Properties

Label 98.10.c.g.79.2
Level $98$
Weight $10$
Character 98.79
Analytic conductor $50.474$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(67,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.67"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.4735119441\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{106})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 106x^{2} + 11236 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.2
Root \(5.14782 + 8.91628i\) of defining polynomial
Character \(\chi\) \(=\) 98.79
Dual form 98.10.c.g.67.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.00000 + 13.8564i) q^{2} +(61.7738 + 106.995i) q^{3} +(-128.000 - 221.703i) q^{4} +(-638.329 + 1105.62i) q^{5} -1976.76 q^{6} +4096.00 q^{8} +(2209.50 - 3826.97i) q^{9} +(-10213.3 - 17689.9i) q^{10} +(13822.0 + 23940.4i) q^{11} +(15814.1 - 27390.8i) q^{12} -83312.2 q^{13} -157728. q^{15} +(-32768.0 + 56755.8i) q^{16} +(-277117. - 479981. i) q^{17} +(35352.0 + 61231.5i) q^{18} +(171752. - 297483. i) q^{19} +326824. q^{20} -442304. q^{22} +(267852. - 463933. i) q^{23} +(253025. + 438253. i) q^{24} +(161634. + 279959. i) q^{25} +(666498. - 1.15441e6i) q^{26} +2.97774e6 q^{27} -2.59101e6 q^{29} +(1.26182e6 - 2.18554e6i) q^{30} +(-3.04862e6 - 5.28036e6i) q^{31} +(-524288. - 908093. i) q^{32} +(-1.70767e6 + 2.95778e6i) q^{33} +8.86775e6 q^{34} -1.13126e6 q^{36} +(8.90396e6 - 1.54221e7i) q^{37} +(2.74803e6 + 4.75972e6i) q^{38} +(-5.14651e6 - 8.91402e6i) q^{39} +(-2.61460e6 + 4.52861e6i) q^{40} -3.05338e7 q^{41} -8.75976e6 q^{43} +(3.53843e6 - 6.12874e6i) q^{44} +(2.82078e6 + 4.88573e6i) q^{45} +(4.28563e6 + 7.42293e6i) q^{46} +(1.36365e7 - 2.36191e7i) q^{47} -8.09681e6 q^{48} -5.17230e6 q^{50} +(3.42372e7 - 5.93005e7i) q^{51} +(1.06640e7 + 1.84705e7i) q^{52} +(4.17442e7 + 7.23032e7i) q^{53} +(-2.38219e7 + 4.12608e7i) q^{54} -3.52919e7 q^{55} +4.24390e7 q^{57} +(2.07280e7 - 3.59020e7i) q^{58} +(4.07738e7 + 7.06222e7i) q^{59} +(2.01892e7 + 3.49687e7i) q^{60} +(2.49221e7 - 4.31664e7i) q^{61} +9.75558e7 q^{62} +1.67772e7 q^{64} +(5.31806e7 - 9.21115e7i) q^{65} +(-2.73228e7 - 4.73245e7i) q^{66} +(9.27465e7 + 1.60642e8i) q^{67} +(-7.09420e7 + 1.22875e8i) q^{68} +6.61849e7 q^{69} +3.70271e8 q^{71} +(9.05011e6 - 1.56753e7i) q^{72} +(-1.23005e8 - 2.13051e8i) q^{73} +(1.42463e8 + 2.46754e8i) q^{74} +(-1.99695e7 + 3.45883e7i) q^{75} -8.79369e7 q^{76} +1.64688e8 q^{78} +(2.59954e8 - 4.50253e8i) q^{79} +(-4.18335e7 - 7.24578e7i) q^{80} +(1.40457e8 + 2.43278e8i) q^{81} +(2.44270e8 - 4.23089e8i) q^{82} +2.98889e8 q^{83} +7.07568e8 q^{85} +(7.00780e7 - 1.21379e8i) q^{86} +(-1.60056e8 - 2.77226e8i) q^{87} +(5.66149e7 + 9.80599e7i) q^{88} +(1.48763e8 - 2.57666e8i) q^{89} -9.02648e7 q^{90} -1.37140e8 q^{92} +(3.76649e8 - 6.52376e8i) q^{93} +(2.18184e8 + 3.77905e8i) q^{94} +(2.19268e8 + 3.79784e8i) q^{95} +(6.47745e7 - 1.12193e8i) q^{96} -7.80734e8 q^{97} +1.22159e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32 q^{2} - 512 q^{4} + 16384 q^{8} + 8838 q^{9} + 55288 q^{11} - 630912 q^{15} - 131072 q^{16} + 141408 q^{18} - 1769216 q^{22} + 1071408 q^{23} + 646538 q^{25} - 10364024 q^{29} + 5047296 q^{30}+ \cdots + 488635344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/98\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 + 13.8564i −0.353553 + 0.612372i
\(3\) 61.7738 + 106.995i 0.440310 + 0.762639i 0.997712 0.0676033i \(-0.0215352\pi\)
−0.557402 + 0.830243i \(0.688202\pi\)
\(4\) −128.000 221.703i −0.250000 0.433013i
\(5\) −638.329 + 1105.62i −0.456751 + 0.791116i −0.998787 0.0492392i \(-0.984320\pi\)
0.542036 + 0.840355i \(0.317654\pi\)
\(6\) −1976.76 −0.622692
\(7\) 0 0
\(8\) 4096.00 0.353553
\(9\) 2209.50 3826.97i 0.112254 0.194430i
\(10\) −10213.3 17689.9i −0.322972 0.559404i
\(11\) 13822.0 + 23940.4i 0.284645 + 0.493020i 0.972523 0.232807i \(-0.0747909\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(12\) 15814.1 27390.8i 0.220155 0.381320i
\(13\) −83312.2 −0.809028 −0.404514 0.914532i \(-0.632559\pi\)
−0.404514 + 0.914532i \(0.632559\pi\)
\(14\) 0 0
\(15\) −157728. −0.804448
\(16\) −32768.0 + 56755.8i −0.125000 + 0.216506i
\(17\) −277117. 479981.i −0.804717 1.39381i −0.916482 0.400076i \(-0.868984\pi\)
0.111765 0.993735i \(-0.464350\pi\)
\(18\) 35352.0 + 61231.5i 0.0793757 + 0.137483i
\(19\) 171752. 297483.i 0.302350 0.523685i −0.674318 0.738441i \(-0.735562\pi\)
0.976668 + 0.214756i \(0.0688956\pi\)
\(20\) 326824. 0.456751
\(21\) 0 0
\(22\) −442304. −0.402549
\(23\) 267852. 463933.i 0.199581 0.345685i −0.748811 0.662783i \(-0.769375\pi\)
0.948393 + 0.317098i \(0.102709\pi\)
\(24\) 253025. + 438253.i 0.155673 + 0.269634i
\(25\) 161634. + 279959.i 0.0827569 + 0.143339i
\(26\) 666498. 1.15441e6i 0.286035 0.495427i
\(27\) 2.97774e6 1.07833
\(28\) 0 0
\(29\) −2.59101e6 −0.680264 −0.340132 0.940378i \(-0.610472\pi\)
−0.340132 + 0.940378i \(0.610472\pi\)
\(30\) 1.26182e6 2.18554e6i 0.284415 0.492622i
\(31\) −3.04862e6 5.28036e6i −0.592892 1.02692i −0.993841 0.110818i \(-0.964653\pi\)
0.400949 0.916100i \(-0.368680\pi\)
\(32\) −524288. 908093.i −0.0883883 0.153093i
\(33\) −1.70767e6 + 2.95778e6i −0.250664 + 0.434163i
\(34\) 8.86775e6 1.13804
