Properties

Label 98.4.c.d
Level $98$
Weight $4$
Character orbit 98.c
Analytic conductor $5.782$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.78218718056\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + ( -8 + 8 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + 14 \zeta_{6} q^{5} -16 q^{6} -8 q^{8} -37 \zeta_{6} q^{9} +O(q^{10})\) \( q + 2 \zeta_{6} q^{2} + ( -8 + 8 \zeta_{6} ) q^{3} + ( -4 + 4 \zeta_{6} ) q^{4} + 14 \zeta_{6} q^{5} -16 q^{6} -8 q^{8} -37 \zeta_{6} q^{9} + ( -28 + 28 \zeta_{6} ) q^{10} + ( 28 - 28 \zeta_{6} ) q^{11} -32 \zeta_{6} q^{12} + 18 q^{13} -112 q^{15} -16 \zeta_{6} q^{16} + ( -74 + 74 \zeta_{6} ) q^{17} + ( 74 - 74 \zeta_{6} ) q^{18} -80 \zeta_{6} q^{19} -56 q^{20} + 56 q^{22} + 112 \zeta_{6} q^{23} + ( 64 - 64 \zeta_{6} ) q^{24} + ( -71 + 71 \zeta_{6} ) q^{25} + 36 \zeta_{6} q^{26} + 80 q^{27} + 190 q^{29} -224 \zeta_{6} q^{30} + ( -72 + 72 \zeta_{6} ) q^{31} + ( 32 - 32 \zeta_{6} ) q^{32} + 224 \zeta_{6} q^{33} -148 q^{34} + 148 q^{36} + 346 \zeta_{6} q^{37} + ( 160 - 160 \zeta_{6} ) q^{38} + ( -144 + 144 \zeta_{6} ) q^{39} -112 \zeta_{6} q^{40} + 162 q^{41} -412 q^{43} + 112 \zeta_{6} q^{44} + ( 518 - 518 \zeta_{6} ) q^{45} + ( -224 + 224 \zeta_{6} ) q^{46} -24 \zeta_{6} q^{47} + 128 q^{48} -142 q^{50} -592 \zeta_{6} q^{51} + ( -72 + 72 \zeta_{6} ) q^{52} + ( -318 + 318 \zeta_{6} ) q^{53} + 160 \zeta_{6} q^{54} + 392 q^{55} + 640 q^{57} + 380 \zeta_{6} q^{58} + ( 200 - 200 \zeta_{6} ) q^{59} + ( 448 - 448 \zeta_{6} ) q^{60} + 198 \zeta_{6} q^{61} -144 q^{62} + 64 q^{64} + 252 \zeta_{6} q^{65} + ( -448 + 448 \zeta_{6} ) q^{66} + ( 716 - 716 \zeta_{6} ) q^{67} -296 \zeta_{6} q^{68} -896 q^{69} + 392 q^{71} + 296 \zeta_{6} q^{72} + ( -538 + 538 \zeta_{6} ) q^{73} + ( -692 + 692 \zeta_{6} ) q^{74} -568 \zeta_{6} q^{75} + 320 q^{76} -288 q^{78} -240 \zeta_{6} q^{79} + ( 224 - 224 \zeta_{6} ) q^{80} + ( 359 - 359 \zeta_{6} ) q^{81} + 324 \zeta_{6} q^{82} -1072 q^{83} -1036 q^{85} -824 \zeta_{6} q^{86} + ( -1520 + 1520 \zeta_{6} ) q^{87} + ( -224 + 224 \zeta_{6} ) q^{88} -810 \zeta_{6} q^{89} + 1036 q^{90} -448 q^{92} -576 \zeta_{6} q^{93} + ( 48 - 48 \zeta_{6} ) q^{94} + ( 1120 - 1120 \zeta_{6} ) q^{95} + 256 \zeta_{6} q^{96} + 1354 q^{97} -1036 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} - 8q^{3} - 4q^{4} + 14q^{5} - 32q^{6} - 16q^{8} - 37q^{9} + O(q^{10}) \) \( 2q + 2q^{2} - 8q^{3} - 4q^{4} + 14q^{5} - 32q^{6} - 16q^{8} - 37q^{9} - 28q^{10} + 28q^{11} - 32q^{12} + 36q^{13} - 224q^{15} - 16q^{16} - 74q^{17} + 74q^{18} - 80q^{19} - 112q^{20} + 112q^{22} + 112q^{23} + 64q^{24} - 71q^{25} + 36q^{26} + 160q^{27} + 380q^{29} - 224q^{30} - 72q^{31} + 32q^{32} + 224q^{33} - 296q^{34} + 296q^{36} + 346q^{37} + 160q^{38} - 144q^{39} - 112q^{40} + 324q^{41} - 824q^{43} + 112q^{44} + 518q^{45} - 224q^{46} - 24q^{47} + 256q^{48} - 284q^{50} - 592q^{51} - 72q^{52} - 318q^{53} + 160q^{54} + 