806353i \(-0.298562\pi\)
0.591435 + 0.806353i \(0.298562\pi\)
\(272\) 373248. 0.305897
\(273\) 0 0
\(274\) −1.21294e6 −0.976026
\(275\) −1.32082e6 −1.05320
\(276\) 672000. 0.531003
\(277\) 63302.0 0.0495699 0.0247849 0.999693i \(-0.492110\pi\)
0.0247849 + 0.999693i \(0.492110\pi\)
\(278\) 1.00234e6 0.777866
\(279\) −1.05420e6 −0.810795
\(280\) 0 0
\(281\) −496614. −0.375192 −0.187596 0.982246i \(-0.560070\pi\)
−0.187596 + 0.982246i \(0.560070\pi\)
\(282\) 72480.0 0.0542744
\(283\) 1.15842e6 0.859803 0.429902 0.902876i \(-0.358548\pi\)
0.429902 + 0.902876i \(0.358548\pi\)
\(284\) 451584. 0.332233
\(285\) −394800. −0.287915
\(286\) −784896. −0.567410
\(287\) 0 0
\(288\) 146432. 0.104029
\(289\) 705907. 0.497168
\(290\) 1.63498e6 1.14161
\(291\) −169780. −0.117531
\(292\) −57632.0 −0.0395555
\(293\) −1.43886e6 −0.979151 −0.489575 0.871961i \(-0.662848\pi\)
−0.489575 + 0.871961i \(0.662848\pi\)
\(294\) 0 0
\(295\) 2.88137e6 1.92772
\(296\) −917120. −0.608411
\(297\) −1.29696e6 −0.853170
\(298\) 242376. 0.158106
\(299\) 2.45280e6 1.58666
\(300\) −628960. −0.403478
\(301\) 0 0
\(302\) −497792. −0.314073
\(303\) 992040. 0.620758
\(304\) −120320. −0.0746713
\(305\) 2.05598e6 1.26552
\(306\) 833976. 0.509155
\(307\) 989098. 0.598954 0.299477 0.954104i \(-0.403188\pi\)
0.299477 + 0.954104i \(0.403188\pi\)
\(308\) 0 0
\(309\) −1.31644e6 −0.784341
\(310\) 2.47699e6 1.46393
\(311\) 2.22050e6 1.30182 0.650909 0.759155i \(-0.274388\pi\)
0.650909 + 0.759155i \(0.274388\pi\)
\(312\) −373760. −0.217373
\(313\) −2.33008e6 −1.34434 −0.672171 0.740396i \(-0.734638\pi\)
−0.672171 + 0.740396i \(0.734638\pi\)
\(314\) 304160. 0.174092
\(315\) 0 0
\(316\) 685952. 0.386435
\(317\) 427542. 0.238963 0.119481 0.992836i \(-0.461877\pi\)
0.119481 + 0.992836i \(0.461877\pi\)
\(318\) −1.48968e6 −0.826086
\(319\) −1.63498e6 −0.899569
\(320\) −344064. −0.187830
\(321\) −488520. −0.264618
\(322\) 0 0
\(323\) −685260. −0.365468
\(324\) −61616.0 −0.0326085
\(325\) −2.29570e6 −1.20561
\(326\) −497024. −0.259020
\(327\) 563740. 0.291548
\(328\) 398208. 0.204374
\(329\) 0 0
\(330\) 1.12896e6 0.570681
\(331\) −396616. −0.198976 −0.0994879 0.995039i \(-0.531720\pi\)
−0.0994879 + 0.995039i \(0.531720\pi\)
\(332\) 563232. 0.280441
\(333\) −2.04919e6 −1.01268
\(334\) −289680. −0.142086
\(335\) 1.46597e6 0.713695
\(336\) 0 0
\(337\) −3.21819e6 −1.54361 −0.771805 0.635860i \(-0.780646\pi\)
−0.771805 + 0.635860i \(0.780646\pi\)
\(338\) 120948. 0.0575847
\(339\) −87420.0 −0.0413154
\(340\) −1.95955e6 −0.919305
\(341\) −2.47699e6 −1.15356
\(342\) −268840. −0.124288
\(343\) 0 0
\(344\) −237056. −0.108008
\(345\) −3.52800e6 −1.59581
\(346\) −1.76621e6 −0.793143
\(347\) 2.78018e6 1.23951 0.619755 0.784796i \(-0.287232\pi\)
0.619755 + 0.784796i \(0.287232\pi\)
\(348\) −778560. −0.344623
\(349\) 338800. 0.148895 0.0744475 0.997225i \(-0.476281\pi\)
0.0744475 + 0.997225i \(0.476281\pi\)
\(350\) 0 0
\(351\) −2.25424e6 −0.976635
\(352\) 344064. 0.148007
\(353\) 362046. 0.154642 0.0773209 0.997006i \(-0.475363\pi\)
0.0773209 + 0.997006i \(0.475363\pi\)
\(354\) −1.37208e6 −0.581931
\(355\) −2.37082e6 −0.998451
\(356\) −427680. −0.178852
\(357\) 0 0
\(358\) 42768.0 0.0176365
\(359\) 876528. 0.358946 0.179473 0.983763i \(-0.442561\pi\)
0.179473 + 0.983763i \(0.442561\pi\)
\(360\) −768768. −0.312636
\(361\) −2.25520e6 −0.910787
\(362\) −2.18426e6 −0.876056
\(363\) 481550. 0.191812
\(364\) 0 0
\(365\) 302568. 0.118875
\(366\) −979040. −0.382030
