Properties

Label 98.4.a
Level $98$
Weight $4$
Character orbit 98.a
Rep. character $\chi_{98}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $8$
Sturm bound $56$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(56\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(98))\).

Total New Old
Modular forms 50 10 40
Cusp forms 34 10 24
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(14\)\(3\)\(11\)\(10\)\(3\)\(7\)\(4\)\(0\)\(4\)
\(+\)\(-\)\(-\)\(11\)\(2\)\(9\)\(7\)\(2\)\(5\)\(4\)\(0\)\(4\)
\(-\)\(+\)\(-\)\(12\)\(1\)\(11\)\(8\)\(1\)\(7\)\(4\)\(0\)\(4\)
\(-\)\(-\)\(+\)\(13\)\(4\)\(9\)\(9\)\(4\)\(5\)\(4\)\(0\)\(4\)
Plus space\(+\)\(27\)\(7\)\(20\)\(19\)\(7\)\(12\)\(8\)\(0\)\(8\)
Minus space\(-\)\(23\)\(3\)\(20\)\(15\)\(3\)\(12\)\(8\)\(0\)\(8\)

Trace form

\( 10 q - 6 q^{3} + 40 q^{4} + 26 q^{5} + 20 q^{6} + 126 q^{9} - 4 q^{10} - 12 q^{11} - 24 q^{12} - 74 q^{13} + 92 q^{15} + 160 q^{16} + 40 q^{17} + 128 q^{18} - 82 q^{19} + 104 q^{20} - 80 q^{22} + 268 q^{23}+ \cdots - 1936 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(98))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7
98.4.a.a 98.a 1.a $1$ $5.782$ \(\Q\) None 14.4.a.a \(-2\) \(-8\) \(14\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-8q^{3}+4q^{4}+14q^{5}+2^{4}q^{6}+\cdots\)
98.4.a.b 98.a 1.a $1$ $5.782$ \(\Q\) None 14.4.c.b \(-2\) \(-1\) \(7\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+4q^{4}+7q^{5}+2q^{6}+\cdots\)
98.4.a.c 98.a 1.a $1$ $5.782$ \(\Q\) None 14.4.c.b \(-2\) \(1\) \(-7\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+4q^{4}-7q^{5}-2q^{6}+\cdots\)
98.4.a.d 98.a 1.a $1$ $5.782$ \(\Q\) None 14.4.c.a \(2\) \(-5\) \(-9\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-5q^{3}+4q^{4}-9q^{5}-10q^{6}+\cdots\)
98.4.a.e 98.a 1.a $1$ $5.782$ \(\Q\) None 14.4.a.b \(2\) \(2\) \(12\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{3}+4q^{4}+12q^{5}+4q^{6}+\cdots\)
98.4.a.f 98.a 1.a $1$ $5.782$ \(\Q\) None 14.4.c.a \(2\) \(5\) \(9\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+5q^{3}+4q^{4}+9q^{5}+10q^{6}+\cdots\)
98.4.a.g 98.a 1.a $2$ $5.782$ \(\Q(\sqrt{2}) \) None 98.4.a.g \(-4\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+5\beta q^{3}+4q^{4}+14\beta q^{5}-10\beta q^{6}+\cdots\)
98.4.a.h 98.a 1.a $2$ $5.782$ \(\Q(\sqrt{22}) \) None 98.4.a.h \(4\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta q^{3}+4q^{4}-\beta q^{5}+2\beta q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(98))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(98)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 2}\)