Defining parameters
| Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 98.e (of order \(7\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
| Character field: | \(\Q(\zeta_{7})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(28\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(98, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 96 | 36 | 60 |
| Cusp forms | 72 | 36 | 36 |
| Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(98, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 98.2.e.a | $18$ | $0.783$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(-3\) | \(3\) | \(-6\) | \(-7\) | \(q-\beta _{13}q^{2}+(\beta _{1}-\beta _{14})q^{3}+(-1+\beta _{8}+\cdots)q^{4}+\cdots\) |
| 98.2.e.b | $18$ | $0.783$ | \(\mathbb{Q}[x]/(x^{18} + \cdots)\) | None | \(3\) | \(-5\) | \(0\) | \(-1\) | \(q-\beta _{9}q^{2}+\beta _{4}q^{3}+(-1-\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(98, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)