\(35\) 0 0
\(36\) −1.13126e6 −0.112254
\(37\) 8.90396e6 1.54221e7i 0.781043 1.35281i −0.150291 0.988642i \(-0.548021\pi\)
0.931334 0.364165i \(-0.118646\pi\)
\(38\) 2.74803e6 + 4.75972e6i 0.213794 + 0.370302i
\(39\) −5.14651e6 8.91402e6i −0.356223 0.616997i
\(40\) −2.61460e6 + 4.52861e6i −0.161486 + 0.279702i
\(41\) −3.05338e7 −1.68754 −0.843769 0.536707i \(-0.819668\pi\)
−0.843769 + 0.536707i \(0.819668\pi\)
\(42\) 0 0
\(43\) −8.75976e6 −0.390736 −0.195368 0.980730i \(-0.562590\pi\)
−0.195368 + 0.980730i \(0.562590\pi\)
\(44\) 3.53843e6 6.12874e6i 0.142323 0.246510i
\(45\) 2.82078e6 + 4.88573e6i 0.102544 + 0.177612i
\(46\) 4.28563e6 + 7.42293e6i 0.141125 + 0.244436i
\(47\) 1.36365e7 2.36191e7i 0.407626 0.706029i −0.586997 0.809589i \(-0.699690\pi\)
0.994623 + 0.103560i \(0.0330234\pi\)
\(48\) −8.09681e6 −0.220155
\(49\) 0 0
\(50\) −5.17230e6 −0.117036
\(51\) 3.42372e7 5.93005e7i 0.708650 1.22742i
\(52\) 1.06640e7 + 1.84705e7i 0.202257 + 0.350320i
\(53\) 4.17442e7 + 7.23032e7i 0.726700 + 1.25868i 0.958270 + 0.285863i \(0.0922803\pi\)
−0.231570 + 0.972818i \(0.574386\pi\)
\(54\) −2.38219e7 + 4.12608e7i −0.381246 + 0.660337i
\(55\) −3.52919e7 −0.520048
\(56\) 0 0
\(57\) 4.24390e7 0.532511
\(58\) 2.07280e7 3.59020e7i 0.240510 0.416575i
\(59\) 4.07738e7 + 7.06222e7i 0.438073 + 0.758765i 0.997541 0.0700871i \(-0.0223277\pi\)
−0.559468 + 0.828852i \(0.688994\pi\)
\(60\) 2.01892e7 + 3.49687e7i 0.201112 + 0.348336i
\(61\) 2.49221e7 4.31664e7i 0.230463 0.399173i −0.727482 0.686127i \(-0.759309\pi\)
0.957944 + 0.286954i \(0.0926427\pi\)
\(62\) 9.75558e7 0.838476
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 5.31806e7 9.21115e7i 0.369525 0.640035i
\(66\) −2.73228e7 4.73245e7i −0.177246 0.307000i
\(67\) 9.27465e7 + 1.60642e8i 0.562290 + 0.973916i 0.997296 + 0.0734880i \(0.0234130\pi\)
−0.435006 + 0.900428i \(0.643254\pi\)
\(68\) −7.09420e7 + 1.22875e8i −0.402359 + 0.696906i
\(69\) 6.61849e7 0.351510
\(70\) 0 0
\(71\) 3.70271e8 1.72925 0.864623 0.502421i \(-0.167557\pi\)
0.864623 + 0.502421i \(0.167557\pi\)
\(72\) 9.05011e6 1.56753e7i 0.0396879 0.0687414i
\(73\) −1.23005e8 2.13051e8i −0.506957 0.878075i −0.999968 0.00805160i \(-0.997437\pi\)
0.493011 0.870023i \(-0.335896\pi\)
\(74\) 1.42463e8 + 2.46754e8i 0.552281 + 0.956579i
\(75\) −1.99695e7 + 3.45883e7i −0.0728773 + 0.126227i
\(76\) −8.79369e7 −0.302350
\(77\) 0 0
\(78\) 1.64688e8 0.503776
\(79\) 2.59954e8 4.50253e8i 0.750886 1.30057i −0.196508 0.980502i \(-0.562960\pi\)
0.947394 0.320070i \(-0.103707\pi\)
\(80\) −4.18335e7 7.24578e7i −0.114188 0.197779i
\(81\) 1.40457e8 + 2.43278e8i 0.362544 + 0.627944i
\(82\) 2.44270e8 4.23089e8i 0.596635 1.03340i
\(83\) 2.98889e8 0.691287 0.345643 0.938366i \(-0.387661\pi\)
0.345643 + 0.938366i \(0.387661\pi\)
\(84\) 0 0
\(85\) 7.07568e8 1.47022
\(86\) 7.00780e7 1.21379e8i 0.138146 0.239276i
\(87\) −1.60056e8 2.77226e8i −0.299527 0.518796i
\(88\) 5.66149e7 + 9.80599e7i 0.100637 + 0.174309i
\(89\) 1.48763e8 2.57666e8i 0.251328 0.435313i −0.712564 0.701608i \(-0.752466\pi\)
0.963892 + 0.266294i \(0.0857993\pi\)
\(90\) −9.02648e7 −0.145020
\(91\) 0 0
\(92\) −1.37140e8 −0.199581
\(93\) 3.76649e8 6.52376e8i 0.522112 0.904325i
\(94\) 2.18184e8 + 3.77905e8i 0.288235 + 0.499238i
\(95\) 2.19268e8 + 3.79784e8i 0.276197 + 0.478388i
\(96\) 6.47745e7 1.12193e8i 0.0778365 0.134817i
\(97\) −7.80734e8 −0.895427 −0.447713 0.894177i \(-0.647762\pi\)
−0.447713 + 0.894177i \(0.647762\pi\)
\(98\) 0 0
\(99\) 1.22159e8 0.127810
\(100\) 4.13784e7 7.16695e7i 0.0413784 0.0716695i
\(101\) 6.51159e8 + 1.12784e9i 0.622646 + 1.07845i 0.988991 + 0.147975i \(0.0472755\pi\)
−0.366346 + 0.930479i \(0.619391\pi\)
\(102\) 5.47794e8 + 9.48808e8i 0.501091 + 0.867916i
\(103\) −1.07474e9 + 1.86151e9i −0.940887 + 1.62966i −0.177104 + 0.984192i \(0.556673\pi\)
−0.763784 + 0.645472i \(0.776661\pi\)
\(104\) −3.41247e8 −0.286035
\(105\) 0 0
\(106\) −1.33582e9 −1.02771
\(107\) 4.17444e8 7.23034e8i 0.307873 0.533251i −0.670024 0.742339i \(-0.733716\pi\)
0.977897 + 0.209088i \(0.0670496\pi\)
\(108\) −3.81151e8 6.60173e8i −0.269582 0.466929i
\(109\) −5.12813e8 8.88219e8i −0.347969 0.602699i 0.637920 0.770103i \(-0.279795\pi\)
−0.985888 + 0.167403i \(0.946462\pi\)
\(110\) 2.82336e8 4.89019e8i 0.183865 0.318463i
\(111\) 2.20012e9 1.37560
\(112\) 0 0
\(113\) −4.65902e8 −0.268808 −0.134404 0.990927i \(-0.542912\pi\)
−0.134404 + 0.990927i \(0.542912\pi\)
\(114\) −3.39512e8 + 5.88052e8i −0.188271 + 0.326095i
\(115\) 3.41955e8 + 5.92284e8i 0.182318 + 0.315784i
\(116\) 3.31649e8 + 5.74433e8i 0.170066 + 0.294563i
\(117\) −1.84078e8 + 3.18833e8i −0.0908169 + 0.157299i
\(118\) −1.30476e9 −0.619529
\(119\) 0 0
\(120\) −6.46054e8 −0.284415
\(121\) 7.96878e8 1.38023e9i 0.337954 0.585354i
\(122\) 3.98754e8 + 6.90662e8i 0.162962 + 0.282258i
\(123\) −1.88619e9 3.26697e9i −0.743040 1.28698i
\(124\) −7.80446e8 + 1.35177e9i −0.296446 + 0.513459i
\(125\) −2.90618e9 −1.06470
\(126\) 0 0
\(127\) −7.84044e8 −0.267438 −0.133719 0.991019i \(-0.542692\pi\)
−0.133719 + 0.991019i \(0.542692\pi\)
\(128\) −1.34218e8 + 2.32472e8i −0.0441942 + 0.0765466i
\(129\) −5.41123e8 9.37253e8i −0.172045 0.297991i