\(367\) −2.98062e6 −1.15516 −0.577578 0.816335i \(-0.696002\pi\)
−0.577578 + 0.816335i \(0.696002\pi\)
\(368\) −1.07520e6 −0.413875
\(369\) 889746. 0.340173
\(370\) 4.81488e6 1.82844
\(371\) 0 0
\(372\) −1.17952e6 −0.441924
\(373\) 3.91441e6 1.45678 0.728391 0.685162i \(-0.240268\pi\)
0.728391 + 0.685162i \(0.240268\pi\)
\(374\) 1.95955e6 0.724399
\(375\) 677040. 0.248620
\(376\) −115968. −0.0423027
\(377\) −2.84174e6 −1.02975
\(378\) 0 0
\(379\) 3.60661e6 1.28974 0.644868 0.764294i \(-0.276912\pi\)
0.644868 + 0.764294i \(0.276912\pi\)
\(380\) 631680. 0.224408
\(381\) −3.15992e6 −1.11523
\(382\) 2.30390e6 0.807804
\(383\) 2.66644e6 0.928826 0.464413 0.885619i \(-0.346265\pi\)
0.464413 + 0.885619i \(0.346265\pi\)
\(384\) 163840. 0.0567012
\(385\) 0 0
\(386\) 1.65575e6 0.565623
\(387\) −529672. −0.179775
\(388\) 271648. 0.0916067
\(389\) −213366. −0.0714910 −0.0357455 0.999361i \(-0.511381\pi\)
−0.0357455 + 0.999361i \(0.511381\pi\)
\(390\) 1.96224e6 0.653267
\(391\) −6.12360e6 −2.02565
\(392\) 0 0
\(393\) −246660. −0.0805596
\(394\) 1.97978e6 0.642506
\(395\) −3.60125e6 −1.16134
\(396\) 768768. 0.246353
\(397\) 4.09408e6 1.30371 0.651854 0.758345i \(-0.273992\pi\)
0.651854 + 0.758345i \(0.273992\pi\)
\(398\) 2.08146e6 0.658657
\(399\) 0 0
\(400\) 1.00634e6 0.314480
\(401\) 942366. 0.292657 0.146328 0.989236i \(-0.453254\pi\)
0.146328 + 0.989236i \(0.453254\pi\)
\(402\) −698080. −0.215447
\(403\) −4.30525e6 −1.32049
\(404\) −1.58726e6 −0.483833
\(405\) 323484. 0.0979976
\(406\) 0 0
\(407\) −4.81488e6 −1.44079
\(408\) 933120. 0.277515
\(409\) 4.84561e6 1.43232 0.716160 0.697936i \(-0.245898\pi\)
0.716160 + 0.697936i \(0.245898\pi\)
\(410\) −2.09059e6 −0.614200
\(411\) −3.03234e6 −0.885469
\(412\) 2.10630e6 0.611333
\(413\) 0 0
\(414\) −2.40240e6 −0.688881
\(415\) −2.95697e6 −0.842804
\(416\) 598016. 0.169426
\(417\) 2.50586e6 0.705694
\(418\) −631680. −0.176830
\(419\) 1.73485e6 0.482754 0.241377 0.970431i \(-0.422401\pi\)
0.241377 + 0.970431i \(0.422401\pi\)
\(420\) 0 0
\(421\) −1.65145e6 −0.454109 −0.227055 0.973882i \(-0.572910\pi\)
−0.227055 + 0.973882i \(0.572910\pi\)
\(422\) −733136. −0.200403
\(423\) −259116. −0.0704115
\(424\) 2.38349e6 0.643870
\(425\) 5.73140e6 1.53918
\(426\) 1.12896e6 0.301408
\(427\) 0 0
\(428\) 781632. 0.206250
\(429\) −1.96224e6 −0.514765
\(430\) 1.24454e6 0.324593
\(431\) 4.14360e6 1.07445 0.537223 0.843440i \(-0.319473\pi\)
0.537223 + 0.843440i \(0.319473\pi\)
\(432\) 988160. 0.254752
\(433\) 3.03966e6 0.779121 0.389561 0.921001i \(-0.372627\pi\)
0.389561 + 0.921001i \(0.372627\pi\)
\(434\) 0 0
\(435\) 4.08744e6 1.03569
\(436\) −901984. −0.227239
\(437\) 1.97400e6 0.494474
\(438\) −144080. −0.0358855
\(439\) −2.54271e6 −0.629703 −0.314852 0.949141i \(-0.601955\pi\)
−0.314852 + 0.949141i \(0.601955\pi\)
\(440\) −1.80634e6 −0.444802
\(441\) 0 0
\(442\) 3.40589e6 0.829229
\(443\) −2.43210e6 −0.588806 −0.294403 0.955681i \(-0.595121\pi\)
−0.294403 + 0.955681i \(0.595121\pi\)
\(444\) −2.29280e6 −0.551961
\(445\) 2.24532e6 0.537500
\(446\) −5.10986e6 −1.21639
\(447\) 605940. 0.143437
\(448\) 0 0
\(449\) 1.82853e6 0.428042 0.214021 0.976829i \(-0.431344\pi\)
0.214021 + 0.976829i \(0.431344\pi\)
\(450\) 2.24853e6 0.523441
\(451\) 2.09059e6 0.483981
\(452\) 139872. 0.0322021
\(453\) −1.24448e6 −0.284933
\(454\) −5.15057e6 −1.17278
\(455\) 0 0
\(456\) −300800. −0.0677432
\(457\) 1.58063e6 0.354030 0.177015 0.984208i \(-0.443356\pi\)
0.177015 + 0.984208i \(0.443356\pi\)
