Defining parameters
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.c (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(98, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 8 | 36 |
Cusp forms | 12 | 8 | 4 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(98, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
98.2.c.a | $2$ | $0.783$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(-2\) | \(0\) | \(0\) | \(q+\zeta_{6}q^{2}+(-2+2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
98.2.c.b | $2$ | $0.783$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(2\) | \(0\) | \(0\) | \(q+\zeta_{6}q^{2}+(2-2\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\) |
98.2.c.c | $4$ | $0.783$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+\beta _{1}q^{3}+(-1-\beta _{2})q^{4}+(2\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(98, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(98, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 2}\)