\(130\) 8.50890e8 + 1.47378e9i 0.261293 + 0.452573i
\(131\) 2.88682e9 5.00012e9i 0.856444 1.48340i −0.0188547 0.999822i \(-0.506002\pi\)
0.875299 0.483582i \(-0.160665\pi\)
\(132\) 8.74329e8 0.250664
\(133\) 0 0
\(134\) −2.96789e9 −0.795199
\(135\) −1.90078e9 + 3.29225e9i −0.492527 + 0.853082i
\(136\) −1.13507e9 1.96600e9i −0.284511 0.492787i
\(137\) −3.58836e9 6.21523e9i −0.870269 1.50735i −0.861718 0.507388i \(-0.830611\pi\)
−0.00855148 0.999963i \(-0.502722\pi\)
\(138\) −5.29479e8 + 9.17085e8i −0.124278 + 0.215255i
\(139\) 3.11320e9 0.707359 0.353679 0.935367i \(-0.384930\pi\)
0.353679 + 0.935367i \(0.384930\pi\)
\(140\) 0 0
\(141\) 3.36951e9 0.717927
\(142\) −2.96217e9 + 5.13062e9i −0.611381 + 1.05894i
\(143\) −1.15154e9 1.99453e9i −0.230286 0.398867i
\(144\) 1.44802e8 + 2.50804e8i 0.0280636 + 0.0486075i
\(145\) 1.65391e9 2.86466e9i 0.310711 0.538168i
\(146\) 3.93617e9 0.716945
\(147\) 0 0
\(148\) −4.55882e9 −0.781043
\(149\) −3.43535e9 + 5.95020e9i −0.570996 + 0.988993i 0.425468 + 0.904973i \(0.360109\pi\)
−0.996464 + 0.0840202i \(0.973224\pi\)
\(150\) −3.19513e8 5.53412e8i −0.0515321 0.0892562i
\(151\) −4.53378e9 7.85273e9i −0.709682 1.22921i −0.964975 0.262342i \(-0.915505\pi\)
0.255293 0.966864i \(-0.417828\pi\)
\(152\) 7.03495e8 1.21849e9i 0.106897 0.185151i
\(153\) −2.44916e9 −0.361332
\(154\) 0 0
\(155\) 7.78409e9 1.08322
\(156\) −1.31751e9 + 2.28199e9i −0.178112 + 0.308498i
\(157\) −1.67744e9 2.90541e9i −0.220343 0.381645i 0.734569 0.678534i \(-0.237384\pi\)
−0.954912 + 0.296889i \(0.904051\pi\)
\(158\) 4.15926e9 + 7.20405e9i 0.530957 + 0.919644i
\(159\) −5.15740e9 + 8.93288e9i −0.639947 + 1.10842i
\(160\) 1.33867e9 0.161486
\(161\) 0 0
\(162\) −4.49462e9 −0.512714
\(163\) −3.28981e9 + 5.69812e9i −0.365028 + 0.632247i −0.988781 0.149374i \(-0.952274\pi\)
0.623752 + 0.781622i \(0.285607\pi\)
\(164\) 3.90833e9 + 6.76942e9i 0.421884 + 0.730725i
\(165\) −2.18012e9 3.77607e9i −0.228982 0.396609i
\(166\) −2.39111e9 + 4.14153e9i −0.244407 + 0.423325i
\(167\) −3.22471e8 −0.0320824 −0.0160412 0.999871i \(-0.505106\pi\)
−0.0160412 + 0.999871i \(0.505106\pi\)
\(168\) 0 0
\(169\) −3.66357e9 −0.345473
\(170\) −5.66054e9 + 9.80435e9i −0.519802 + 0.900323i
\(171\) −7.58971e8 1.31458e9i −0.0678801 0.117572i
\(172\) 1.12125e9 + 1.94206e9i 0.0976841 + 0.169194i
\(173\) −8.36145e8 + 1.44825e9i −0.0709699 + 0.122923i −0.899327 0.437277i \(-0.855943\pi\)
0.828357 + 0.560201i \(0.189276\pi\)
\(174\) 5.12180e9 0.423595
\(175\) 0 0
\(176\) −1.81168e9 −0.142323
\(177\) −5.03750e9 + 8.72520e9i −0.385776 + 0.668184i
\(178\) 2.38022e9 + 4.12265e9i 0.177716 + 0.307813i
\(179\) −4.21451e9 7.29975e9i −0.306838 0.531458i 0.670831 0.741610i \(-0.265937\pi\)
−0.977669 + 0.210152i \(0.932604\pi\)
\(180\) 7.22119e8 1.25075e9i 0.0512722 0.0888061i
\(181\) −2.02316e10 −1.40113 −0.700563 0.713591i \(-0.747068\pi\)
−0.700563 + 0.713591i \(0.747068\pi\)
\(182\) 0 0
\(183\) 6.15813e9 0.405900
\(184\) 1.09712e9 1.90027e9i 0.0705626 0.122218i
\(185\) 1.13673e10 + 1.96888e10i 0.713485 + 1.23579i
\(186\) 6.02639e9 + 1.04380e10i 0.369189 + 0.639454i
\(187\) 7.66063e9 1.32686e10i 0.458118 0.793483i
\(188\) −6.98188e9 −0.407626
\(189\) 0 0
\(190\) −7.01658e9 −0.390602
\(191\) 8.91139e9 1.54350e10i 0.484502 0.839182i −0.515340 0.856986i \(-0.672334\pi\)
0.999841 + 0.0178042i \(0.00566754\pi\)
\(192\) 1.03639e9 + 1.79508e9i 0.0550387 + 0.0953299i
\(193\) −7.72836e9 1.33859e10i −0.400940 0.694449i 0.592899 0.805277i \(-0.297983\pi\)
−0.993840 + 0.110828i \(0.964650\pi\)
\(194\) 6.24587e9 1.08182e10i 0.316581 0.548335i
\(195\) 1.31407e10 0.650821
\(196\) 0 0
\(197\) 2.03655e10 0.963376 0.481688 0.876343i \(-0.340024\pi\)
0.481688 + 0.876343i \(0.340024\pi\)
\(198\) −9.77271e8 + 1.69268e9i −0.0451878 + 0.0782676i
\(199\) −1.38513e10 2.39911e10i −0.626109 1.08445i −0.988325 0.152359i \(-0.951313\pi\)
0.362216 0.932094i \(-0.382020\pi\)
\(200\) 6.62055e8 + 1.14671e9i 0.0292590 + 0.0506780i
\(201\) −1.14586e10 + 1.98469e10i −0.495164 + 0.857650i
\(202\) −2.08371e10 −0.880554
\(203\) 0 0
\(204\) −1.75294e10 −0.708650
\(205\) 1.94906e10 3.37587e10i 0.770785 1.33504i
\(206\) −1.71959e10 2.97842e10i −0.665308 1.15235i
\(207\) −1.18364e9 2.05012e9i −0.0448077 0.0776092i
\(208\) 2.72998e9 4.72846e9i 0.101129 0.175160i
\(209\) 9.49581e9 0.344250
\(210\) 0 0
\(211\) −1.30691e10 −0.453914 −0.226957 0.973905i \(-0.572878\pi\)
−0.226957 + 0.973905i \(0.572878\pi\)
\(212\) 1.06865e10 1.85096e10i 0.363350 0.629341i
\(213\) 2.28730e10 + 3.96172e10i 0.761404 + 1.31879i
\(214\) 6.67910e9 + 1.15685e10i 0.217699 + 0.377065i
\(215\) 5.59161e9 9.68495e9i 0.178469 0.309118i
\(216\) 1.21968e10 0.381246
\(217\) 0 0
\(218\) 1.64100e10 0.492102
\(219\) 1.51970e10 2.63220e10i 0.446436 0.773250i
\(220\) 4.51737e9 + 7.82431e9i 0.130012 + 0.225187i
\(221\) 2.30873e10 + 3.99883e10i 0.651039 + 1.12763i
\(222\) −1.76010e10 + 3.04858e10i −0.486350 + 0.842383i
\(223\) 4.18178e10 1.13237 0.566187 0.824277i \(-0.308418\pi\)
0.566187 + 0.824277i \(0.308418\pi\)
\(224\) 0 0
\(225\) 1.42853e9 0.0371592
\(226\) 3.72722e9 6.45573e9i 0.0950379 0.164610i
\(227\) −2.80611e10 4.86033e10i −0.701438 1.21493i −0.967962 0.251097i \(-0.919209\pi\)