\(458\) 1.40374e6 0.312697
\(459\) 5.62788e6 1.24685
\(460\) 5.64480e6 1.24381
\(461\) −5.09604e6 −1.11681 −0.558407 0.829567i \(-0.688587\pi\)
−0.558407 + 0.829567i \(0.688587\pi\)
\(462\) 0 0
\(463\) −7.02338e6 −1.52263 −0.761313 0.648384i \(-0.775445\pi\)
−0.761313 + 0.648384i \(0.775445\pi\)
\(464\) 1.24570e6 0.268607
\(465\) 6.19248e6 1.32810
\(466\) −3.34462e6 −0.713479
\(467\) 4.24845e6 0.901443 0.450722 0.892665i \(-0.351167\pi\)
0.450722 + 0.892665i \(0.351167\pi\)
\(468\) 1.33619e6 0.282003
\(469\) 0 0
\(470\) 608832. 0.127131
\(471\) 760400. 0.157939
\(472\) 2.19533e6 0.453570
\(473\) −1.24454e6 −0.255775
\(474\) 1.71488e6 0.350581
\(475\) −1.84757e6 −0.375722
\(476\) 0 0
\(477\) 5.32561e6 1.07170
\(478\) −3.09734e6 −0.620040
\(479\) −559284. −0.111377 −0.0556883 0.998448i \(-0.517735\pi\)
−0.0556883 + 0.998448i \(0.517735\pi\)
\(480\) −860160. −0.170403
\(481\) −8.36872e6 −1.64929
\(482\) −4.61140e6 −0.904097
\(483\) 0 0
\(484\) −770480. −0.149502
\(485\) −1.42615e6 −0.275303
\(486\) 3.59788e6 0.690965
\(487\) −1.32057e6 −0.252312 −0.126156 0.992010i \(-0.540264\pi\)
−0.126156 + 0.992010i \(0.540264\pi\)
\(488\) 1.56646e6 0.297763
\(489\) −1.24256e6 −0.234988
\(490\) 0 0
\(491\) 6.27193e6 1.17408 0.587040 0.809558i \(-0.300293\pi\)
0.587040 + 0.809558i \(0.300293\pi\)
\(492\) 995520. 0.185412
\(493\) 7.09463e6 1.31466
\(494\) −1.09792e6 −0.202420
\(495\) −4.03603e6 −0.740358
\(496\) 1.88723e6 0.344446
\(497\) 0 0
\(498\) 1.40808e6 0.254422
\(499\) −3.93785e6 −0.707959 −0.353979 0.935253i \(-0.615172\pi\)
−0.353979 + 0.935253i \(0.615172\pi\)
\(500\) −1.08326e6 −0.193780
\(501\) −724200. −0.128903
\(502\) 5.43204e6 0.962063
\(503\) 7.59830e6 1.33905 0.669525 0.742790i \(-0.266498\pi\)
0.669525 + 0.742790i \(0.266498\pi\)
\(504\) 0 0
\(505\) 8.33314e6 1.45405
\(506\) −5.64480e6 −0.980104
\(507\) 302370. 0.0522419
\(508\) 5.05587e6 0.869234
\(509\) 7.82664e6 1.33900 0.669501 0.742812i \(-0.266508\pi\)
0.669501 + 0.742812i \(0.266508\pi\)
\(510\) −4.89888e6 −0.834010
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) −1.81420e6 −0.304363
\(514\) −1.27097e6 −0.212191
\(515\) −1.10581e7 −1.83722
\(516\) −592640. −0.0979866
\(517\) −608832. −0.100178
\(518\) 0 0
\(519\) −4.41552e6 −0.719554
\(520\) −3.13958e6 −0.509171
\(521\) −8.94454e6 −1.44366 −0.721828 0.692072i \(-0.756698\pi\)
−0.721828 + 0.692072i \(0.756698\pi\)
\(522\) 2.78335e6 0.447087
\(523\) −4.07481e6 −0.651407 −0.325704 0.945472i \(-0.605601\pi\)
−0.325704 + 0.945472i \(0.605601\pi\)
\(524\) 394656. 0.0627900
\(525\) 0 0
\(526\) −4.20403e6 −0.662524
\(527\) 1.07484e7 1.68584
\(528\) 860160. 0.134275
\(529\) 1.12037e7 1.74069
\(530\) −1.25133e7 −1.93501
\(531\) 4.90519e6 0.754952
\(532\) 0 0
\(533\) 3.63365e6 0.554019
\(534\) −1.06920e6 −0.162258
\(535\) −4.10357e6 −0.619837
\(536\) 1.11693e6 0.167924
\(537\) 106920. 0.0160001
\(538\) 4.75834e6 0.708760
\(539\) 0 0
\(540\) −5.18784e6 −0.765600
\(541\) −1.18676e7 −1.74329 −0.871644 0.490140i \(-0.836946\pi\)
−0.871644 + 0.490140i \(0.836946\pi\)
\(542\) −5.72032e6 −0.836416
\(543\) −5.46064e6 −0.794775
\(544\) −1.49299e6 −0.216302
\(545\) 4.73542e6 0.682915
\(546\) 0 0
\(547\) −5.37801e6 −0.768516 −0.384258 0.923226i \(-0.625543\pi\)
−0.384258 + 0.923226i \(0.625543\pi\)
\(548\) 4.85174e6 0.690155
\(549\) 3.50007e6 0.495616
\(550\) 5.28326e6 0.744724
\(551\) −2.28702e6 −0.320916
\(552\) −2.68800e6 −0.375475
\(553\) 0 0
\(554\) −253208. −0.0350512
\(555\) 1.20372e7 1.65880
