Newspace parameters
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(5.78218718056\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 14) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.00000 | −1.00000 | 4.00000 | 7.00000 | 2.00000 | 0 | −8.00000 | −26.0000 | −14.0000 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(7\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 98.4.a.b | 1 | |
3.b | odd | 2 | 1 | 882.4.a.k | 1 | ||
4.b | odd | 2 | 1 | 784.4.a.l | 1 | ||
5.b | even | 2 | 1 | 2450.4.a.bh | 1 | ||
7.b | odd | 2 | 1 | 98.4.a.c | 1 | ||
7.c | even | 3 | 2 | 14.4.c.b | ✓ | 2 | |
7.d | odd | 6 | 2 | 98.4.c.e | 2 | ||
21.c | even | 2 | 1 | 882.4.a.p | 1 | ||
21.g | even | 6 | 2 | 882.4.g.d | 2 | ||
21.h | odd | 6 | 2 | 126.4.g.c | 2 | ||
28.d | even | 2 | 1 | 784.4.a.j | 1 | ||
28.g | odd | 6 | 2 | 112.4.i.b | 2 | ||
35.c | odd | 2 | 1 | 2450.4.a.bf | 1 | ||
35.j | even | 6 | 2 | 350.4.e.b | 2 | ||
35.l | odd | 12 | 4 | 350.4.j.d | 4 | ||
56.k | odd | 6 | 2 | 448.4.i.d | 2 | ||
56.p | even | 6 | 2 | 448.4.i.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
14.4.c.b | ✓ | 2 | 7.c | even | 3 | 2 | |
98.4.a.b | 1 | 1.a | even | 1 | 1 | trivial | |
98.4.a.c | 1 | 7.b | odd | 2 | 1 | ||
98.4.c.e | 2 | 7.d | odd | 6 | 2 | ||
112.4.i.b | 2 | 28.g | odd | 6 | 2 | ||
126.4.g.c | 2 | 21.h | odd | 6 | 2 | ||
350.4.e.b | 2 | 35.j | even | 6 | 2 | ||
350.4.j.d | 4 | 35.l | odd | 12 | 4 | ||
448.4.i.c | 2 | 56.p | even | 6 | 2 | ||
448.4.i.d | 2 | 56.k | odd | 6 | 2 | ||
784.4.a.j | 1 | 28.d | even | 2 | 1 | ||
784.4.a.l | 1 | 4.b | odd | 2 | 1 | ||
882.4.a.k | 1 | 3.b | odd | 2 | 1 | ||
882.4.a.p | 1 | 21.c | even | 2 | 1 | ||
882.4.g.d | 2 | 21.g | even | 6 | 2 | ||
2450.4.a.bf | 1 | 35.c | odd | 2 | 1 | ||
2450.4.a.bh | 1 | 5.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3} + 1 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(98))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T + 2 \)
$3$
\( T + 1 \)
$5$
\( T - 7 \)
$7$
\( T \)
$11$
\( T - 35 \)
$13$
\( T - 66 \)
$17$
\( T - 59 \)
$19$
\( T - 137 \)
$23$
\( T + 7 \)
$29$
\( T - 106 \)
$31$
\( T - 75 \)
$37$
\( T - 11 \)
$41$
\( T + 498 \)
$43$
\( T - 260 \)
$47$
\( T + 171 \)
$53$
\( T + 417 \)
$59$
\( T + 17 \)
$61$
\( T - 51 \)
$67$
\( T - 439 \)
$71$
\( T + 784 \)
$73$
\( T - 295 \)
$79$
\( T + 495 \)
$83$
\( T - 932 \)
$89$
\( T + 873 \)
$97$
\( T + 290 \)
show more
show less