0.266524 0.963828i \(-0.414125\pi\)
\(228\) −5.43219e9 9.40883e9i −0.133128 0.230584i
\(229\) −2.24541e9 + 3.88917e9i −0.0539556 + 0.0934538i −0.891742 0.452545i \(-0.850516\pi\)
0.837786 + 0.545999i \(0.183850\pi\)
\(230\) −1.09426e10 −0.257836
\(231\) 0 0
\(232\) −1.06128e10 −0.240510
\(233\) 3.22331e10 5.58294e10i 0.716475 1.24097i −0.245913 0.969292i \(-0.579088\pi\)
0.962388 0.271679i \(-0.0875788\pi\)
\(234\) −2.94525e9 5.10133e9i −0.0642172 0.111227i
\(235\) 1.74091e10 + 3.01535e10i 0.372367 + 0.644959i
\(236\) 1.04381e10 1.80793e10i 0.219037 0.379383i
\(237\) 6.42333e10 1.32249
\(238\) 0 0
\(239\) −1.23198e9 −0.0244238 −0.0122119 0.999925i \(-0.503887\pi\)
−0.0122119 + 0.999925i \(0.503887\pi\)
\(240\) 5.16843e9 8.95199e9i 0.100556 0.174168i
\(241\) −4.44175e9 7.69334e9i −0.0848160 0.146906i 0.820497 0.571651i \(-0.193697\pi\)
−0.905313 + 0.424746i \(0.860364\pi\)
\(242\) 1.27501e10 + 2.20837e10i 0.238970 + 0.413908i
\(243\) 1.19524e10 2.07021e10i 0.219900 0.380878i
\(244\) −1.27601e10 −0.230463
\(245\) 0 0
\(246\) 6.03580e10 1.05082
\(247\) −1.43090e10 + 2.47839e10i −0.244610 + 0.423676i
\(248\) −1.24871e10 2.16284e10i −0.209619 0.363071i
\(249\) 1.84635e10 + 3.19797e10i 0.304381 + 0.527203i
\(250\) 2.32494e10 4.02692e10i 0.376428 0.651993i
\(251\) −9.92817e10 −1.57884 −0.789419 0.613855i \(-0.789618\pi\)
−0.789419 + 0.613855i \(0.789618\pi\)
\(252\) 0 0
\(253\) 1.48090e10 0.227239
\(254\) 6.27235e9 1.08640e10i 0.0945538 0.163772i
\(255\) 4.37091e10 + 7.57064e10i 0.647353 + 1.12125i
\(256\) −2.14748e9 3.71955e9i −0.0312500 0.0541266i
\(257\) −2.78328e10 + 4.82079e10i −0.397977 + 0.689317i −0.993476 0.114039i \(-0.963621\pi\)
0.595499 + 0.803356i \(0.296954\pi\)
\(258\) 1.73159e10 0.243309
\(259\) 0 0
\(260\) −2.72285e10 −0.369525
\(261\) −5.72483e9 + 9.91569e9i −0.0763625 + 0.132264i
\(262\) 4.61891e10 + 8.00019e10i 0.605597 + 1.04893i
\(263\) 4.98863e10 + 8.64057e10i 0.642955 + 1.11363i 0.984770 + 0.173864i \(0.0556253\pi\)
−0.341814 + 0.939768i \(0.611041\pi\)
\(264\) −6.99463e9 + 1.21151e10i −0.0886232 + 0.153500i
\(265\) −1.06586e11 −1.32768
\(266\) 0 0
\(267\) 3.67587e10 0.442649
\(268\) 2.37431e10 4.11242e10i 0.281145 0.486958i
\(269\) −9.86745e9 1.70909e10i −0.114900 0.199012i 0.802840 0.596195i \(-0.203321\pi\)
−0.917740 + 0.397182i \(0.869988\pi\)
\(270\) −3.04125e10 5.26760e10i −0.348269 0.603220i
\(271\) 2.94220e10 5.09604e10i 0.331368 0.573946i −0.651413 0.758724i \(-0.725823\pi\)
0.982780 + 0.184778i \(0.0591566\pi\)
\(272\) 3.63223e10 0.402359
\(273\) 0 0
\(274\) 1.14828e11 1.23075
\(275\) −4.46822e9 + 7.73919e9i −0.0471127 + 0.0816016i
\(276\) −8.47167e9 1.46734e10i −0.0878776 0.152208i
\(277\) 2.09747e10 + 3.63293e10i 0.214061 + 0.370764i 0.952982 0.303028i \(-0.0979976\pi\)
−0.738921 + 0.673792i \(0.764664\pi\)
\(278\) −2.49056e10 + 4.31377e10i −0.250089 + 0.433167i
\(279\) −2.69437e10 −0.266218
\(280\) 0 0
\(281\) 2.62716e10 0.251367 0.125684 0.992070i \(-0.459888\pi\)
0.125684 + 0.992070i \(0.459888\pi\)
\(282\) −2.69561e10 + 4.66893e10i −0.253826 + 0.439639i
\(283\) −6.18584e10 1.07142e11i −0.573271 0.992935i −0.996227 0.0867843i \(-0.972341\pi\)
0.422956 0.906150i \(-0.360992\pi\)
\(284\) −4.73946e10 8.20899e10i −0.432311 0.748785i
\(285\) −2.70901e10 + 4.69213e10i −0.243225 + 0.421278i
\(286\) 3.68493e10 0.325674
\(287\) 0 0
\(288\) −4.63366e9 −0.0396879
\(289\) −9.42939e10 + 1.63322e11i −0.795140 + 1.37722i
\(290\) 2.64626e10 + 4.58346e10i 0.219706 + 0.380542i
\(291\) −4.82289e10 8.35349e10i −0.394265 0.682888i
\(292\) −3.14893e10 + 5.45412e10i −0.253478 + 0.439037i
\(293\) −3.33848e10 −0.264633 −0.132316 0.991208i \(-0.542242\pi\)
−0.132316 + 0.991208i \(0.542242\pi\)
\(294\) 0 0
\(295\) −1.04108e11 −0.800362
\(296\) 3.64706e10 6.31689e10i 0.276141 0.478289i
\(297\) 4.11584e10 + 7.12884e10i 0.306940 + 0.531636i
\(298\) −5.49656e10 9.52032e10i −0.403755 0.699324i
\(299\) −2.23153e10 + 3.86513e10i −0.161467 + 0.279669i
\(300\) 1.02244e10 0.0728773
\(301\) 0 0
\(302\) 1.45081e11 1.00364
\(303\) −8.04491e10 + 1.39342e11i −0.548314 + 0.949708i
\(304\) 1.12559e10 + 1.94958e10i 0.0755875 + 0.130921i
\(305\) 3.18170e10 + 5.51087e10i 0.210528 + 0.364646i
\(306\) 1.95933e10 3.39366e10i 0.127750 0.221270i
\(307\) 2.32773e11 1.49558 0.747791 0.663935i \(-0.231115\pi\)
0.747791 + 0.663935i \(0.231115\pi\)
\(308\) 0 0
\(309\) −2.65564e11 −1.65713
\(310\) −6.22727e10 + 1.07859e11i −0.382975 + 0.663332i
\(311\) 3.81408e9 + 6.60617e9i 0.0231189 + 0.0400431i 0.877353 0.479845i \(-0.159307\pi\)
−0.854234 + 0.519888i \(0.825974\pi\)
\(312\) −2.10801e10 3.65118e10i −0.125944 0.218141i
\(313\) 8.48334e10 1.46936e11i 0.499594 0.865322i −0.500406 0.865791i \(-0.666816\pi\)
1.00000 0.000468677i \(0.000149185\pi\)
\(314\) 5.36781e10 0.311612
\(315\) 0 0
\(316\) −1.33096e11 −0.750886
\(317\) 4.30026e10 7.44826e10i 0.239182 0.414275i −0.721298 0.692625i \(-0.756454\pi\)
0.960480 + 0.278350i \(0.0897876\pi\)
\(318\) −8.25184e10 1.42926e11i −0.452511 0.783771i
\(319\) −3.58129e10 6.20297e10i −0.193634 0.335384i
\(320\) −1.07094e10 + 1.85492e10i −0.0570939 + 0.0988895i
\(321\) 1.03148e11 0.542237
\(322\) 0 0