\(556\) −4.00938e6 −0.550034
\(557\) −5.64878e6 −0.771466 −0.385733 0.922611i \(-0.626051\pi\)
−0.385733 + 0.922611i \(0.626051\pi\)
\(558\) 4.21678e6 0.573318
\(559\) −2.16314e6 −0.292789
\(560\) 0 0
\(561\) 4.89888e6 0.657188
\(562\) 1.98646e6 0.265301
\(563\) −4.56407e6 −0.606850 −0.303425 0.952855i \(-0.598130\pi\)
−0.303425 + 0.952855i \(0.598130\pi\)
\(564\) −289920. −0.0383778
\(565\) −734328. −0.0967763
\(566\) −4.63367e6 −0.607973
\(567\) 0 0
\(568\) −1.80634e6 −0.234924
\(569\) 8.00165e6 1.03609 0.518047 0.855352i \(-0.326659\pi\)
0.518047 + 0.855352i \(0.326659\pi\)
\(570\) 1.57920e6 0.203587
\(571\) −1.37164e7 −1.76055 −0.880275 0.474464i \(-0.842642\pi\)
−0.880275 + 0.474464i \(0.842642\pi\)
\(572\) 3.13958e6 0.401220
\(573\) 5.75976e6 0.732855
\(574\) 0 0
\(575\) −1.65102e7 −2.08249
\(576\) −585728. −0.0735597
\(577\) −6.09797e6 −0.762510 −0.381255 0.924470i \(-0.624508\pi\)
−0.381255 + 0.924470i \(0.624508\pi\)
\(578\) −2.82363e6 −0.351551
\(579\) 4.13938e6 0.513144
\(580\) −6.53990e6 −0.807238
\(581\) 0 0
\(582\) 679120. 0.0831073
\(583\) 1.25133e7 1.52476
\(584\) 230528. 0.0279699
\(585\) −7.01501e6 −0.847498
\(586\) 5.75544e6 0.692364
\(587\) 8.08462e6 0.968422 0.484211 0.874951i \(-0.339107\pi\)
0.484211 + 0.874951i \(0.339107\pi\)
\(588\) 0 0
\(589\) −3.46484e6 −0.411524
\(590\) −1.15255e7 −1.36310
\(591\) 4.94946e6 0.582893
\(592\) 3.66848e6 0.430211
\(593\) −1.41575e6 −0.165330 −0.0826649 0.996577i \(-0.526343\pi\)
−0.0826649 + 0.996577i \(0.526343\pi\)
\(594\) 5.18784e6 0.603282
\(595\) 0 0
\(596\) −969504. −0.111798
\(597\) 5.20364e6 0.597546
\(598\) −9.81120e6 −1.12194
\(599\) 8.75460e6 0.996941 0.498470 0.866907i \(-0.333895\pi\)
0.498470 + 0.866907i \(0.333895\pi\)
\(600\) 2.51584e6 0.285302
\(601\) −8.70276e6 −0.982813 −0.491407 0.870930i \(-0.663517\pi\)
−0.491407 + 0.870930i \(0.663517\pi\)
\(602\) 0 0
\(603\) 2.49564e6 0.279504
\(604\) 1.99117e6 0.222083
\(605\) 4.04502e6 0.449296
\(606\) −3.96816e6 −0.438942
\(607\) 1.69578e7 1.86809 0.934045 0.357157i \(-0.116254\pi\)
0.934045 + 0.357157i \(0.116254\pi\)
\(608\) 481280. 0.0528006
\(609\) 0 0
\(610\) −8.22394e6 −0.894860
\(611\) −1.05821e6 −0.114675
\(612\) −3.33590e6 −0.360027
\(613\) 1.76743e7 1.89973 0.949866 0.312658i \(-0.101220\pi\)
0.949866 + 0.312658i \(0.101220\pi\)
\(614\) −3.95639e6 −0.423524
\(615\) −5.22648e6 −0.557213
\(616\) 0 0
\(617\) −9.70636e6 −1.02646 −0.513232 0.858250i \(-0.671552\pi\)
−0.513232 + 0.858250i \(0.671552\pi\)
\(618\) 5.26576e6 0.554613
\(619\) −1.48739e7 −1.56027 −0.780133 0.625613i \(-0.784849\pi\)
−0.780133 + 0.625613i \(0.784849\pi\)
\(620\) −9.90797e6 −1.03515
\(621\) −1.62120e7 −1.68697
\(622\) −8.88202e6 −0.920525
\(623\) 0 0
\(624\) 1.49504e6 0.153706
\(625\) −6.59724e6 −0.675557
\(626\) 9.32031e6 0.950593
\(627\) −1.57920e6 −0.160424
\(628\) −1.21664e6 −0.123101
\(629\) 2.08931e7 2.10561
\(630\) 0 0
\(631\) 1.26353e7 1.26331 0.631656 0.775248i \(-0.282375\pi\)
0.631656 + 0.775248i \(0.282375\pi\)
\(632\) −2.74381e6 −0.273251
\(633\) −1.83284e6 −0.181809
\(634\) −1.71017e6 −0.168972
\(635\) −2.65433e7 −2.61229
\(636\) 5.95872e6 0.584131
\(637\) 0 0
\(638\) 6.53990e6 0.636092
\(639\) −4.03603e6 −0.391023
\(640\) 1.37626e6 0.132816
\(641\) 6.23398e6 0.599267 0.299634 0.954054i \(-0.403136\pi\)
0.299634 + 0.954054i \(0.403136\pi\)
\(642\) 1.95408e6 0.187113
\(643\) −1.06874e7 −1.01940 −0.509701 0.860352i \(-0.670244\pi\)
−0.509701 + 0.860352i \(0.670244\pi\)
\(644\) 0 0
