Newspace parameters
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(5.78218718056\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{2}) \) |
Defining polynomial: |
\( x^{2} - 2 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.00000 | −7.07107 | 4.00000 | −19.7990 | 14.1421 | 0 | −8.00000 | 23.0000 | 39.5980 | ||||||||||||||||||||||||
1.2 | −2.00000 | 7.07107 | 4.00000 | 19.7990 | −14.1421 | 0 | −8.00000 | 23.0000 | −39.5980 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(7\) | \(1\) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 98.4.a.g | ✓ | 2 |
3.b | odd | 2 | 1 | 882.4.a.bg | 2 | ||
4.b | odd | 2 | 1 | 784.4.a.y | 2 | ||
5.b | even | 2 | 1 | 2450.4.a.bx | 2 | ||
7.b | odd | 2 | 1 | inner | 98.4.a.g | ✓ | 2 |
7.c | even | 3 | 2 | 98.4.c.h | 4 | ||
7.d | odd | 6 | 2 | 98.4.c.h | 4 | ||
21.c | even | 2 | 1 | 882.4.a.bg | 2 | ||
21.g | even | 6 | 2 | 882.4.g.ba | 4 | ||
21.h | odd | 6 | 2 | 882.4.g.ba | 4 | ||
28.d | even | 2 | 1 | 784.4.a.y | 2 | ||
35.c | odd | 2 | 1 | 2450.4.a.bx | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
98.4.a.g | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
98.4.a.g | ✓ | 2 | 7.b | odd | 2 | 1 | inner |
98.4.c.h | 4 | 7.c | even | 3 | 2 | ||
98.4.c.h | 4 | 7.d | odd | 6 | 2 | ||
784.4.a.y | 2 | 4.b | odd | 2 | 1 | ||
784.4.a.y | 2 | 28.d | even | 2 | 1 | ||
882.4.a.bg | 2 | 3.b | odd | 2 | 1 | ||
882.4.a.bg | 2 | 21.c | even | 2 | 1 | ||
882.4.g.ba | 4 | 21.g | even | 6 | 2 | ||
882.4.g.ba | 4 | 21.h | odd | 6 | 2 | ||
2450.4.a.bx | 2 | 5.b | even | 2 | 1 | ||
2450.4.a.bx | 2 | 35.c | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 50 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(98))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 2)^{2} \)
$3$
\( T^{2} - 50 \)
$5$
\( T^{2} - 392 \)
$7$
\( T^{2} \)
$11$
\( (T + 14)^{2} \)
$13$
\( T^{2} - 2592 \)
$17$
\( T^{2} - 2 \)
$19$
\( T^{2} - 2 \)
$23$
\( (T - 140)^{2} \)
$29$
\( (T + 286)^{2} \)
$31$
\( T^{2} - 8712 \)
$37$
\( (T + 38)^{2} \)
$41$
\( T^{2} - 15842 \)
$43$
\( (T + 34)^{2} \)
$47$
\( T^{2} - 273800 \)
$53$
\( (T + 74)^{2} \)
$59$
\( T^{2} - 188498 \)
$61$
\( T^{2} - 200 \)
$67$
\( (T - 684)^{2} \)
$71$
\( (T - 588)^{2} \)
$73$
\( T^{2} - 72962 \)
$79$
\( (T - 1220)^{2} \)
$83$
\( T^{2} - 178802 \)
$89$
\( T^{2} - 381938 \)
$97$
\( T^{2} - 2200802 \)
show more
show less