\(323\) −1.90381e11 −0.973225
\(324\) 3.59570e10 6.22793e10i 0.181272 0.313972i
\(325\) −1.34661e10 2.33240e10i −0.0669526 0.115965i
\(326\) −5.26369e10 9.11699e10i −0.258114 0.447066i
\(327\) 6.33569e10 1.09737e11i 0.306428 0.530749i
\(328\) −1.25066e11 −0.596635
\(329\) 0 0
\(330\) 6.97637e10 0.323830
\(331\) −1.79638e11 + 3.11142e11i −0.822568 + 1.42473i 0.0811963 + 0.996698i \(0.474126\pi\)
−0.903764 + 0.428031i \(0.859207\pi\)
\(332\) −3.82578e10 6.62644e10i −0.172822 0.299336i
\(333\) −3.93466e10 6.81503e10i −0.175351 0.303717i
\(334\) 2.57977e9 4.46829e9i 0.0113428 0.0196464i
\(335\) −2.36811e11 −1.02731
\(336\) 0 0
\(337\) −2.23831e11 −0.945335 −0.472668 0.881241i \(-0.656709\pi\)
−0.472668 + 0.881241i \(0.656709\pi\)
\(338\) 2.93086e10 5.07639e10i 0.122143 0.211558i
\(339\) −2.87805e10 4.98494e10i −0.118359 0.205003i
\(340\) −9.05687e10 1.56870e11i −0.367555 0.636625i
\(341\) 8.42760e10 1.45970e11i 0.337528 0.584615i
\(342\) 2.42871e10 0.0959970
\(343\) 0 0
\(344\) −3.58800e10 −0.138146
\(345\) −4.22478e10 + 7.31753e10i −0.160553 + 0.278086i
\(346\) −1.33783e10 2.31719e10i −0.0501833 0.0869200i
\(347\) −6.24477e10 1.08163e11i −0.231224 0.400492i 0.726944 0.686696i \(-0.240940\pi\)
−0.958169 + 0.286204i \(0.907606\pi\)
\(348\) −4.09744e10 + 7.09697e10i −0.149763 + 0.259398i
\(349\) 4.14076e9 0.0149405 0.00747025 0.999972i \(-0.497622\pi\)
0.00747025 + 0.999972i \(0.497622\pi\)
\(350\) 0 0
\(351\) −2.48082e11 −0.872397
\(352\) 1.44934e10 2.51033e10i 0.0503186 0.0871544i
\(353\) −8.63964e10 1.49643e11i −0.296149 0.512944i 0.679103 0.734043i \(-0.262369\pi\)
−0.975251 + 0.221099i \(0.929036\pi\)
\(354\) −8.06000e10 1.39603e11i −0.272785 0.472477i
\(355\) −2.36355e11 + 4.09378e11i −0.789835 + 1.36803i
\(356\) −7.61669e10 −0.251328
\(357\) 0 0
\(358\) 1.34864e11 0.433934
\(359\) 1.07540e10 1.86264e10i 0.0341699 0.0591839i −0.848435 0.529300i \(-0.822455\pi\)
0.882605 + 0.470116i \(0.155788\pi\)
\(360\) 1.15539e10 + 2.00119e10i 0.0362550 + 0.0627954i
\(361\) 1.02347e11 + 1.77269e11i 0.317169 + 0.549353i
\(362\) 1.61853e11 2.80337e11i 0.495373 0.858010i
\(363\) 1.96905e11 0.595219
\(364\) 0 0
\(365\) 3.14071e11 0.926212
\(366\) −4.92651e10 + 8.53296e10i −0.143507 + 0.248562i
\(367\) 2.74298e11 + 4.75098e11i 0.789270 + 1.36706i 0.926415 + 0.376504i \(0.122874\pi\)
−0.137145 + 0.990551i \(0.543793\pi\)
\(368\) 1.75539e10 + 3.04043e10i 0.0498953 + 0.0864212i
\(369\) −6.74644e10 + 1.16852e11i −0.189433 + 0.328108i
\(370\) −3.63754e11 −1.00902
\(371\) 0 0
\(372\) −1.92844e11 −0.522112
\(373\) 6.30120e10 1.09140e11i 0.168552 0.291941i −0.769359 0.638817i \(-0.779424\pi\)
0.937911 + 0.346876i \(0.112758\pi\)
\(374\) 1.22570e11 + 2.12298e11i 0.323938 + 0.561077i
\(375\) −1.79526e11 3.10947e11i −0.468798 0.811982i
\(376\) 5.58550e10 9.67437e10i 0.144118 0.249619i
\(377\) 2.15863e11 0.550353
\(378\) 0 0
\(379\) −5.31002e10 −0.132197 −0.0660983 0.997813i \(-0.521055\pi\)
−0.0660983 + 0.997813i \(0.521055\pi\)
\(380\) 5.61327e10 9.72246e10i 0.138099 0.239194i
\(381\) −4.84334e10 8.38891e10i −0.117756 0.203959i
\(382\) 1.42582e11 + 2.46960e11i 0.342595 + 0.593391i
\(383\) −3.11345e11 + 5.39266e11i −0.739346 + 1.28058i 0.213444 + 0.976955i \(0.431532\pi\)
−0.952790 + 0.303630i \(0.901801\pi\)
\(384\) −3.31645e10 −0.0778365
\(385\) 0 0
\(386\) 2.47308e11 0.567015
\(387\) −1.93547e10 + 3.35233e10i −0.0438618 + 0.0759709i
\(388\) 9.99339e10 + 1.73091e11i 0.223857 + 0.387731i
\(389\) 1.18940e11 + 2.06009e11i 0.263362 + 0.456157i 0.967133 0.254270i \(-0.0818353\pi\)
−0.703771 + 0.710427i \(0.748502\pi\)
\(390\) −1.05125e11 + 1.82083e11i −0.230100 + 0.398545i
\(391\) −2.96906e11 −0.642426
\(392\) 0 0
\(393\) 7.13319e11 1.50840
\(394\) −1.62924e11 + 2.82192e11i −0.340605 + 0.589945i
\(395\) 3.31872e11 + 5.74819e11i 0.685936 + 1.18808i
\(396\) −1.56363e10 2.70829e10i −0.0319526 0.0553436i
\(397\) 8.47727e10 1.46831e11i 0.171277 0.296660i −0.767590 0.640942i \(-0.778544\pi\)
0.938867 + 0.344281i \(0.111877\pi\)
\(398\) 4.43240e11 0.885453
\(399\) 0 0
\(400\) −2.11858e10 −0.0413784
\(401\) 4.51773e11 7.82494e11i 0.872510 1.51123i 0.0131183 0.999914i \(-0.495824\pi\)
0.859392 0.511318i \(-0.170842\pi\)
\(402\) −1.83338e11 3.17550e11i −0.350134 0.606450i
\(403\) 2.53987e11 + 4.39919e11i 0.479666 + 0.830806i
\(404\) 1.66697e11 2.88727e11i 0.311323 0.539227i
\(405\) −3.58631e11 −0.662369
\(406\) 0 0
\(407\) 4.92282e11 0.889281
\(408\) 1.40235e11 2.42895e11i 0.250546 0.433958i
\(409\) −5.22550e11 9.05082e11i −0.923363 1.59931i −0.794173 0.607692i \(-0.792095\pi\)
−0.129191 0.991620i \(-0.541238\pi\)
\(410\) 3.11850e11 + 5.40140e11i 0.545027 + 0.944014i
\(411\) 4.43333e11 7.67876e11i 0.766377 1.32740i
\(412\) 5.50269e11 0.940887
\(413\) 0 0
\(414\) 3.78764e10 0.0633676
\(415\) −1.90789e11 + 3.30457e11i −0.315746 + 0.546888i
\(416\) 4.36796e10 + 7.56553e10i 0.0715087 + 0.123857i
\(417\) 1.92314e11 + 3.33097e11i 0.311457 + 0.539460i
\(418\) −7.59665e10 + 1.31578e11i −0.121711 + 0.210809i
\(419\) 4.17508e11 0.661761 0.330881 0.943673i \(-0.392654\pi\)
0.330881 + 0.943673i \(0.392654\pi\)
\(420\) 0 0
\(421\) 1.67897e11 0.260480 0.130240 0.991482i \(-0.458425\pi\)