\(645\) 3.11136e6 0.294477
\(646\) 2.74104e6 0.258425
\(647\) −1.83258e7 −1.72109 −0.860544 0.509376i \(-0.829876\pi\)
−0.860544 + 0.509376i \(0.829876\pi\)
\(648\) 246464. 0.0230577
\(649\) 1.15255e7 1.07411
\(650\) 9.18282e6 0.852496
\(651\) 0 0
\(652\) 1.98810e6 0.183155
\(653\) −7.28857e6 −0.668897 −0.334448 0.942414i \(-0.608550\pi\)
−0.334448 + 0.942414i \(0.608550\pi\)
\(654\) −2.25496e6 −0.206155
\(655\) −2.07194e6 −0.188701
\(656\) −1.59283e6 −0.144514
\(657\) 515086. 0.0465550
\(658\) 0 0
\(659\) 4.54337e6 0.407534 0.203767 0.979019i \(-0.434681\pi\)
0.203767 + 0.979019i \(0.434681\pi\)
\(660\) −4.51584e6 −0.403533
\(661\) 2.10021e7 1.86964 0.934821 0.355120i \(-0.115560\pi\)
0.934821 + 0.355120i \(0.115560\pi\)
\(662\) 1.58646e6 0.140697
\(663\) 8.51472e6 0.752292
\(664\) −2.25293e6 −0.198302
\(665\) 0 0
\(666\) 8.19676e6 0.716072
\(667\) −2.04372e7 −1.77872
\(668\) 1.15872e6 0.100470
\(669\) −1.27746e7 −1.10353
\(670\) −5.86387e6 −0.504658
\(671\) 8.22394e6 0.705137
\(672\) 0 0
\(673\) 3.46923e6 0.295253 0.147627 0.989043i \(-0.452837\pi\)
0.147627 + 0.989043i \(0.452837\pi\)
\(674\) 1.28728e7 1.09150
\(675\) 1.51737e7 1.28183
\(676\) −483792. −0.0407185
\(677\) 1.80916e7 1.51707 0.758536 0.651631i \(-0.225915\pi\)
0.758536 + 0.651631i \(0.225915\pi\)
\(678\) 349680. 0.0292144
\(679\) 0 0
\(680\) 7.83821e6 0.650047
\(681\) −1.28764e7 −1.06397
\(682\) 9.90797e6 0.815687
\(683\) 4.67752e6 0.383675 0.191838 0.981427i \(-0.438555\pi\)
0.191838 + 0.981427i \(0.438555\pi\)
\(684\) 1.07536e6 0.0878848
\(685\) −2.54717e7 −2.07411
\(686\) 0 0
\(687\) 3.50936e6 0.283685
\(688\) 948224. 0.0763730
\(689\) 2.17493e7 1.74541
\(690\) 1.41120e7 1.12841
\(691\) −1.68960e7 −1.34614 −0.673069 0.739579i \(-0.735024\pi\)
−0.673069 + 0.739579i \(0.735024\pi\)
\(692\) 7.06483e6 0.560837
\(693\) 0 0
\(694\) −1.11207e7 −0.876466
\(695\) 2.10492e7 1.65300
\(696\) 3.11424e6 0.243685
\(697\) −9.07168e6 −0.707303
\(698\) −1.35520e6 −0.105285
\(699\) −8.36154e6 −0.647282
\(700\) 0 0
\(701\) 2.40964e6 0.185207 0.0926035 0.995703i \(-0.470481\pi\)
0.0926035 + 0.995703i \(0.470481\pi\)
\(702\) 9.01696e6 0.690585
\(703\) −6.73510e6 −0.513991
\(704\) −1.37626e6 −0.104657
\(705\) 1.52208e6 0.115336
\(706\) −1.44818e6 −0.109348
\(707\) 0 0
\(708\) 5.48832e6 0.411487
\(709\) −5.77010e6 −0.431090 −0.215545 0.976494i \(-0.569153\pi\)
−0.215545 + 0.976494i \(0.569153\pi\)
\(710\) 9.48326e6 0.706012
\(711\) −6.13070e6 −0.454816
\(712\) 1.71072e6 0.126468
\(713\) −3.09624e7 −2.28092
\(714\) 0 0
\(715\) −1.64828e7 −1.20578
\(716\) −171072. −0.0124709
\(717\) −7.74336e6 −0.562512
\(718\) −3.50611e6 −0.253813
\(719\) 1.43716e7 1.03677 0.518385 0.855147i \(-0.326533\pi\)
0.518385 + 0.855147i \(0.326533\pi\)
\(720\) 3.07507e6 0.221067
\(721\) 0 0
\(722\) 9.02080e6 0.644024
\(723\) −1.15285e7 −0.820214
\(724\) 8.73702e6 0.619465
\(725\) 1.91282e7 1.35154
\(726\) −1.92620e6 −0.135631
\(727\) 1.40705e7 0.987353 0.493676 0.869646i \(-0.335653\pi\)
0.493676 + 0.869646i \(0.335653\pi\)
\(728\) 0 0
\(729\) 9.93049e6 0.692073
\(730\) −1.21027e6 −0.0840574
\(731\) 5.40043e6 0.373796
\(732\) 3.91616e6 0.270136
\(733\) 3.75000e6 0.257793 0.128897 0.991658i \(-0.458856\pi\)
0.128897 + 0.991658i \(0.458856\pi\)
\(734\) 1.19225e7 0.816819
\(735\) 0 0
\(736\) 4.30080e6 0.292654
\(737\) 5.86387e6 0.397664
\(738\) −3.55898e6 −0.240539
\(739\) 2.61318e7 1.76019 0.880093 0.474802i \(-0.157480\pi\)
0.880093 + 0.474802i \(0.157480\pi\)
