Newspace parameters
| Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 98.g (of order \(21\), degree \(12\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(0.782533939809\) |
| Analytic rank: | \(0\) |
| Dimension: | \(24\) |
| Relative dimension: | \(2\) over \(\Q(\zeta_{21})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.1 | 0.733052 | + | 0.680173i | 0.532240 | + | 0.0802223i | 0.0747301 | + | 0.997204i | 0.459870 | + | 1.17173i | 0.335594 | + | 0.420822i | −1.68832 | − | 2.03705i | −0.623490 | + | 0.781831i | −2.58987 | − | 0.798871i | −0.459870 | + | 1.17173i |
| 9.2 | 0.733052 | + | 0.680173i | 1.17911 | + | 0.177723i | 0.0747301 | + | 0.997204i | −1.10349 | − | 2.81164i | 0.743468 | + | 0.932280i | 1.42353 | + | 2.23015i | −0.623490 | + | 0.781831i | −1.50800 | − | 0.465156i | 1.10349 | − | 2.81164i |
| 11.1 | 0.733052 | − | 0.680173i | 0.532240 | − | 0.0802223i | 0.0747301 | − | 0.997204i | 0.459870 | − | 1.17173i | 0.335594 | − | 0.420822i | −1.68832 | + | 2.03705i | −0.623490 | − | 0.781831i | −2.58987 | + | 0.798871i | −0.459870 | − | 1.17173i |
| 11.2 | 0.733052 | − | 0.680173i | 1.17911 | − | 0.177723i | 0.0747301 | − | 0.997204i | −1.10349 | + | 2.81164i | 0.743468 | − | 0.932280i | 1.42353 | − | 2.23015i | −0.623490 | − | 0.781831i | −1.50800 | + | 0.465156i | 1.10349 | + | 2.81164i |
| 23.1 | −0.0747301 | + | 0.997204i | −1.08331 | + | 0.334156i | −0.988831 | − | 0.149042i | 2.80532 | + | 2.60296i | −0.252266 | − | 1.10525i | −2.61464 | + | 0.404557i | 0.222521 | − | 0.974928i | −1.41682 | + | 0.965972i | −2.80532 | + | 2.60296i |
| 23.2 | −0.0747301 | + | 0.997204i | 1.52870 | − | 0.471543i | −0.988831 | − | 0.149042i | −0.144243 | − | 0.133838i | 0.355984 | + | 1.55967i | 2.44775 | + | 1.00425i | 0.222521 | − | 0.974928i | −0.364133 | + | 0.248262i | 0.144243 | − | 0.133838i |
| 25.1 | −0.955573 | + | 0.294755i | −0.692327 | − | 1.76402i | 0.826239 | − | 0.563320i | −4.01065 | − | 0.604508i | 1.18152 | + | 1.48158i | −2.17740 | + | 1.50297i | −0.623490 | + | 0.781831i | −0.433294 | + | 0.402038i | 4.01065 | − | 0.604508i |
| 25.2 | −0.955573 | + | 0.294755i | 1.04951 | + | 2.67410i | 0.826239 | − | 0.563320i | 0.926902 | + | 0.139708i | −1.79108 | − | 2.24595i | −2.29875 | − | 1.30987i | −0.623490 | + | 0.781831i | −3.85019 | + | 3.57245i | −0.926902 | + | 0.139708i |
| 37.1 | −0.826239 | + | 0.563320i | 0.0153718 | − | 0.0142629i | 0.365341 | − | 0.930874i | 1.15218 | + | 0.355400i | −0.00466617 | + | 0.0204438i | 2.64164 | + | 0.147471i | 0.222521 | + | 0.974928i | −0.224157 | + | 2.99117i | −1.15218 | + | 0.355400i |
| 37.2 | −0.826239 | + | 0.563320i | 2.11865 | − | 1.96582i | 0.365341 | − | 0.930874i | −0.596780 | − | 0.184082i | −0.643125 | + | 2.81771i | −2.13962 | − | 1.55628i | 0.222521 | + | 0.974928i | 0.400039 | − | 5.33815i | 0.596780 | − | 0.184082i |
| 39.1 | 0.988831 | + | 0.149042i | −1.46985 | + | 1.00212i | 0.955573 | + | 0.294755i | 0.169008 | + | 2.25526i | −1.60279 | + | 0.771862i | 2.40601 | − | 1.10050i | 0.900969 | + | 0.433884i | 0.0601727 | − | 0.153317i | −0.169008 | + | 2.25526i |
| 39.2 | 0.988831 | + | 0.149042i | 0.520118 | − | 0.354611i | 0.955573 | + | 0.294755i | −0.0807922 | − | 1.07810i | 0.567161 | − | 0.273130i | −2.64324 | − | 0.115218i | 0.900969 | + | 0.433884i | −0.951249 | + | 2.42374i | 0.0807922 | − | 1.07810i |
| 51.1 | −0.955573 | − | 0.294755i | −0.692327 | + | 1.76402i | 0.826239 | + | 0.563320i | −4.01065 | + | 0.604508i | 1.18152 | − | 1.48158i | −2.17740 | − | 1.50297i | −0.623490 | − | 0.781831i | −0.433294 | − | 0.402038i | 4.01065 | + | 0.604508i |