0.130240 + 0.991482i \(0.458425\pi\)
\(422\) 1.04553e11 1.81090e11i 0.160483 0.277964i
\(423\) −6.02596e10 1.04373e11i −0.0915155 0.158509i
\(424\) 1.70984e11 + 2.96154e11i 0.256927 + 0.445011i
\(425\) 8.95834e10 1.55163e11i 0.133192 0.230695i
\(426\) −7.31937e11 −1.07679
\(427\) 0 0
\(428\) −2.13731e11 −0.307873
\(429\) 1.42270e11 2.46419e11i 0.202794 0.351250i
\(430\) 8.94657e10 + 1.54959e11i 0.126197 + 0.218579i
\(431\) 8.01996e10 + 1.38910e11i 0.111950 + 0.193903i 0.916556 0.399905i \(-0.130957\pi\)
−0.804606 + 0.593809i \(0.797624\pi\)
\(432\) −9.75747e10 + 1.69004e11i −0.134791 + 0.233465i
\(433\) −4.44852e10 −0.0608163 −0.0304081 0.999538i \(-0.509681\pi\)
−0.0304081 + 0.999538i \(0.509681\pi\)
\(434\) 0 0
\(435\) 4.08674e11 0.547237
\(436\) −1.31280e11 + 2.27384e11i −0.173984 + 0.301350i
\(437\) −9.20081e10 1.59363e11i −0.120687 0.209036i
\(438\) 2.43152e11 + 4.21152e11i 0.315678 + 0.546770i
\(439\) −2.87543e11 + 4.98038e11i −0.369498 + 0.639989i −0.989487 0.144621i \(-0.953804\pi\)
0.619989 + 0.784610i \(0.287137\pi\)
\(440\) −1.44556e11 −0.183865
\(441\) 0 0
\(442\) −7.38792e11 −0.920708
\(443\) 4.14919e11 7.18661e11i 0.511855 0.886559i −0.488051 0.872815i \(-0.662292\pi\)
0.999906 0.0137433i \(-0.00437476\pi\)
\(444\) −2.81616e11 4.87773e11i −0.343901 0.595654i
\(445\) 1.89920e11 + 3.28951e11i 0.229589 + 0.397660i
\(446\) −3.34543e11 + 5.79445e11i −0.400355 + 0.693434i
\(447\) −8.48858e11 −1.00566
\(448\) 0 0
\(449\) 8.23705e11 0.956452 0.478226 0.878237i \(-0.341280\pi\)
0.478226 + 0.878237i \(0.341280\pi\)
\(450\) −1.14282e10 + 1.97942e10i −0.0131378 + 0.0227553i
\(451\) −4.22038e11 7.30991e11i −0.480349 0.831989i
\(452\) 5.96355e10 + 1.03292e11i 0.0672019 + 0.116397i
\(453\) 5.60137e11 9.70186e11i 0.624960 1.08246i
\(454\) 8.97957e11 0.991983
\(455\) 0 0
\(456\) 1.73830e11 0.188271
\(457\) 7.99141e11 1.38415e12i 0.857039 1.48443i −0.0177019 0.999843i \(-0.505635\pi\)
0.874741 0.484591i \(-0.161032\pi\)
\(458\) −3.59266e10 6.22267e10i −0.0381523 0.0660818i
\(459\) −8.25184e11 1.42926e12i −0.867748 1.50298i
\(460\) 8.75406e10 1.51625e11i 0.0911589 0.157892i
\(461\) 1.27501e12 1.31480 0.657402 0.753540i \(-0.271655\pi\)
0.657402 + 0.753540i \(0.271655\pi\)
\(462\) 0 0
\(463\) −3.13766e11 −0.317316 −0.158658 0.987334i \(-0.550717\pi\)
−0.158658 + 0.987334i \(0.550717\pi\)
\(464\) 8.49021e10 1.47055e11i 0.0850330 0.147281i
\(465\) 4.80852e11 + 8.32861e11i 0.476951 + 0.826103i
\(466\) 5.15730e11 + 8.93271e11i 0.506624 + 0.877499i
\(467\) 4.70743e11 8.15351e11i 0.457992 0.793266i −0.540863 0.841111i \(-0.681902\pi\)
0.998855 + 0.0478453i \(0.0152354\pi\)
\(468\) 9.42481e10 0.0908169
\(469\) 0 0
\(470\) −5.57092e11 −0.526607
\(471\) 2.07244e11 3.58957e11i 0.194038 0.336084i
\(472\) 1.67009e11 + 2.89269e11i 0.154882 + 0.268264i
\(473\) −1.21077e11 2.09712e11i −0.111221 0.192641i
\(474\) −5.13866e11 + 8.90042e11i −0.467571 + 0.809857i
\(475\) 1.11044e11 0.100086
\(476\) 0 0
\(477\) 3.68936e11 0.326301
\(478\) 9.85584e9 1.70708e10i 0.00863512 0.0149565i
\(479\) 3.55020e11 + 6.14913e11i 0.308137 + 0.533708i 0.977955 0.208817i \(-0.0669613\pi\)
−0.669818 + 0.742525i \(0.733628\pi\)
\(480\) 8.26949e10 + 1.43232e11i 0.0711039 + 0.123155i
\(481\) −7.41808e11 + 1.28485e12i −0.631886 + 1.09446i
\(482\) 1.42136e11 0.119948
\(483\) 0 0
\(484\) −4.08002e11 −0.337954
\(485\) 4.98365e11 8.63194e11i 0.408987 0.708387i
\(486\) 1.91238e11 + 3.31233e11i 0.155493 + 0.269321i
\(487\) −6.09315e11 1.05536e12i −0.490864 0.850202i 0.509080 0.860719i \(-0.329986\pi\)
−0.999945 + 0.0105170i \(0.996652\pi\)
\(488\) 1.02081e11 1.76809e11i 0.0814809 0.141129i
\(489\) −8.12896e11 −0.642902
\(490\) 0 0
\(491\) −5.76219e10 −0.0447426 −0.0223713 0.999750i \(-0.507122\pi\)
−0.0223713 + 0.999750i \(0.507122\pi\)
\(492\) −4.82864e11 + 8.36345e11i −0.371520 + 0.643491i
\(493\) 7.18012e11 + 1.24363e12i 0.547420 + 0.948159i
\(494\) −2.28944e11 3.96543e11i −0.172965 0.299584i
\(495\) −7.79775e10 + 1.35061e11i −0.0583776 + 0.101113i
\(496\) 3.99589e11 0.296446
\(497\) 0 0
\(498\) −5.90832e11 −0.430459
\(499\) −1.19437e12 + 2.06871e12i −0.862357 + 1.49365i 0.00729029 + 0.999973i \(0.497679\pi\)
−0.869648 + 0.493673i \(0.835654\pi\)
\(500\) 3.71991e11 + 6.44307e11i 0.266175 + 0.461028i
\(501\) −1.99203e10 3.45029e10i −0.0141262 0.0244673i
\(502\) 7.94253e11 1.37569e12i 0.558203 0.966836i
\(503\) −1.80042e12 −1.25406 −0.627030 0.778995i \(-0.715730\pi\)
−0.627030 + 0.778995i \(0.715730\pi\)
\(504\) 0 0
\(505\) −1.66261e12 −1.13758
\(506\) −1.18472e11 + 2.05200e11i −0.0803412 + 0.139155i
\(507\) −2.26313e11 3.91985e11i −0.152115 0.263471i
\(508\) 1.00358e11 + 1.73825e11i 0.0668596 + 0.115804i
\(509\) −6.64302e11 + 1.15061e12i −0.438668 + 0.759795i −0.997587 0.0694273i \(-0.977883\pi\)
0.558919 + 0.829222i \(0.311216\pi\)
\(510\) −1.39869e12 −0.915496
\(511\) 0 0
\(512\) 6.87195e10 0.0441942
\(513\) 5.11432e11 8.85827e11i 0.326032 0.564704i
\(514\) −4.45325e11 7.71326e11i −0.281412 0.487421i
\(515\) −1.37208e12 2.37651e12i −0.859503 1.48870i
\(516\) −1.38528e11 + 2.39937e11i −0.0860226 + 0.148995i
\(517\) 7.53934e11 0.464115
\(518\) 0 0
\(519\) −2.06607e11 −0.124995
