Newspace parameters
| Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 98.g (of order \(21\), degree \(12\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(0.782533939809\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(2\) over \(\Q(\zeta_{21})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.1 | −0.733052 | − | 0.680173i | −2.81578 | − | 0.424410i | 0.0747301 | + | 0.997204i | 0.904721 | + | 2.30519i | 1.77544 | + | 2.22633i | −1.30835 | + | 2.29961i | 0.623490 | − | 0.781831i | 4.88176 | + | 1.50582i | 0.904721 | − | 2.30519i |
| 9.2 | −0.733052 | − | 0.680173i | 1.10442 | + | 0.166465i | 0.0747301 | + | 0.997204i | 0.578784 | + | 1.47472i | −0.696376 | − | 0.873227i | 2.58946 | − | 0.542854i | 0.623490 | − | 0.781831i | −1.67467 | − | 0.516569i | 0.578784 | − | 1.47472i |
| 11.1 | −0.733052 | + | 0.680173i | −2.81578 | + | 0.424410i | 0.0747301 | − | 0.997204i | 0.904721 | − | 2.30519i | 1.77544 | − | 2.22633i | −1.30835 | − | 2.29961i | 0.623490 | + | 0.781831i | 4.88176 | − | 1.50582i | 0.904721 | + | 2.30519i |
| 11.2 | −0.733052 | + | 0.680173i | 1.10442 | − | 0.166465i | 0.0747301 | − | 0.997204i | 0.578784 | − | 1.47472i | −0.696376 | + | 0.873227i | 2.58946 | + | 0.542854i | 0.623490 | + | 0.781831i | −1.67467 | + | 0.516569i | 0.578784 | + | 1.47472i |
| 23.1 | 0.0747301 | − | 0.997204i | −2.39605 | + | 0.739084i | −0.988831 | − | 0.149042i | −2.18585 | − | 2.02817i | 0.557960 | + | 2.44458i | −2.12971 | − | 1.56982i | −0.222521 | + | 0.974928i | 2.71611 | − | 1.85181i | −2.18585 | + | 2.02817i |
| 23.2 | 0.0747301 | − | 0.997204i | 1.95066 | − | 0.601698i | −0.988831 | − | 0.149042i | 0.958118 | + | 0.889004i | −0.454243 | − | 1.99017i | −2.43754 | + | 1.02877i | −0.222521 | + | 0.974928i | 0.964304 | − | 0.657452i | 0.958118 | − | 0.889004i |
| 25.1 | 0.955573 | − | 0.294755i | −0.784496 | − | 1.99886i | 0.826239 | − | 0.563320i | −2.07983 | − | 0.313484i | −1.33882 | − | 1.67883i | 2.53097 | + | 0.770831i | 0.623490 | − | 0.781831i | −1.18087 | + | 1.09568i | −2.07983 | + | 0.313484i |
| 25.2 | 0.955573 | − | 0.294755i | 0.427316 | + | 1.08878i | 0.826239 | − | 0.563320i | −0.0821245 | − | 0.0123783i | 0.729256 | + | 0.914459i | −2.45519 | + | 0.985929i | 0.623490 | − | 0.781831i | 1.19630 | − | 1.11001i | −0.0821245 | + | 0.0123783i |
| 37.1 | 0.826239 | − | 0.563320i | −2.19243 | + | 2.03428i | 0.365341 | − | 0.930874i | 3.17919 | + | 0.980650i | −0.665522 | + | 2.91584i | −0.0867132 | + | 2.64433i | −0.222521 | − | 0.974928i | 0.444274 | − | 5.92843i | 3.17919 | − | 0.980650i |
| 37.2 | 0.826239 | − | 0.563320i | 0.0584109 | − | 0.0541974i | 0.365341 | − | 0.930874i | −0.427005 | − | 0.131714i | 0.0177309 | − | 0.0776840i | 1.60505 | − | 2.10329i | −0.222521 | − | 0.974928i | −0.223716 | + | 2.98528i | −0.427005 | + | 0.131714i |
| 39.1 | −0.988831 | − | 0.149042i | −0.934966 | + | 0.637449i | 0.955573 | + | 0.294755i | 0.0772188 | + | 1.03041i | 1.01953 | − | 0.490980i | 1.36748 | + | 2.26495i | −0.900969 | − | 0.433884i | −0.628203 | + | 1.60064i | 0.0772188 | − | 1.03041i |
| 39.2 | −0.988831 | − | 0.149042i | 1.88469 | − | 1.28496i | 0.955573 | + | 0.294755i | 0.269665 | + | 3.59844i | −2.05516 | + | 0.989712i | 0.415648 | − | 2.61290i | −0.900969 | − | 0.433884i | 0.804920 | − | 2.05090i | 0.269665 | − | 3.59844i |
| 51.1 | 0.955573 | + | 0.294755i | −0.784496 | + | 1.99886i | 0.826239 | + | 0.563320i | −2.07983 | + | 0.313484i | −1.33882 | + | 1.67883i | 2.53097 | − | 0.770831i | 0.623490 | + | 0.781831i | −1.18087 | − | 1.09568i | −2.07983 | − | 0.313484i |
