Newspace parameters
Level: | \( N \) | \(=\) | \( 98 = 2 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 98.c (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(50.4735119441\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\sqrt{-3}, \sqrt{2305})\) |
Defining polynomial: |
\( x^{4} - x^{3} + 577x^{2} + 576x + 331776 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{9}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 14) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} + 577x^{2} + 576x + 331776 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -\nu^{3} + 577\nu^{2} - 577\nu + 331776 ) / 332352 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} - 577\nu^{2} + 665281\nu - 331776 ) / 332352 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 2\nu^{3} + 1729 ) / 577 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{2} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{3} + \beta_{2} + 1153\beta _1 - 1153 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 577\beta_{3} - 1729 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).
\(n\) | \(3\) |
\(\chi(n)\) | \(-1 + \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67.1 |
|
8.00000 | + | 13.8564i | −116.526 | + | 201.829i | −128.000 | + | 221.703i | 178.391 | + | 308.982i | −3728.83 | 0 | −4096.00 | −17315.1 | − | 29990.7i | −2854.25 | + | 4943.71i | ||||||||||||||||||
67.2 | 8.00000 | + | 13.8564i | 123.526 | − | 213.953i | −128.000 | + | 221.703i | 1186.61 | + | 2055.27i | 3952.83 | 0 | −4096.00 | −20675.9 | − | 35811.6i | −18985.7 | + | 32884.3i | |||||||||||||||||||
79.1 | 8.00000 | − | 13.8564i | −116.526 | − | 201.829i | −128.000 | − | 221.703i | 178.391 | − | 308.982i | −3728.83 | 0 | −4096.00 | −17315.1 | + | 29990.7i | −2854.25 | − | 4943.71i | |||||||||||||||||||
79.2 | 8.00000 | − | 13.8564i | 123.526 | + | 213.953i | −128.000 | − | 221.703i | 1186.61 | − | 2055.27i | 3952.83 | 0 | −4096.00 | −20675.9 | + | 35811.6i | −18985.7 | − | 32884.3i | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 98.10.c.j | 4 | |
7.b | odd | 2 | 1 | 98.10.c.h | 4 | ||
7.c | even | 3 | 1 | 14.10.a.c | ✓ | 2 | |
7.c | even | 3 | 1 | inner | 98.10.c.j | 4 | |
7.d | odd | 6 | 1 | 98.10.a.e | 2 | ||
7.d | odd | 6 | 1 | 98.10.c.h | 4 | ||
21.h | odd | 6 | 1 | 126.10.a.o | 2 | ||
28.g | odd | 6 | 1 | 112.10.a.c | 2 | ||
35.j | even | 6 | 1 | 350.10.a.j | 2 | ||
35.l | odd | 12 | 2 | 350.10.c.j | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
14.10.a.c | ✓ | 2 | 7.c | even | 3 | 1 | |
98.10.a.e | 2 | 7.d | odd | 6 | 1 | ||
98.10.c.h | 4 | 7.b | odd | 2 | 1 | ||
98.10.c.h | 4 | 7.d | odd | 6 | 1 | ||
98.10.c.j | 4 | 1.a | even | 1 | 1 | trivial | |
98.10.c.j | 4 | 7.c | even | 3 | 1 | inner | |
112.10.a.c | 2 | 28.g | odd | 6 | 1 | ||
126.10.a.o | 2 | 21.h | odd | 6 | 1 | ||
350.10.a.j | 2 | 35.j | even | 6 | 1 | ||
350.10.c.j | 4 | 35.l | odd | 12 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} - 14T_{3}^{3} + 57772T_{3}^{2} + 806064T_{3} + 3314995776 \)
acting on \(S_{10}^{\mathrm{new}}(98, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 16 T + 256)^{2} \)
$3$
\( T^{4} - 14 T^{3} + \cdots + 3314995776 \)
$5$
\( T^{4} - 2730 T^{3} + \cdots + 716934758400 \)
$7$
\( T^{4} \)
$11$
\( T^{4} + 44940 T^{3} + \cdots + 41\!\cdots\!00 \)
$13$
\( (T^{2} - 100282 T + 2397429256)^{2} \)
$17$
\( T^{4} - 870408 T^{3} + \cdots + 33\!\cdots\!56 \)
$19$
\( T^{4} + 508774 T^{3} + \cdots + 12\!\cdots\!36 \)
$23$
\( T^{4} + 79800 T^{3} + \cdots + 13\!\cdots\!00 \)
$29$
\( (T^{2} - 2006328 T - 31904129519604)^{2} \)
$31$
\( T^{4} + 2188732 T^{3} + \cdots + 56\!\cdots\!36 \)
$37$
\( T^{4} - 20723576 T^{3} + \cdots + 36\!\cdots\!36 \)
$41$
\( (T^{2} - 19016592 T - 527816477266884)^{2} \)
$43$
\( (T^{2} - 4193716 T - 271341247682336)^{2} \)
$47$
\( T^{4} - 74542524 T^{3} + \cdots + 16\!\cdots\!36 \)
$53$
\( T^{4} - 3239748 T^{3} + \cdots + 24\!\cdots\!76 \)
$59$
\( T^{4} - 133642362 T^{3} + \cdots + 24\!\cdots\!96 \)
$61$
\( T^{4} + 227801686 T^{3} + \cdots + 12\!\cdots\!76 \)
$67$
\( T^{4} + 332930272 T^{3} + \cdots + 45\!\cdots\!16 \)
$71$
\( (T^{2} + 167985720 T - 85\!\cdots\!00)^{2} \)
$73$
\( T^{4} - 44684276 T^{3} + \cdots + 70\!\cdots\!36 \)
$79$
\( T^{4} + 269642776 T^{3} + \cdots + 47\!\cdots\!36 \)
$83$
\( (T^{2} + 183105762 T - 76\!\cdots\!64)^{2} \)
$89$
\( T^{4} + 791657748 T^{3} + \cdots + 25\!\cdots\!76 \)
$97$
\( (T^{2} + 4169480 T - 45\!\cdots\!00)^{2} \)
show more
show less