# Properties

 Label 98.3.b.b Level $98$ Weight $3$ Character orbit 98.b Analytic conductor $2.670$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$98 = 2 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 98.b (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.67030659073$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} + 2 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 14) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + ( -\beta_{2} - \beta_{3} ) q^{3} + 2 q^{4} + ( \beta_{2} - 2 \beta_{3} ) q^{5} + ( 2 \beta_{2} + \beta_{3} ) q^{6} + 2 \beta_{1} q^{8} + 6 \beta_{1} q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{2} + ( -\beta_{2} - \beta_{3} ) q^{3} + 2 q^{4} + ( \beta_{2} - 2 \beta_{3} ) q^{5} + ( 2 \beta_{2} + \beta_{3} ) q^{6} + 2 \beta_{1} q^{8} + 6 \beta_{1} q^{9} + ( 4 \beta_{2} - \beta_{3} ) q^{10} + ( -9 + 3 \beta_{1} ) q^{11} + ( -2 \beta_{2} - 2 \beta_{3} ) q^{12} + ( -6 \beta_{2} + 2 \beta_{3} ) q^{13} + ( -9 + 3 \beta_{1} ) q^{15} + 4 q^{16} + ( -5 \beta_{2} - 2 \beta_{3} ) q^{17} + 12 q^{18} + ( -\beta_{2} + \beta_{3} ) q^{19} + ( 2 \beta_{2} - 4 \beta_{3} ) q^{20} + ( 6 - 9 \beta_{1} ) q^{22} + ( -15 - 9 \beta_{1} ) q^{23} + ( 4 \beta_{2} + 2 \beta_{3} ) q^{24} + ( -2 - 12 \beta_{1} ) q^{25} + ( -4 \beta_{2} + 6 \beta_{3} ) q^{26} + ( 3 \beta_{2} - 3 \beta_{3} ) q^{27} + ( 12 - 6 \beta_{1} ) q^{29} + ( 6 - 9 \beta_{1} ) q^{30} + ( -7 \beta_{2} + 15 \beta_{3} ) q^{31} + 4 \beta_{1} q^{32} + ( 15 \beta_{2} + 12 \beta_{3} ) q^{33} + ( 4 \beta_{2} + 5 \beta_{3} ) q^{34} + 12 \beta_{1} q^{36} + ( 31 - 24 \beta_{1} ) q^{37} + ( -2 \beta_{2} + \beta_{3} ) q^{38} + ( -6 + 12 \beta_{1} ) q^{39} + ( 8 \beta_{2} - 2 \beta_{3} ) q^{40} + ( 2 \beta_{2} - 10 \beta_{3} ) q^{41} + ( -2 - 6 \beta_{1} ) q^{43} + ( -18 + 6 \beta_{1} ) q^{44} + ( 24 \beta_{2} - 6 \beta_{3} ) q^{45} + ( -18 - 15 \beta_{1} ) q^{46} + ( -29 \beta_{2} + \beta_{3} ) q^{47} + ( -4 \beta_{2} - 4 \beta_{3} ) q^{48} + ( -24 - 2 \beta_{1} ) q^{50} + ( -27 + 21 \beta_{1} ) q^{51} + ( -12 \beta_{2} + 4 \beta_{3} ) q^{52} + ( 39 + 12 \beta_{1} ) q^{53} + ( 6 \beta_{2} - 3 \beta_{3} ) q^{54} + ( 3 \beta_{2} + 15 \beta_{3} ) q^{55} + 3 q^{57} + ( -12 + 12 \beta_{1} ) q^{58} + ( -13 \beta_{2} - 25 \beta_{3} ) q^{59} + ( -18 + 6 \beta_{1} ) q^{60} + ( 7 \beta_{2} - 32 \beta_{3} ) q^{61} + ( -30 \beta_{2} + 7 \beta_{3} ) q^{62} + 8 q^{64} + ( 42 + 42 \beta_{1} ) q^{65} + ( -24 \beta_{2} - 15 \beta_{3} ) q^{66} + ( 29 - 45 \beta_{1} ) q^{67} + ( -10 \beta_{2} - 4 \beta_{3} ) q^{68} + ( -3 \beta_{2} + 6 \beta_{3} ) q^{69} + ( -6 + 30 \beta_{1} ) q^{71} + 24 q^{72} + ( 53 \beta_{2} + 16 \beta_{3} ) q^{73} + ( -48 + 31 \beta_{1} ) q^{74} + ( -22 \beta_{2} - 10 \beta_{3} ) q^{75} + ( -2 \beta_{2} + 2 \beta_{3} ) q^{76} + ( 24 - 6 \beta_{1} ) q^{78} + ( -55 + 15 \beta_{1} ) q^{79} + ( 4 \beta_{2} - 8 \beta_{3} ) q^{80} + ( -9 + 54 \beta_{1} ) q^{81} + ( 20 \beta_{2} - 2 \beta_{3} ) q^{82} + ( 68 \beta_{2} - 4 \beta_{3} ) q^{83} + ( -9 + 24 \beta_{1} ) q^{85} + ( -12 - 2 \beta_{1} ) q^{86} + ( -24 \beta_{2} - 18 \beta_{3} ) q^{87} + ( 12 - 18 \beta_{1} ) q^{88} + ( 63 \beta_{2} + 24 \beta_{3} ) q^{89} + ( 12 \beta_{2} - 24 \beta_{3} ) q^{90} + ( -30 - 18 \beta_{1} ) q^{92} + ( 69 - 24 \beta_{1} ) q^{93} + ( -2 \beta_{2} + 29 \beta_{3} ) q^{94} + ( 15 + 9 \beta_{1} ) q^{95} + ( 8 \beta_{2} + 4 \beta_{3} ) q^{96} + ( -22 \beta_{2} + 26 \beta_{3} ) q^{97} + ( 36 - 54 \beta_{1} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 8 q^{4} + O(q^{10})$$ $$4 q + 8 q^{4} - 36 q^{11} - 36 q^{15} + 16 q^{16} + 48 q^{18} + 24 q^{22} - 60 q^{23} - 8 q^{25} + 48 q^{29} + 24 q^{30} + 124 q^{37} - 24 q^{39} - 8 q^{43} - 72 q^{44} - 72 q^{46} - 96 q^{50} - 108 q^{51} + 156 q^{53} + 12 q^{57} - 48 q^{58} - 72 q^{60} + 32 q^{64} + 168 q^{65} + 116 q^{67} - 24 q^{71} + 96 q^{72} - 192 q^{74} + 96 q^{78} - 220 q^{79} - 36 q^{81} - 36 q^{85} - 48 q^{86} + 48 q^{88} - 120 q^{92} + 276 q^{93} + 60 q^{95} + 144 q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 2 x^{2} + 4$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{3}$$$$/2$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} + 1$$ $$\beta_{3}$$ $$=$$ $$($$$$\nu^{3} + 4 \nu$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} - \beta_{1}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} - 1$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{1}$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/98\mathbb{Z}\right)^\times$$.

