Properties

Label 98.4.a.d
Level $98$
Weight $4$
Character orbit 98.a
Self dual yes
Analytic conductor $5.782$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(5.78218718056\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2 q^{2} - 5 q^{3} + 4 q^{4} - 9 q^{5} - 10 q^{6} + 8 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} - 5 q^{3} + 4 q^{4} - 9 q^{5} - 10 q^{6} + 8 q^{8} - 2 q^{9} - 18 q^{10} - 57 q^{11} - 20 q^{12} - 70 q^{13} + 45 q^{15} + 16 q^{16} + 51 q^{17} - 4 q^{18} + 5 q^{19} - 36 q^{20} - 114 q^{22} + 69 q^{23} - 40 q^{24} - 44 q^{25} - 140 q^{26} + 145 q^{27} + 114 q^{29} + 90 q^{30} + 23 q^{31} + 32 q^{32} + 285 q^{33} + 102 q^{34} - 8 q^{36} - 253 q^{37} + 10 q^{38} + 350 q^{39} - 72 q^{40} - 42 q^{41} - 124 q^{43} - 228 q^{44} + 18 q^{45} + 138 q^{46} + 201 q^{47} - 80 q^{48} - 88 q^{50} - 255 q^{51} - 280 q^{52} - 393 q^{53} + 290 q^{54} + 513 q^{55} - 25 q^{57} + 228 q^{58} + 219 q^{59} + 180 q^{60} - 709 q^{61} + 46 q^{62} + 64 q^{64} + 630 q^{65} + 570 q^{66} + 419 q^{67} + 204 q^{68} - 345 q^{69} - 96 q^{71} - 16 q^{72} - 313 q^{73} - 506 q^{74} + 220 q^{75} + 20 q^{76} + 700 q^{78} + 461 q^{79} - 144 q^{80} - 671 q^{81} - 84 q^{82} - 588 q^{83} - 459 q^{85} - 248 q^{86} - 570 q^{87} - 456 q^{88} - 1017 q^{89} + 36 q^{90} + 276 q^{92} - 115 q^{93} + 402 q^{94} - 45 q^{95} - 160 q^{96} - 1834 q^{97} + 114 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 −5.00000 4.00000 −9.00000 −10.0000 0 8.00000 −2.00000 −18.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.4.a.d 1
3.b odd 2 1 882.4.a.f 1
4.b odd 2 1 784.4.a.p 1
5.b even 2 1 2450.4.a.q 1
7.b odd 2 1 98.4.a.f 1
7.c even 3 2 14.4.c.a 2
7.d odd 6 2 98.4.c.a 2
21.c even 2 1 882.4.a.c 1
21.g even 6 2 882.4.g.u 2
21.h odd 6 2 126.4.g.d 2
28.d even 2 1 784.4.a.c 1
28.g odd 6 2 112.4.i.a 2
35.c odd 2 1 2450.4.a.d 1
35.j even 6 2 350.4.e.e 2
35.l odd 12 4 350.4.j.b 4
56.k odd 6 2 448.4.i.e 2
56.p even 6 2 448.4.i.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.c.a 2 7.c even 3 2
98.4.a.d 1 1.a even 1 1 trivial
98.4.a.f 1 7.b odd 2 1
98.4.c.a 2 7.d odd 6 2
112.4.i.a 2 28.g odd 6 2
126.4.g.d 2 21.h odd 6 2
350.4.e.e 2 35.j even 6 2
350.4.j.b 4 35.l odd 12 4
448.4.i.b 2 56.p even 6 2
448.4.i.e 2 56.k odd 6 2
784.4.a.c 1 28.d even 2 1
784.4.a.p 1 4.b odd 2 1
882.4.a.c 1 21.c even 2 1
882.4.a.f 1 3.b odd 2 1
882.4.g.u 2 21.g even 6 2
2450.4.a.d 1 35.c odd 2 1
2450.4.a.q 1 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 5 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(98))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T + 5 \) Copy content Toggle raw display
$5$ \( T + 9 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 57 \) Copy content Toggle raw display
$13$ \( T + 70 \) Copy content Toggle raw display
$17$ \( T - 51 \) Copy content Toggle raw display
$19$ \( T - 5 \) Copy content Toggle raw display
$23$ \( T - 69 \) Copy content Toggle raw display
$29$ \( T - 114 \) Copy content Toggle raw display
$31$ \( T - 23 \) Copy content Toggle raw display
$37$ \( T + 253 \) Copy content Toggle raw display
$41$ \( T + 42 \) Copy content Toggle raw display
$43$ \( T + 124 \) Copy content Toggle raw display
$47$ \( T - 201 \) Copy content Toggle raw display
$53$ \( T + 393 \) Copy content Toggle raw display
$59$ \( T - 219 \) Copy content Toggle raw display
$61$ \( T + 709 \) Copy content Toggle raw display
$67$ \( T - 419 \) Copy content Toggle raw display
$71$ \( T + 96 \) Copy content Toggle raw display
$73$ \( T + 313 \) Copy content Toggle raw display
$79$ \( T - 461 \) Copy content Toggle raw display
$83$ \( T + 588 \) Copy content Toggle raw display
$89$ \( T + 1017 \) Copy content Toggle raw display
$97$ \( T + 1834 \) Copy content Toggle raw display
show more
show less