| 51.2 | −0.955573 | − | 0.294755i | 1.04951 | − | 2.67410i | 0.826239 | + | 0.563320i | 0.926902 | − | 0.139708i | −1.79108 | + | 2.24595i | −2.29875 | + | 1.30987i | −0.623490 | − | 0.781831i | −3.85019 | − | 3.57245i | −0.926902 | − | 0.139708i |
| 53.1 | −0.826239 | − | 0.563320i | 0.0153718 | + | 0.0142629i | 0.365341 | + | 0.930874i | 1.15218 | − | 0.355400i | −0.00466617 | − | 0.0204438i | 2.64164 | − | 0.147471i | 0.222521 | − | 0.974928i | −0.224157 | − | 2.99117i | −1.15218 | − | 0.355400i |
| 53.2 | −0.826239 | − | 0.563320i | 2.11865 | + | 1.96582i | 0.365341 | + | 0.930874i | −0.596780 | + | 0.184082i | −0.643125 | − | 2.81771i | −2.13962 | + | 1.55628i | 0.222521 | − | 0.974928i | 0.400039 | + | 5.33815i | 0.596780 | + | 0.184082i |
| 65.1 | −0.365341 | − | 0.930874i | −0.250133 | − | 3.33779i | −0.733052 | + | 0.680173i | −1.09780 | + | 0.748464i | −3.01568 | + | 1.45228i | 2.60370 | + | 0.469838i | 0.900969 | + | 0.433884i | −8.11181 | + | 1.22266i | 1.09780 | + | 0.748464i |
| 65.2 | −0.365341 | − | 0.930874i | 0.0519131 | + | 0.692733i | −0.733052 | + | 0.680173i | 1.52046 | − | 1.03663i | 0.625881 | − | 0.301408i | 2.03934 | − | 1.68555i | 0.900969 | + | 0.433884i | 2.48931 | − | 0.375203i | −1.52046 | − | 1.03663i |
| 81.1 | −0.0747301 | − | 0.997204i | −1.08331 | − | 0.334156i | −0.988831 | + | 0.149042i | 2.80532 | − | 2.60296i | −0.252266 | + | 1.10525i | −2.61464 | − | 0.404557i | 0.222521 | + | 0.974928i | −1.41682 | − | 0.965972i | −2.80532 | − | 2.60296i |
| 81.2 | −0.0747301 | − | 0.997204i | 1.52870 | + | 0.471543i | −0.988831 | + | 0.149042i | −0.144243 | + | 0.133838i | 0.355984 | − | 1.55967i | 2.44775 | − | 1.00425i | 0.222521 | + | 0.974928i | −0.364133 | − | 0.248262i | 0.144243 | + | 0.133838i |
| See all 24 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 49.g | even | 21 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 98.2.g.a | ✓ | 24 |
| 3.b | odd | 2 | 1 | 882.2.z.d | 24 | ||
| 4.b | odd | 2 | 1 | 784.2.bg.a | 24 | ||
| 7.b | odd | 2 | 1 | 686.2.g.b | 24 | ||
| 7.c | even | 3 | 1 | 686.2.e.f | 24 | ||
| 7.c | even | 3 | 1 | 686.2.g.a | 24 | ||
| 7.d | odd | 6 | 1 | 686.2.e.e | 24 | ||
| 7.d | odd | 6 | 1 | 686.2.g.c | 24 | ||
| 49.e | even | 7 | 1 | 686.2.g.a | 24 | ||
| 49.f | odd | 14 | 1 | 686.2.g.c | 24 | ||
| 49.g | even | 21 | 1 | inner | 98.2.g.a | ✓ | 24 |
| 49.g | even | 21 | 1 | 686.2.e.f | 24 | ||
| 49.g | even | 21 | 1 | 4802.2.a.i | 12 | ||
| 49.h | odd | 42 | 1 | 686.2.e.e | 24 | ||
| 49.h | odd | 42 | 1 | 686.2.g.b | 24 | ||
| 49.h | odd | 42 | 1 | 4802.2.a.k | 12 | ||
| 147.n | odd | 42 | 1 | 882.2.z.d | 24 | ||
| 196.o | odd | 42 | 1 | 784.2.bg.a | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 98.2.g.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
| 98.2.g.a | ✓ | 24 | 49.g | even | 21 | 1 | inner |
| 686.2.e.e | 24 | 7.d | odd | 6 | 1 | ||
| 686.2.e.e | 24 | 49.h | odd | 42 | 1 | ||
| 686.2.e.f | 24 | 7.c | even | 3 | 1 | ||
| 686.2.e.f | 24 | 49.g | even | 21 | 1 | ||
| 686.2.g.a | 24 | 7.c | even | 3 | 1 | ||
| 686.2.g.a | 24 | 49.e | even | 7 | 1 | ||
| 686.2.g.b | 24 | 7.b | odd | 2 | 1 | ||
| 686.2.g.b | 24 | 49.h | odd | 42 | 1 | ||
| 686.2.g.c | 24 | 7.d | odd | 6 | 1 | ||
| 686.2.g.c | 24 | 49.f | odd | 14 | 1 | ||
| 784.2.bg.a | 24 | 4.b | odd | 2 | 1 | ||
| 784.2.bg.a | 24 | 196.o | odd | 42 | 1 | ||
| 882.2.z.d | 24 | 3.b | odd | 2 | 1 | ||
| 882.2.z.d | 24 | 147.n | odd | 42 | 1 | ||
| 4802.2.a.i | 12 | 49.g | even | 21 | 1 | ||
| 4802.2.a.k | 12 | 49.h | odd | 42 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{24} - 7 T_{3}^{23} + 38 T_{3}^{22} - 140 T_{3}^{21} + 413 T_{3}^{20} - 861 T_{3}^{19} + 1387 T_{3}^{18} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(98, [\chi])\).