Properties

Label 98.2.e
Level $98$
Weight $2$
Character orbit 98.e
Rep. character $\chi_{98}(15,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $36$
Newform subspaces $2$
Sturm bound $28$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 98.e (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 2 \)
Sturm bound: \(28\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(98, [\chi])\).

Total New Old
Modular forms 96 36 60
Cusp forms 72 36 36
Eisenstein series 24 0 24

Trace form

\( 36 q - 2 q^{3} - 6 q^{4} - 6 q^{5} + 8 q^{6} - 8 q^{7} - 6 q^{10} + 6 q^{11} - 2 q^{12} - 10 q^{13} - 6 q^{14} - 2 q^{15} - 6 q^{16} - 10 q^{17} - 8 q^{18} - 8 q^{19} + 8 q^{20} - 26 q^{21} + 6 q^{22} + 26 q^{23}+ \cdots + 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(98, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
98.2.e.a 98.e 49.e $18$ $0.783$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 98.2.e.a \(-3\) \(3\) \(-6\) \(-7\) $\mathrm{SU}(2)[C_{7}]$ \(q-\beta _{13}q^{2}+(\beta _{1}-\beta _{14})q^{3}+(-1+\beta _{8}+\cdots)q^{4}+\cdots\)
98.2.e.b 98.e 49.e $18$ $0.783$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None 98.2.e.b \(3\) \(-5\) \(0\) \(-1\) $\mathrm{SU}(2)[C_{7}]$ \(q-\beta _{9}q^{2}+\beta _{4}q^{3}+(-1-\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(98, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)