Properties

Label 98.2.g.b
Level $98$
Weight $2$
Character orbit 98.g
Analytic conductor $0.783$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,2,Mod(9,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 98.g (of order \(21\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.782533939809\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{21})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 2 q^{2} - 7 q^{3} + 2 q^{4} - 7 q^{6} - 4 q^{8} + 19 q^{9} - 11 q^{11} - 14 q^{13} + 9 q^{15} + 2 q^{16} - 7 q^{17} - 9 q^{18} - 14 q^{19} - 7 q^{20} - 7 q^{21} + q^{22} - 29 q^{23} - 8 q^{25} - 7 q^{26}+ \cdots - 106 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
9.1 −0.733052 0.680173i −2.81578 0.424410i 0.0747301 + 0.997204i 0.904721 + 2.30519i 1.77544 + 2.22633i −1.30835 + 2.29961i 0.623490 0.781831i 4.88176 + 1.50582i 0.904721 2.30519i
9.2 −0.733052 0.680173i 1.10442 + 0.166465i 0.0747301 + 0.997204i 0.578784 + 1.47472i −0.696376 0.873227i 2.58946 0.542854i 0.623490 0.781831i −1.67467 0.516569i 0.578784 1.47472i
11.1 −0.733052 + 0.680173i −2.81578 + 0.424410i 0.0747301 0.997204i 0.904721 2.30519i 1.77544 2.22633i −1.30835 2.29961i 0.623490 + 0.781831i 4.88176 1.50582i 0.904721 + 2.30519i
11.2 −0.733052 + 0.680173i 1.10442 0.166465i 0.0747301 0.997204i 0.578784 1.47472i −0.696376 + 0.873227i 2.58946 + 0.542854i 0.623490 + 0.781831i −1.67467 + 0.516569i 0.578784 + 1.47472i
23.1 0.0747301 0.997204i −2.39605 + 0.739084i −0.988831 0.149042i −2.18585 2.02817i 0.557960 + 2.44458i −2.12971 1.56982i −0.222521 + 0.974928i 2.71611 1.85181i −2.18585 + 2.02817i
23.2 0.0747301 0.997204i 1.95066 0.601698i −0.988831 0.149042i 0.958118 + 0.889004i −0.454243 1.99017i −2.43754 + 1.02877i −0.222521 + 0.974928i 0.964304 0.657452i 0.958118 0.889004i
25.1 0.955573 0.294755i −0.784496 1.99886i 0.826239 0.563320i −2.07983 0.313484i −1.33882 1.67883i 2.53097 + 0.770831i 0.623490 0.781831i −1.18087 + 1.09568i −2.07983 + 0.313484i
25.2 0.955573 0.294755i 0.427316 + 1.08878i 0.826239 0.563320i −0.0821245 0.0123783i 0.729256 + 0.914459i −2.45519 + 0.985929i 0.623490 0.781831i 1.19630 1.11001i −0.0821245 + 0.0123783i
37.1 0.826239 0.563320i −2.19243 + 2.03428i 0.365341 0.930874i 3.17919 + 0.980650i −0.665522 + 2.91584i −0.0867132 + 2.64433i −0.222521 0.974928i 0.444274 5.92843i 3.17919 0.980650i
37.2 0.826239 0.563320i 0.0584109 0.0541974i 0.365341 0.930874i −0.427005 0.131714i 0.0177309 0.0776840i 1.60505 2.10329i −0.222521 0.974928i −0.223716 + 2.98528i −0.427005 + 0.131714i
39.1 −0.988831 0.149042i −0.934966 + 0.637449i 0.955573 + 0.294755i 0.0772188 + 1.03041i 1.01953 0.490980i 1.36748 + 2.26495i −0.900969 0.433884i −0.628203 + 1.60064i 0.0772188 1.03041i
39.2 −0.988831 0.149042i 1.88469 1.28496i 0.955573 + 0.294755i 0.269665 + 3.59844i −2.05516 + 0.989712i 0.415648 2.61290i −0.900969 0.433884i 0.804920 2.05090i 0.269665 3.59844i