\(520\) 2.17828e11 3.77289e11i 0.130647 0.226287i
\(521\) −1.09541e12 1.89731e12i −0.651341 1.12816i −0.982798 0.184685i \(-0.940874\pi\)
0.331457 0.943470i \(-0.392460\pi\)
\(522\) −9.15972e10 1.58651e11i −0.0539964 0.0935246i
\(523\) −2.54118e11 + 4.40145e11i −0.148518 + 0.257240i −0.930680 0.365835i \(-0.880784\pi\)
0.782162 + 0.623075i \(0.214117\pi\)
\(524\) −1.47805e12 −0.856444
\(525\) 0 0
\(526\) −1.59636e12 −0.909276
\(527\) −1.68965e12 + 2.92656e12i −0.954221 + 1.65276i
\(528\) −1.11914e11 1.93841e11i −0.0626661 0.108541i
\(529\) 7.57087e11 + 1.31131e12i 0.420335 + 0.728041i
\(530\) 8.52690e11 1.47690e12i 0.469407 0.813037i
\(531\) 3.60359e11 0.196702
\(532\) 0 0
\(533\) 2.54384e12 1.36527
\(534\) −2.94070e11 + 5.09344e11i −0.156500 + 0.271066i
\(535\) 5.32933e11 + 9.23067e11i 0.281242 + 0.487126i
\(536\) 3.79890e11 + 6.57988e11i 0.198800 + 0.344331i
\(537\) 5.20693e11 9.01866e11i 0.270207 0.468013i
\(538\) 3.15758e11 0.162493
\(539\) 0 0
\(540\) 9.73199e11 0.492527
\(541\) −5.00073e11 + 8.66152e11i −0.250984 + 0.434717i −0.963797 0.266637i \(-0.914087\pi\)
0.712813 + 0.701354i \(0.247421\pi\)
\(542\) 4.70752e11 + 8.15366e11i 0.234312 + 0.405841i
\(543\) −1.24978e12 2.16469e12i −0.616929 1.06855i
\(544\) −2.90578e11 + 5.03297e11i −0.142255 + 0.246393i
\(545\) 1.30937e12 0.635740
\(546\) 0 0
\(547\) −3.35970e12 −1.60457 −0.802283 0.596944i \(-0.796381\pi\)
−0.802283 + 0.596944i \(0.796381\pi\)
\(548\) −9.18621e11 + 1.59110e12i −0.435135 + 0.753675i
\(549\) −1.10131e11 1.90752e11i −0.0517408 0.0896177i
\(550\) −7.14916e10 1.23827e11i −0.0333137 0.0577010i
\(551\) −4.45010e11 + 7.70779e11i −0.205678 + 0.356244i
\(552\) 2.71093e11 0.124278
\(553\) 0 0
\(554\) −6.71191e11 −0.302728
\(555\) −1.40440e12 + 2.43250e12i −0.628309 + 1.08826i
\(556\) −3.98489e11 6.90203e11i −0.176840 0.306295i
\(557\) −6.95038e10 1.20384e11i −0.0305957 0.0529933i 0.850322 0.526263i \(-0.176407\pi\)
−0.880918 + 0.473269i \(0.843074\pi\)
\(558\) 2.15550e11 3.73343e11i 0.0941224 0.163025i
\(559\) 7.29795e11 0.316117
\(560\) 0 0
\(561\) 1.89290e12 0.806855
\(562\) −2.10173e11 + 3.64030e11i −0.0888717 + 0.153930i
\(563\) −1.94083e12 3.36162e12i −0.814143 1.41014i −0.909942 0.414736i \(-0.863874\pi\)
0.0957985 0.995401i \(-0.469460\pi\)
\(564\) −4.31297e11 7.47028e11i −0.179482 0.310872i
\(565\) 2.97399e11 5.15110e11i 0.122778 0.212658i
\(566\) 1.97947e12 0.810728
\(567\) 0 0
\(568\) 1.51663e12 0.611381
\(569\) −6.22799e11 + 1.07872e12i −0.249082 + 0.431423i −0.963271 0.268530i \(-0.913462\pi\)
0.714189 + 0.699953i \(0.246796\pi\)
\(570\) −4.33441e11 7.50742e11i −0.171986 0.297888i
\(571\) 1.28293e12 + 2.22211e12i 0.505059 + 0.874788i 0.999983 + 0.00585145i \(0.00186258\pi\)
−0.494924 + 0.868936i \(0.664804\pi\)
\(572\) −2.94795e11 + 5.10599e11i −0.115143 + 0.199434i
\(573\) 2.20196e12 0.853324
\(574\) 0 0
\(575\) 1.73176e11 0.0660669
\(576\) 3.70693e10 6.42058e10i 0.0140318 0.0243038i
\(577\) 1.89405e12 + 3.28059e12i 0.711378 + 1.23214i 0.964340 + 0.264666i \(0.0852617\pi\)
−0.252963 + 0.967476i \(0.581405\pi\)
\(578\) −1.50870e12 2.61315e12i −0.562249 0.973843i
\(579\) 9.54821e11 1.65380e12i 0.353076 0.611546i
\(580\) −8.46804e11 −0.310711
\(581\) 0 0
\(582\) 1.54332e12 0.557575
\(583\) −1.15398e12 + 1.99875e12i −0.413703 + 0.716555i
\(584\) −5.03830e11 8.72658e11i −0.179236 0.310446i
\(585\) −2.35005e11 4.07041e11i −0.0829614 0.143693i
\(586\) 2.67078e11 4.62593e11i 0.0935619 0.162054i
\(587\) 2.25752e12 0.784802 0.392401 0.919794i \(-0.371645\pi\)
0.392401 + 0.919794i \(0.371645\pi\)
\(588\) 0 0
\(589\) −2.09442e12 −0.717043
\(590\) 8.32867e11 1.44257e12i 0.282971 0.490119i
\(591\) 1.25805e12 + 2.17901e12i 0.424184 + 0.734709i
\(592\) 5.83530e11 + 1.01070e12i 0.195261 + 0.338202i
\(593\) −2.26382e12 + 3.92106e12i −0.751790 + 1.30214i 0.195164 + 0.980771i \(0.437476\pi\)
−0.946954 + 0.321368i \(0.895857\pi\)
\(594\) −1.31707e12 −0.434079
\(595\) 0 0
\(596\) 1.75890e12 0.570996
\(597\) 1.71129e12 2.96404e12i 0.551365 0.954991i
\(598\) −3.57046e11 6.18421e11i −0.114174 0.197756i
\(599\) −1.94812e12 3.37424e12i −0.618293 1.07092i −0.989797 0.142484i \(-0.954491\pi\)
0.371504 0.928431i \(-0.378842\pi\)
\(600\) −8.17953e10 + 1.41674e11i −0.0257660 + 0.0446281i
\(601\) −4.27283e12 −1.33592 −0.667960 0.744197i \(-0.732832\pi\)
−0.667960 + 0.744197i \(0.732832\pi\)
\(602\) 0 0
\(603\) 8.19693e11 0.252478
\(604\) −1.16065e12 + 2.01030e12i −0.354841 + 0.614603i
\(605\) 1.01734e12 + 1.76209e12i 0.308722 + 0.534722i
\(606\) −1.28719e12 2.22947e12i −0.387717 0.671545i
\(607\) 2.42051e12 4.19245e12i 0.723699 1.25348i −0.235809 0.971799i \(-0.575774\pi\)
0.959507 0.281683i \(-0.0908927\pi\)
\(608\) −3.60189e11 −0.106897
\(609\) 0 0
\(610\) −1.01814e12 −0.297732
\(611\) −1.13609e12 + 1.96776e12i −0.329781 + 0.571197i
\(612\) 3.13493e11 + 5.42985e11i 0.0903329 + 0.156461i
\(613\) 3.36194e12 + 5.82305e12i 0.961652 + 1.66563i 0.718354 + 0.695678i \(0.244896\pi\)
0.243298 + 0.969952i \(0.421771\pi\)
\(614\) −1.86218e12 + 3.22540e12i −0.528768 + 0.915853i
\(615\) 4.81603e12 1.35754
\(616\) 0 0
\(617\) 8.50617e11 0.236293 0.118146 0.992996i \(-0.462305\pi\)
0.118146 + 0.992996i \(0.462305\pi\)