\(740\) −1.92595e7 −1.29290
\(741\) −2.74480e6 −0.183639
\(742\) 0 0
\(743\) −159072. −0.0105711 −0.00528557 0.999986i \(-0.501682\pi\)
−0.00528557 + 0.999986i \(0.501682\pi\)
\(744\) 4.71808e6 0.312488
\(745\) 5.08990e6 0.335984
\(746\) −1.56577e7 −1.03010
\(747\) −5.03389e6 −0.330067
\(748\) −7.83821e6 −0.512227
\(749\) 0 0
\(750\) −2.70816e6 −0.175801
\(751\) −2.65311e7 −1.71654 −0.858272 0.513196i \(-0.828461\pi\)
−0.858272 + 0.513196i \(0.828461\pi\)
\(752\) 463872. 0.0299126
\(753\) 1.35801e7 0.872802
\(754\) 1.13670e7 0.728143
\(755\) −1.04536e7 −0.667421
\(756\) 0 0
\(757\) −1.52032e7 −0.964260 −0.482130 0.876100i \(-0.660137\pi\)
−0.482130 + 0.876100i \(0.660137\pi\)
\(758\) −1.44264e7 −0.911981
\(759\) −1.41120e7 −0.889169
\(760\) −2.52672e6 −0.158680
\(761\) −4.71380e6 −0.295059 −0.147530 0.989058i \(-0.547132\pi\)
−0.147530 + 0.989058i \(0.547132\pi\)
\(762\) 1.26397e7 0.788585
\(763\) 0 0
\(764\) −9.21562e6 −0.571204
\(765\) 1.75135e7 1.08198
\(766\) −1.06657e7 −0.656779
\(767\) 2.00324e7 1.22954
\(768\) −655360. −0.0400938
\(769\) 1.58977e6 0.0969434 0.0484717 0.998825i \(-0.484565\pi\)
0.0484717 + 0.998825i \(0.484565\pi\)
\(770\) 0 0
\(771\) −3.17742e6 −0.192504
\(772\) −6.62301e6 −0.399956
\(773\) 9.69095e6 0.583334 0.291667 0.956520i \(-0.405790\pi\)
0.291667 + 0.956520i \(0.405790\pi\)
\(774\) 2.11869e6 0.127120
\(775\) 2.89793e7 1.73314
\(776\) −1.08659e6 −0.0647757
\(777\) 0 0
\(778\) 853464. 0.0505518
\(779\) 2.92434e6 0.172657
\(780\) −7.84896e6 −0.461929
\(781\) −9.48326e6 −0.556327
\(782\) 2.44944e7 1.43235
\(783\) 1.87828e7 1.09485
\(784\) 0 0
\(785\) 6.38736e6 0.369954
\(786\) 986640. 0.0569642
\(787\) 1.57170e6 0.0904549 0.0452275 0.998977i \(-0.485599\pi\)
0.0452275 + 0.998977i \(0.485599\pi\)
\(788\) −7.91914e6 −0.454320
\(789\) −1.05101e7 −0.601054
\(790\) 1.44050e7 0.821193
\(791\) 0 0
\(792\) −3.07507e6 −0.174198
\(793\) 1.42940e7 0.807180
\(794\) −1.63763e7 −0.921860
\(795\) −3.12833e7 −1.75547
\(796\) −8.32582e6 −0.465741
\(797\) 2.25298e6 0.125635 0.0628175 0.998025i \(-0.479991\pi\)
0.0628175 + 0.998025i \(0.479991\pi\)
\(798\) 0 0
\(799\) 2.64190e6 0.146403
\(800\) −4.02534e6 −0.222371
\(801\) 3.82239e6 0.210501
\(802\) −3.76946e6 −0.206940
\(803\) 1.21027e6 0.0662360
\(804\) 2.79232e6 0.152344
\(805\) 0 0
\(806\) 1.72210e7 0.933728
\(807\) 1.18958e7 0.643000
\(808\) 6.34906e6 0.342122
\(809\) −2.37938e7 −1.27818 −0.639090 0.769132i \(-0.720689\pi\)
−0.639090 + 0.769132i \(0.720689\pi\)
\(810\) −1.29394e6 −0.0692947
\(811\) −5.32300e6 −0.284187 −0.142093 0.989853i \(-0.545383\pi\)
−0.142093 + 0.989853i \(0.545383\pi\)
\(812\) 0 0
\(813\) −1.43008e7 −0.758812
\(814\) 1.92595e7 1.01879
\(815\) −1.04375e7 −0.550431
\(816\) −3.73248e6 −0.196233
\(817\) −1.74088e6 −0.0912460
\(818\) −1.93824e7 −1.01280
\(819\) 0 0
\(820\) 8.36237e6 0.434305
\(821\) 1.48802e7 0.770464 0.385232 0.922820i \(-0.374121\pi\)
0.385232 + 0.922820i \(0.374121\pi\)
\(822\) 1.21294e7 0.626121
\(823\) 2.00601e7 1.03236 0.516182 0.856479i \(-0.327353\pi\)
0.516182 + 0.856479i \(0.327353\pi\)
\(824\) −8.42522e6 −0.432278
\(825\) 1.32082e7 0.675628
\(826\) 0 0
\(827\) 1.21539e7 0.617949 0.308975 0.951070i \(-0.400014\pi\)
0.308975 + 0.951070i \(0.400014\pi\)
\(828\) 9.60960e6 0.487113
\(829\) −3.21197e7 −1.62325 −0.811625 0.584179i \(-0.801417\pi\)
−0.811625 + 0.584179i \(0.801417\pi\)
\(830\) 1.18279e7 0.595952
\(831\) −633020. −0.0317991
\(832\) −2.39206e6 −0.119802
\(833\) 0 0
\(834\) −1.00234e7 −0.499001