51.1 0.955573 + 0.294755i −0.784496 + 1.99886i 0.826239 + 0.563320i −2.07983 + 0.313484i −1.33882 + 1.67883i 2.53097 0.770831i 0.623490 + 0.781831i −1.18087 1.09568i −2.07983 0.313484i
51.2 0.955573 + 0.294755i 0.427316 1.08878i 0.826239 + 0.563320i −0.0821245 + 0.0123783i 0.729256 0.914459i −2.45519 0.985929i 0.623490 + 0.781831i 1.19630 + 1.11001i −0.0821245 0.0123783i
53.1 0.826239 + 0.563320i −2.19243 2.03428i 0.365341 + 0.930874i 3.17919 0.980650i −0.665522 2.91584i −0.0867132 2.64433i −0.222521 + 0.974928i 0.444274 + 5.92843i 3.17919 + 0.980650i
53.2 0.826239 + 0.563320i 0.0584109 + 0.0541974i 0.365341 + 0.930874i −0.427005 + 0.131714i 0.0177309 + 0.0776840i 1.60505 + 2.10329i −0.222521 + 0.974928i −0.223716 2.98528i −0.427005 0.131714i
65.1 0.365341 + 0.930874i 0.0722934 + 0.964688i −0.733052 + 0.680173i −3.07015 + 2.09319i −0.871591 + 0.419736i 2.50800 0.842585i −0.900969 0.433884i 2.04110 0.307646i −3.07015 2.09319i
65.2 0.365341 + 0.930874i 0.125927 + 1.68037i −0.733052 + 0.680173i 1.87725 1.27989i −1.51821 + 0.731131i −2.59910 + 0.494638i −0.900969 0.433884i 0.158698 0.0239199i 1.87725 + 1.27989i
81.1 0.0747301 + 0.997204i −2.39605 0.739084i −0.988831 + 0.149042i −2.18585 + 2.02817i 0.557960 2.44458i −2.12971 + 1.56982i −0.222521 0.974928i 2.71611 + 1.85181i −2.18585 2.02817i
81.2 0.0747301 + 0.997204i 1.95066 + 0.601698i −0.988831 + 0.149042i 0.958118 0.889004i −0.454243 + 1.99017i −2.43754 1.02877i −0.222521 0.974928i 0.964304 + 0.657452i 0.958118 + 0.889004i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 9.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
49.g even 21 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 98.2.g.b 24
3.b odd 2 1 882.2.z.b 24
4.b odd 2 1 784.2.bg.b 24
7.b odd 2 1 686.2.g.e 24
7.c even 3 1 686.2.e.c 24
7.c even 3 1 686.2.g.f 24
7.d odd 6 1 686.2.e.d 24
7.d odd 6 1 686.2.g.d 24
49.e even 7 1 686.2.g.f 24
49.f odd 14 1 686.2.g.d 24
49.g even 21 1 inner 98.2.g.b 24
49.g even 21 1 686.2.e.c 24
49.g even 21 1 4802.2.a.o 12
49.h odd 42 1 686.2.e.d 24
49.h odd 42 1 686.2.g.e 24
49.h odd 42 1 4802.2.a.l 12
147.n odd 42 1 882.2.z.b 24
196.o odd 42 1 784.2.bg.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.2.g.b 24 1.a even 1 1 trivial
98.2.g.b 24 49.g even 21 1 inner
686.2.e.c 24 7.c even 3 1
686.2.e.c 24 49.g even 21 1
686.2.e.d 24 7.d odd 6 1
686.2.e.d 24 49.h odd 42 1
686.2.g.d 24 7.d odd 6 1
686.2.g.d 24 49.f odd 14 1
686.2.g.e 24 7.b odd 2 1
686.2.g.e 24 49.h odd 42 1
686.2.g.f 24 7.c even 3 1
686.2.g.f 24 49.e even 7 1
784.2.bg.b 24 4.b odd 2 1
784.2.bg.b 24 196.o odd 42 1
882.2.z.b 24 3.b odd 2 1
882.2.z.b 24 147.n odd 42 1
4802.2.a.l 12 49.h odd 42 1
4802.2.a.o 12 49.g even 21 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 7 T_{3}^{23} + 12 T_{3}^{22} - 28 T_{3}^{21} - 105 T_{3}^{20} + 63 T_{3}^{19} + 617 T_{3}^{18} + \cdots + 1681 \) acting on \(S_{2}^{\mathrm{new}}(98, [\chi])\). Copy content Toggle raw display