| 51.2 | 0.955573 | + | 0.294755i | 0.427316 | − | 1.08878i | 0.826239 | + | 0.563320i | −0.0821245 | + | 0.0123783i | 0.729256 | − | 0.914459i | −2.45519 | − | 0.985929i | 0.623490 | + | 0.781831i | 1.19630 | + | 1.11001i | −0.0821245 | − | 0.0123783i |
| 53.1 | 0.826239 | + | 0.563320i | −2.19243 | − | 2.03428i | 0.365341 | + | 0.930874i | 3.17919 | − | 0.980650i | −0.665522 | − | 2.91584i | −0.0867132 | − | 2.64433i | −0.222521 | + | 0.974928i | 0.444274 | + | 5.92843i | 3.17919 | + | 0.980650i |
| 53.2 | 0.826239 | + | 0.563320i | 0.0584109 | + | 0.0541974i | 0.365341 | + | 0.930874i | −0.427005 | + | 0.131714i | 0.0177309 | + | 0.0776840i | 1.60505 | + | 2.10329i | −0.222521 | + | 0.974928i | −0.223716 | − | 2.98528i | −0.427005 | − | 0.131714i |
| 65.1 | 0.365341 | + | 0.930874i | 0.0722934 | + | 0.964688i | −0.733052 | + | 0.680173i | −3.07015 | + | 2.09319i | −0.871591 | + | 0.419736i | 2.50800 | − | 0.842585i | −0.900969 | − | 0.433884i | 2.04110 | − | 0.307646i | −3.07015 | − | 2.09319i |
| 65.2 | 0.365341 | + | 0.930874i | 0.125927 | + | 1.68037i | −0.733052 | + | 0.680173i | 1.87725 | − | 1.27989i | −1.51821 | + | 0.731131i | −2.59910 | + | 0.494638i | −0.900969 | − | 0.433884i | 0.158698 | − | 0.0239199i | 1.87725 | + | 1.27989i |
| 81.1 | 0.0747301 | + | 0.997204i | −2.39605 | − | 0.739084i | −0.988831 | + | 0.149042i | −2.18585 | + | 2.02817i | 0.557960 | − | 2.44458i | −2.12971 | + | 1.56982i | −0.222521 | − | 0.974928i | 2.71611 | + | 1.85181i | −2.18585 | − | 2.02817i |
| 81.2 | 0.0747301 | + | 0.997204i | 1.95066 | + | 0.601698i | −0.988831 | + | 0.149042i | 0.958118 | − | 0.889004i | −0.454243 | + | 1.99017i | −2.43754 | − | 1.02877i | −0.222521 | − | 0.974928i | 0.964304 | + | 0.657452i | 0.958118 | + | 0.889004i |
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 49.g | even | 21 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 98.2.g.b | ✓ | 24 |
| 3.b | odd | 2 | 1 | 882.2.z.b | 24 | ||
| 4.b | odd | 2 | 1 | 784.2.bg.b | 24 | ||
| 7.b | odd | 2 | 1 | 686.2.g.e | 24 | ||
| 7.c | even | 3 | 1 | 686.2.e.c | 24 | ||
| 7.c | even | 3 | 1 | 686.2.g.f | 24 | ||
| 7.d | odd | 6 | 1 | 686.2.e.d | 24 | ||
| 7.d | odd | 6 | 1 | 686.2.g.d | 24 | ||
| 49.e | even | 7 | 1 | 686.2.g.f | 24 | ||
| 49.f | odd | 14 | 1 | 686.2.g.d | 24 | ||
| 49.g | even | 21 | 1 | inner | 98.2.g.b | ✓ | 24 |
| 49.g | even | 21 | 1 | 686.2.e.c | 24 | ||
| 49.g | even | 21 | 1 | 4802.2.a.o | 12 | ||
| 49.h | odd | 42 | 1 | 686.2.e.d | 24 | ||
| 49.h | odd | 42 | 1 | 686.2.g.e | 24 | ||
| 49.h | odd | 42 | 1 | 4802.2.a.l | 12 | ||
| 147.n | odd | 42 | 1 | 882.2.z.b | 24 | ||
| 196.o | odd | 42 | 1 | 784.2.bg.b | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 98.2.g.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 98.2.g.b | ✓ | 24 | 49.g | even | 21 | 1 | inner |
| 686.2.e.c | 24 | 7.c | even | 3 | 1 | ||
| 686.2.e.c | 24 | 49.g | even | 21 | 1 | ||
| 686.2.e.d | 24 | 7.d | odd | 6 | 1 | ||
| 686.2.e.d | 24 | 49.h | odd | 42 | 1 | ||
| 686.2.g.d | 24 | 7.d | odd | 6 | 1 | ||
| 686.2.g.d | 24 | 49.f | odd | 14 | 1 | ||
| 686.2.g.e | 24 | 7.b | odd | 2 | 1 | ||
| 686.2.g.e | 24 | 49.h | odd | 42 | 1 | ||
| 686.2.g.f | 24 | 7.c | even | 3 | 1 | ||
| 686.2.g.f | 24 | 49.e | even | 7 | 1 | ||
| 784.2.bg.b | 24 | 4.b | odd | 2 | 1 | ||
| 784.2.bg.b | 24 | 196.o | odd | 42 | 1 | ||
| 882.2.z.b | 24 | 3.b | odd | 2 | 1 | ||
| 882.2.z.b | 24 | 147.n | odd | 42 | 1 | ||
| 4802.2.a.l | 12 | 49.h | odd | 42 | 1 | ||
| 4802.2.a.o | 12 | 49.g | even | 21 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} + 7 T_{3}^{23} + 12 T_{3}^{22} - 28 T_{3}^{21} - 105 T_{3}^{20} + 63 T_{3}^{19} + 617 T_{3}^{18} + \cdots + 1681 \)
acting on \(S_{2}^{\mathrm{new}}(98, [\chi])\).