\(835\) −6.08328e6 −0.301941
\(836\) 2.52672e6 0.125038
\(837\) 2.84559e7 1.40397
\(838\) −6.93938e6 −0.341359
\(839\) 1.01320e6 0.0496922 0.0248461 0.999691i \(-0.492090\pi\)
0.0248461 + 0.999691i \(0.492090\pi\)
\(840\) 0 0
\(841\) 3.16681e6 0.154394
\(842\) 6.60580e6 0.321104
\(843\) 4.96614e6 0.240686
\(844\) 2.93254e6 0.141706
\(845\) 2.53991e6 0.122370
\(846\) 1.03646e6 0.0497884
\(847\) 0 0
\(848\) −9.53395e6 −0.455285
\(849\) −1.15842e7 −0.551564
\(850\) −2.29256e7 −1.08836
\(851\) −6.01860e7 −2.84886
\(852\) −4.51584e6 −0.213128
\(853\) −234824. −0.0110502 −0.00552510 0.999985i \(-0.501759\pi\)
−0.00552510 + 0.999985i \(0.501759\pi\)
\(854\) 0 0
\(855\) −5.64564e6 −0.264118
\(856\) −3.12653e6 −0.145840
\(857\) −2.83802e7 −1.31997 −0.659985 0.751279i \(-0.729437\pi\)
−0.659985 + 0.751279i \(0.729437\pi\)
\(858\) 7.84896e6 0.363994
\(859\) −4.00081e7 −1.84997 −0.924986 0.380001i \(-0.875924\pi\)
−0.924986 + 0.380001i \(0.875924\pi\)
\(860\) −4.97818e6 −0.229522
\(861\) 0 0
\(862\) −1.65744e7 −0.759748
\(863\) −2.08030e7 −0.950823 −0.475411 0.879764i \(-0.657701\pi\)
−0.475411 + 0.879764i \(0.657701\pi\)
\(864\) −3.95264e6 −0.180137
\(865\) −3.70904e7 −1.68547
\(866\) −1.21586e7 −0.550922
\(867\) −7.05907e6 −0.318933
\(868\) 0 0
\(869\) −1.44050e7 −0.647088
\(870\) −1.63498e7 −0.732341
\(871\) 1.01920e7 0.455211
\(872\) 3.60794e6 0.160682
\(873\) −2.42785e6 −0.107817
\(874\) −7.89600e6 −0.349646
\(875\) 0 0
\(876\) 576320. 0.0253748
\(877\) 3.03559e7 1.33273 0.666367 0.745624i \(-0.267848\pi\)
0.666367 + 0.745624i \(0.267848\pi\)
\(878\) 1.01708e7 0.445267
\(879\) 1.43886e7 0.628125
\(880\) 7.22534e6 0.314523
\(881\) 2.58936e7 1.12396 0.561981 0.827150i \(-0.310039\pi\)
0.561981 + 0.827150i \(0.310039\pi\)
\(882\) 0 0
\(883\) −1.88813e7 −0.814950 −0.407475 0.913216i \(-0.633591\pi\)
−0.407475 + 0.913216i \(0.633591\pi\)
\(884\) −1.36236e7 −0.586354
\(885\) −2.88137e7 −1.23663
\(886\) 9.72840e6 0.416349
\(887\) 2.34431e7 1.00048 0.500238 0.865888i \(-0.333246\pi\)
0.500238 + 0.865888i \(0.333246\pi\)
\(888\) 9.17120e6 0.390296
\(889\) 0 0
\(890\) −8.98128e6 −0.380070
\(891\) 1.29394e6 0.0546033
\(892\) 2.04394e7 0.860115
\(893\) −851640. −0.0357378
\(894\) −2.42376e6 −0.101425
\(895\) 898128. 0.0374784
\(896\) 0 0
\(897\) −2.45280e7 −1.01784
\(898\) −7.31412e6 −0.302671
\(899\) 3.58722e7 1.48033
\(900\) −8.99413e6 −0.370129
\(901\) −5.42988e7 −2.22833
\(902\) −8.36237e6 −0.342226
\(903\) 0 0
\(904\) −559488. −0.0227703
\(905\) −4.58694e7 −1.86166
\(906\) 4.97792e6 0.201478
\(907\) −5.60873e6 −0.226384 −0.113192 0.993573i \(-0.536108\pi\)
−0.113192 + 0.993573i \(0.536108\pi\)
\(908\) 2.06023e7 0.829279
\(909\) 1.41862e7 0.569450
\(910\) 0 0
\(911\) 2.16215e7 0.863156 0.431578 0.902076i \(-0.357957\pi\)
0.431578 + 0.902076i \(0.357957\pi\)
\(912\) 1.20320e6 0.0479017
\(913\) −1.18279e7 −0.469602
\(914\) −6.32252e6 −0.250337
\(915\) −2.05598e7 −0.811834
\(916\) −5.61498e6 −0.221110
\(917\) 0 0
\(918\) −2.25115e7 −0.881654
\(919\) 4.51695e7 1.76424 0.882119 0.471028i \(-0.156117\pi\)
0.882119 + 0.471028i \(0.156117\pi\)
\(920\) −2.25792e7 −0.879506
\(921\) −9.89098e6 −0.384229
\(922\) 2.03842e7 0.789706
\(923\) −1.64828e7 −0.636835
\(924\) 0 0
\(925\) 5.63312e7 2.16469
\(926\) 2.80935e7 1.07666
\(927\) −1.88251e7 −0.719512
\(928\) −4.98278e6 −0.189934
\(929\) 2.28729e7 0.869524 0.434762 0.900545i \(-0.356832\pi\)
0.434762 + 0.900545i \(0.356832\pi\)
\(930\) −2.47699e7 −0.939112