 $$n$$ $$3$$ $$\chi(n)$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
97.1
 0.707107 + 1.22474i 0.707107 − 1.22474i −0.707107 + 1.22474i −0.707107 − 1.22474i
−1.41421 4.18154i 2.00000 3.16693i 5.91359i 0 −2.82843 −8.48528 4.47871i
97.2 −1.41421 4.18154i 2.00000 3.16693i 5.91359i 0 −2.82843 −8.48528 4.47871i
97.3 1.41421 0.717439i 2.00000 6.63103i 1.01461i 0 2.82843 8.48528 9.37769i
97.4 1.41421 0.717439i 2.00000 6.63103i 1.01461i 0 2.82843 8.48528 9.37769i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.3.b.b 4
3.b odd 2 1 882.3.c.f 4
4.b odd 2 1 784.3.c.e 4
7.b odd 2 1 inner 98.3.b.b 4
7.c even 3 1 14.3.d.a 4
7.c even 3 1 98.3.d.a 4
7.d odd 6 1 14.3.d.a 4
7.d odd 6 1 98.3.d.a 4
21.c even 2 1 882.3.c.f 4
21.g even 6 1 126.3.n.c 4
21.g even 6 1 882.3.n.b 4
21.h odd 6 1 126.3.n.c 4
21.h odd 6 1 882.3.n.b 4
28.d even 2 1 784.3.c.e 4
28.f even 6 1 112.3.s.b 4
28.f even 6 1 784.3.s.c 4
28.g odd 6 1 112.3.s.b 4
28.g odd 6 1 784.3.s.c 4
35.i odd 6 1 350.3.k.a 4
35.j even 6 1 350.3.k.a 4
35.k even 12 2 350.3.i.a 8
35.l odd 12 2 350.3.i.a 8
56.j odd 6 1 448.3.s.d 4
56.k odd 6 1 448.3.s.c 4
56.m even 6 1 448.3.s.c 4
56.p even 6 1 448.3.s.d 4
84.j odd 6 1 1008.3.cg.l 4
84.n even 6 1 1008.3.cg.l 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.3.d.a 4 7.c even 3 1
14.3.d.a 4 7.d odd 6 1
98.3.b.b 4 1.a even 1 1 trivial
98.3.b.b 4 7.b odd 2 1 inner
98.3.d.a 4 7.c even 3 1
98.3.d.a 4 7.d odd 6 1
112.3.s.b 4 28.f even 6 1
112.3.s.b 4 28.g odd 6 1
126.3.n.c 4 21.g even 6 1
126.3.n.c 4 21.h odd 6 1
350.3.i.a 8 35.k even 12 2
350.3.i.a 8 35.l odd 12 2
350.3.k.a 4 35.i odd 6 1
350.3.k.a 4 35.j even 6 1
448.3.s.c 4 56.k odd 6 1
448.3.s.c 4 56.m even 6 1
448.3.s.d 4 56.j odd 6 1
448.3.s.d 4 56.p even 6 1
784.3.c.e 4 4.b odd 2 1
784.3.c.e 4 28.d even 2 1
784.3.s.c 4 28.f even 6 1
784.3.s.c 4 28.g odd 6 1
882.3.c.f 4 3.b odd 2 1
882.3.c.f 4 21.c even 2 1
882.3.n.b 4 21.g even 6 1
882.3.n.b 4 21.h odd 6 1
1008.3.cg.l 4 84.j odd 6 1
1008.3.cg.l 4 84.n even 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{4} + 18 T_{3}^{2} + 9$$ acting on $$S_{3}^{\mathrm{new}}(98, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( -2 + T^{2} )^{2}$$
$3$ $$9 + 18 T^{2} + T^{4}$$
$5$ $$441 + 54 T^{2} + T^{4}$$
$7$ $$T^{4}$$
$11$ $$( 63 + 18 T + T^{2} )^{2}$$
$13$ $$7056 + 264 T^{2} + T^{4}$$
$17$ $$2601 + 198 T^{2} + T^{4}$$
$19$ $$9 + 18 T^{2} + T^{4}$$
$23$ $$( 63 + 30 T + T^{2} )^{2}$$
$29$ $$( 72 - 24 T + T^{2} )^{2}$$
$31$ $$1447209 + 2994 T^{2} + T^{4}$$
$37$ $$( -191 - 62 T + T^{2} )^{2}$$
$41$ $$345744 + 1224 T^{2} + T^{4}$$
$43$ $$( -68 + 4 T + T^{2} )^{2}$$
$47$ $$6335289 + 5058 T^{2} + T^{4}$$
$53$ $$( 1233 - 78 T + T^{2} )^{2}$$
$59$ $$10517049 + 8514 T^{2} + T^{4}$$
$61$ $$35964009 + 12582 T^{2} + T^{4}$$
$67$ $$( -3209 - 58 T + T^{2} )^{2}$$
$71$ $$( -1764 + 12 T + T^{2} )^{2}$$
$73$ $$47485881 + 19926 T^{2} + T^{4}$$
$79$ $$( 2575 + 110 T + T^{2} )^{2}$$
$83$ $$189778176 + 27936 T^{2} + T^{4}$$
$89$ $$71419401 + 30726 T^{2} + T^{4}$$
$97$ $$6780816 + 11016 T^{2} + T^{4}$$