Properties

Label 98.2.g
Level $98$
Weight $2$
Character orbit 98.g
Rep. character $\chi_{98}(9,\cdot)$
Character field $\Q(\zeta_{21})$
Dimension $48$
Newform subspaces $2$
Sturm bound $28$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 98.g (of order \(21\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{21})\)
Newform subspaces: \( 2 \)
Sturm bound: \(28\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(98, [\chi])\).

Total New Old
Modular forms 192 48 144
Cusp forms 144 48 96
Eisenstein series 48 0 48

Trace form

\( 48 q + 4 q^{4} - 14 q^{6} - 14 q^{9} - 18 q^{11} + 2 q^{15} + 4 q^{16} - 14 q^{17} - 4 q^{18} - 14 q^{19} - 14 q^{20} - 6 q^{22} - 50 q^{23} - 4 q^{25} - 14 q^{26} - 42 q^{27} + 2 q^{29} - 8 q^{30} - 14 q^{35}+ \cdots - 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(98, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
98.2.g.a 98.g 49.g $24$ $0.783$ None 98.2.g.a \(-2\) \(7\) \(0\) \(0\) $\mathrm{SU}(2)[C_{21}]$
98.2.g.b 98.g 49.g $24$ $0.783$ None 98.2.g.b \(2\) \(-7\) \(0\) \(0\) $\mathrm{SU}(2)[C_{21}]$

Decomposition of \(S_{2}^{\mathrm{old}}(98, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)