\(931\) 0 0
\(932\) 1.33785e7 0.504506
\(933\) −2.22050e7 −0.835117
\(934\) −1.69938e7 −0.637417
\(935\) 4.11506e7 1.53938
\(936\) −5.34477e6 −0.199406
\(937\) 1.79616e7 0.668336 0.334168 0.942514i \(-0.391545\pi\)
0.334168 + 0.942514i \(0.391545\pi\)
\(938\) 0 0
\(939\) 2.33008e7 0.862395
\(940\) −2.43533e6 −0.0898955
\(941\) 1.79697e7 0.661558 0.330779 0.943708i \(-0.392689\pi\)
0.330779 + 0.943708i \(0.392689\pi\)
\(942\) −3.04160e6 −0.111680
\(943\) 2.61324e7 0.956974
\(944\) −8.78131e6 −0.320722
\(945\) 0 0
\(946\) 4.97818e6 0.180860
\(947\) 4.32115e7 1.56576 0.782879 0.622174i \(-0.213750\pi\)
0.782879 + 0.622174i \(0.213750\pi\)
\(948\) −6.85952e6 −0.247898
\(949\) 2.10357e6 0.0758213
\(950\) 7.39028e6 0.265676
\(951\) −4.27542e6 −0.153295
\(952\) 0 0
\(953\) −7.50965e6 −0.267848 −0.133924 0.990992i \(-0.542758\pi\)
−0.133924 + 0.990992i \(0.542758\pi\)
\(954\) −2.13024e7 −0.757806
\(955\) 4.83820e7 1.71662
\(956\) 1.23894e7 0.438434
\(957\) 1.63498e7 0.577074
\(958\) 2.23714e6 0.0787551
\(959\) 0 0
\(960\) 3.44064e6 0.120493
\(961\) 2.57172e7 0.898288
\(962\) 3.34749e7 1.16622
\(963\) −6.98584e6 −0.242746
\(964\) 1.84456e7 0.639293
\(965\) 3.47708e7 1.20198
\(966\) 0 0
\(967\) −1.69305e7 −0.582242 −0.291121 0.956686i \(-0.594028\pi\)
−0.291121 + 0.956686i \(0.594028\pi\)
\(968\) 3.08192e6 0.105714
\(969\) 6.85260e6 0.234448
\(970\) 5.70461e6 0.194669
\(971\) −2.86144e7 −0.973949 −0.486974 0.873416i \(-0.661899\pi\)
−0.486974 + 0.873416i \(0.661899\pi\)
\(972\) −1.43915e7 −0.488586
\(973\) 0 0
\(974\) 5.28227e6 0.178412
\(975\) 2.29570e7 0.773400
\(976\) −6.26586e6 −0.210550
\(977\) 3.69445e7 1.23826 0.619132 0.785287i \(-0.287485\pi\)
0.619132 + 0.785287i \(0.287485\pi\)
\(978\) 4.97024e6 0.166161
\(979\) 8.98128e6 0.299489
\(980\) 0 0
\(981\) 8.06148e6 0.267450
\(982\) −2.50877e7 −0.830200
\(983\) 3.88787e7 1.28330 0.641650 0.766998i \(-0.278250\pi\)
0.641650 + 0.766998i \(0.278250\pi\)
\(984\) −3.98208e6 −0.131106
\(985\) 4.15755e7 1.36536
\(986\) −2.83785e7 −0.929603
\(987\) 0 0
\(988\) 4.39168e6 0.143133
\(989\) −1.55568e7 −0.505743
\(990\) 1.61441e7 0.523512
\(991\) 2.49212e7 0.806092 0.403046 0.915180i \(-0.367951\pi\)
0.403046 + 0.915180i \(0.367951\pi\)
\(992\) −7.54893e6 −0.243560
\(993\) 3.96616e6 0.127643
\(994\) 0 0
\(995\) 4.37106e7 1.39968
\(996\) −5.63232e6 −0.179903
\(997\) −1.01956e7 −0.324845 −0.162422 0.986721i \(-0.551931\pi\)
−0.162422 + 0.986721i \(0.551931\pi\)
\(998\) 1.57514e7 0.500603
\(999\) 5.53138e7 1.75356
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.6.a.a.1.1 1
3.2 odd 2 882.6.a.x.1.1 1
4.3 odd 2 784.6.a.i.1.1 1
7.2 even 3 98.6.c.d.67.1 2
7.3 odd 6 98.6.c.c.79.1 2
7.4 even 3 98.6.c.d.79.1 2
7.5 odd 6 98.6.c.c.67.1 2
7.6 odd 2 14.6.a.a.1.1 1
21.20 even 2 126.6.a.f.1.1 1
28.27 even 2 112.6.a.c.1.1 1
35.13 even 4 350.6.c.d.99.2 2
35.27 even 4 350.6.c.d.99.1 2
35.34 odd 2 350.6.a.i.1.1 1
56.13 odd 2 448.6.a.e.1.1 1
56.27 even 2 448.6.a.l.1.1 1
84.83 odd 2 1008.6.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.a.a.1.1 1 7.6 odd 2
98.6.a.a.1.1 1 1.1 even 1 trivial
98.6.c.c.67.1 2 7.5 odd 6
98.6.c.c.79.1 2 7.3 odd 6
98.6.c.d.67.1 2 7.2 even 3
98.6.c.d.79.1 2 7.4 even 3
112.6.a.c.1.1 1 28.27 even 2
126.6.a.f.1.1 1 21.20 even 2
350.6.a.i.1.1 1 35.34 odd 2
350.6.c.d.99.1 2 35.27 even 4
350.6.c.d.99.2 2 35.13 even 4
448.6.a.e.1.1 1 56.13 odd 2
448.6.a.l.1.1 1 56.27 even 2
784.6.a.i.1.1 1 4.3 odd 2
882.6.a.x.1.1 1 3.2 odd 2
1008.6.a.b.1.1 1 84.83 odd 2