784q^{55} + 1280q^{57} + 380q^{58} + 200q^{59} + 448q^{60} + 198q^{61} - 288q^{62} + 128q^{64} + 252q^{65} - 448q^{66} + 716q^{67} - 296q^{68} - 1792q^{69} + 784q^{71} + 296q^{72} - 538q^{73} - 692q^{74} - 568q^{75} + 640q^{76} - 576q^{78} - 240q^{79} + 224q^{80} + 359q^{81} + 324q^{82} - 2144q^{83} - 2072q^{85} - 824q^{86} - 1520q^{87} - 224q^{88} - 810q^{89} + 2072q^{90} - 896q^{92} - 576q^{93} + 48q^{94} + 1120q^{95} + 256q^{96} + 2708q^{97} - 2072q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i −4.00000 + 6.92820i −2.00000 + 3.46410i 7.00000 + 12.1244i −16.0000 0 −8.00000 −18.5000 32.0429i −14.0000 + 24.2487i
79.1 1.00000 1.73205i −4.00000 6.92820i −2.00000 3.46410i 7.00000 12.1244i −16.0000 0 −8.00000 −18.5000 + 32.0429i −14.0000 24.2487i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.4.c.d 2
3.b odd 2 1 882.4.g.b 2
7.b odd 2 1 98.4.c.f 2
7.c even 3 1 14.4.a.a 1
7.c even 3 1 inner 98.4.c.d 2
7.d odd 6 1 98.4.a.a 1
7.d odd 6 1 98.4.c.f 2
21.c even 2 1 882.4.g.k 2
21.g even 6 1 882.4.a.i 1
21.g even 6 1 882.4.g.k 2
21.h odd 6 1 126.4.a.h 1
21.h odd 6 1 882.4.g.b 2
28.f even 6 1 784.4.a.s 1
28.g odd 6 1 112.4.a.a 1
35.i odd 6 1 2450.4.a.bo 1
35.j even 6 1 350.4.a.l 1
35.l odd 12 2 350.4.c.b 2
56.k odd 6 1 448.4.a.o 1
56.p even 6 1 448.4.a.b 1
77.h odd 6 1 1694.4.a.g 1
84.n even 6 1 1008.4.a.s 1
91.r even 6 1 2366.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.a.a 1 7.c even 3 1
98.4.a.a 1 7.d odd 6 1
98.4.c.d 2 1.a even 1 1 trivial
98.4.c.d 2 7.c even 3 1 inner
98.4.c.f 2 7.b odd 2 1
98.4.c.f 2 7.d odd 6 1
112.4.a.a 1 28.g odd 6 1
126.4.a.h 1 21.h odd 6 1
350.4.a.l 1 35.j even 6 1
350.4.c.b 2 35.l odd 12 2
448.4.a.b 1 56.p even 6 1
448.4.a.o 1 56.k odd 6 1
784.4.a.s 1 28.f even 6 1
882.4.a.i 1 21.g even 6 1
882.4.g.b 2 3.b odd 2 1
882.4.g.b 2 21.h odd 6 1
882.4.g.k 2 21.c even 2 1
882.4.g.k 2 21.g even 6 1
1008.4.a.s 1 84.n even 6 1
1694.4.a.g 1 77.h odd 6 1
2366.4.a.h 1 91.r even 6 1
2450.4.a.bo 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 8 T_{3} + 64 \) acting on \(S_{4}^{\mathrm{new}}(98, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 - 2 T + T^{2} \)
$3$ \( 64 + 8 T + T^{2} \)
$5$ \( 196 - 14 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 784 - 28 T + T^{2} \)
$13$ \( ( -18 + T )^{2} \)
$17$ \( 5476 + 74 T + T^{2} \)
$19$ \( 6400 + 80 T + T^{2} \)
$23$ \( 12544 - 112 T + T^{2} \)
$29$ \( ( -190 + T )^{2} \)
$31$ \( 5184 + 72 T + T^{2} \)
$37$ \( 119716 - 346 T + T^{2} \)
$41$ \( ( -162 + T )^{2} \)
$43$ \( ( 412 + T )^{2} \)
$47$ \( 576 + 24 T + T^{2} \)
$53$ \( 101124 + 318 T + T^{2} \)
$59$ \( 40000 - 200 T + T^{2} \)
$61$ \( 39204 - 198 T + T^{2} \)
$67$ \( 512656 - 716 T + T^{2} \)
$71$ \( ( -392 + T )^{2} \)
$73$ \( 289444 + 538 T + T^{2} \)
$79$ \( 57600 + 240 T + T^{2} \)
$83$ \( ( 1072 + T )^{2} \)
$89$ \( 656100 + 810 T + T^{2} \)
$97$ \( ( -1354 + T )^{2} \)
show more
show less