\(618\) 2.12451e12 3.67976e12i 0.585883 1.01478i
\(619\) −2.98722e12 5.17402e12i −0.817823 1.41651i −0.907283 0.420521i \(-0.861847\pi\)
0.0894592 0.995990i \(-0.471486\pi\)
\(620\) −9.96363e11 1.72575e12i −0.270804 0.469046i
\(621\) 7.97595e11 1.38147e12i 0.215214 0.372761i
\(622\) −1.22050e11 −0.0326951
\(623\) 0 0
\(624\) 6.74564e11 0.178112
\(625\) 1.53940e12 2.66633e12i 0.403546 0.698962i
\(626\) 1.35733e12 + 2.35097e12i 0.353266 + 0.611875i
\(627\) 5.86592e11 + 1.01601e12i 0.151577 + 0.262538i
\(628\) −4.29425e11 + 7.43786e11i −0.110171 + 0.190822i
\(629\) −9.86976e12 −2.51408
\(630\) 0 0
\(631\) −5.96909e12 −1.49891 −0.749455 0.662055i \(-0.769685\pi\)
−0.749455 + 0.662055i \(0.769685\pi\)
\(632\) 1.06477e12 1.84424e12i 0.265478 0.459822i
\(633\) −8.07326e11 1.39833e12i −0.199863 0.346173i
\(634\) 6.88041e11 + 1.19172e12i 0.169127 + 0.292936i
\(635\) 5.00478e11 8.66854e11i 0.122153 0.211575i
\(636\) 2.64059e12 0.639947
\(637\) 0 0
\(638\) 1.14601e12 0.273840
\(639\) 8.18113e11 1.41701e12i 0.194115 0.336217i
\(640\) −1.71350e11 2.96787e11i −0.0403715 0.0699254i
\(641\) 2.10779e12 + 3.65080e12i 0.493136 + 0.854136i 0.999969 0.00790799i \(-0.00251722\pi\)
−0.506833 + 0.862044i \(0.669184\pi\)
\(642\) −8.25187e11 + 1.42927e12i −0.191710 + 0.332051i
\(643\) −5.53403e12 −1.27671 −0.638354 0.769743i \(-0.720385\pi\)
−0.638354 + 0.769743i \(0.720385\pi\)
\(644\) 0 0
\(645\) 1.38166e12 0.314327
\(646\) 1.52305e12 2.63800e12i 0.344087 0.595976i
\(647\) 1.25955e12 + 2.18160e12i 0.282582 + 0.489447i 0.972020 0.234898i \(-0.0754756\pi\)
−0.689438 + 0.724345i \(0.742142\pi\)
\(648\) 5.75311e11 + 9.96469e11i 0.128179 + 0.222012i
\(649\) −1.12715e12 + 1.95228e12i −0.249391 + 0.431958i
\(650\) 4.30916e11 0.0946853
\(651\) 0 0
\(652\) 1.68438e12 0.365028
\(653\) 3.80173e12 6.58478e12i 0.818223 1.41720i −0.0887679 0.996052i \(-0.528293\pi\)
0.906991 0.421151i \(-0.138374\pi\)
\(654\) 1.01371e12 + 1.75580e12i 0.216677 + 0.375296i
\(655\) 3.68548e12 + 6.38344e12i 0.782364 + 1.35509i
\(656\) 1.00053e12 1.73297e12i 0.210942 0.365363i
\(657\) −1.08712e12 −0.227632
\(658\) 0 0
\(659\) −4.45281e12 −0.919708 −0.459854 0.887994i \(-0.652098\pi\)
−0.459854 + 0.887994i \(0.652098\pi\)
\(660\) −5.58110e11 + 9.66675e11i −0.114491 + 0.198304i
\(661\) 2.65674e12 + 4.60161e12i 0.541305 + 0.937569i 0.998829 + 0.0483713i \(0.0154031\pi\)
−0.457524 + 0.889197i \(0.651264\pi\)
\(662\) −2.87420e12 4.97827e12i −0.581643 1.00744i
\(663\) −2.85237e12 + 4.94046e12i −0.573318 + 0.993016i
\(664\) 1.22425e12 0.244407
\(665\) 0 0
\(666\) 1.25909e12 0.247984
\(667\) −6.94006e11 + 1.20205e12i −0.135768 + 0.235157i
\(668\) 4.12763e10 + 7.14927e10i 0.00802060 + 0.0138921i
\(669\) 2.58325e12 + 4.47431e12i 0.498595 + 0.863593i
\(670\) 1.89449e12 3.28135e12i 0.363208 0.629095i
\(671\) 1.37789e12 0.262400
\(672\) 0 0
\(673\) −2.03778e12 −0.382904 −0.191452 0.981502i \(-0.561320\pi\)
−0.191452 + 0.981502i \(0.561320\pi\)
\(674\) 1.79065e12 3.10150e12i 0.334227 0.578897i
\(675\) 4.81306e11 + 8.33647e11i 0.0892389 + 0.154566i
\(676\) 4.68937e11 + 8.12223e11i 0.0863683 + 0.149594i
\(677\) 5.04490e12 8.73803e12i 0.923004 1.59869i 0.128264 0.991740i \(-0.459059\pi\)
0.794740 0.606950i \(-0.207607\pi\)
\(678\) 9.20977e11 0.167385
\(679\) 0 0
\(680\) 2.89820e12 0.519802
\(681\) 3.46689e12 6.00482e12i 0.617700 1.06989i
\(682\) 1.34842e12 + 2.33553e12i 0.238668 + 0.413385i
\(683\) −4.64538e12 8.04603e12i −0.816823 1.41478i −0.908011 0.418945i \(-0.862400\pi\)
0.0911884 0.995834i \(-0.470933\pi\)
\(684\) −1.94297e11 + 3.36531e11i −0.0339401 + 0.0587859i
\(685\) 9.16222e12 1.58999
\(686\) 0 0
\(687\) −5.54830e11 −0.0950287
\(688\) 2.87040e11 4.97167e11i 0.0488421 0.0845969i
\(689\) −3.47781e12 6.02374e12i −0.587921 1.01831i
\(690\) −6.75964e11 1.17080e12i −0.113528 0.196636i
\(691\) −3.42773e12 + 5.93700e12i −0.571947 + 0.990641i 0.424419 + 0.905466i \(0.360478\pi\)
−0.996366 + 0.0851749i \(0.972855\pi\)
\(692\) 4.28106e11 0.0709699
\(693\) 0 0
\(694\) 1.99833e12 0.327001
\(695\) −1.98724e12 + 3.44201e12i −0.323087 + 0.559603i
\(696\) −6.55590e11 1.13552e12i −0.105899 0.183422i
\(697\) 8.46144e12 + 1.46556e13i 1.35799 + 2.35211i
\(698\) −3.31260e10 + 5.73760e10i −0.00528226 + 0.00914915i
\(699\) 7.96465e12 1.26188
\(700\) 0 0
\(701\) 2.51709e12 0.393702 0.196851 0.980433i \(-0.436928\pi\)
0.196851 + 0.980433i \(0.436928\pi\)
\(702\) 1.98466e12 3.43753e12i 0.308439 0.534232i
\(703\) −3.05854e12 5.29754e12i −0.472297 0.818042i
\(704\) 2.31895e11 + 4.01653e11i 0.0355806 + 0.0616275i
\(705\) −2.15085e12 + 3.72539e12i −0.327914 + 0.567964i
\(706\) 2.76469e12 0.418817
\(707\) 0 0
\(708\) 2.57920e12 0.385776
\(709\) 3.29616e12 5.70912e12i 0.489892 0.848519i −0.510040 0.860151i \(-0.670369\pi\)
0.999932 + 0.0116322i \(0.00370273\pi\)
\(710\) −3.78167e12 6.55005e12i −0.558498 0.967346i
\(711\) −1.14874e12 1.98967e12i −0.168580 0.291990i
\(712\) 6.09335e11 1.05540e12i 0.0888579 0.153906i
\(713\) −3.26631e12 −0.473320
\(714\) 0 0
\(715\) 2.94025e12 0.420734
\(716\) −1.07891e12 + 1.86874e12i −0.153419 + 0.265729i
\(717\) −7.61041e10 1.31816e11i −0.0107540 0.0186265i
\(718\) 1.72063e11 + 2.98022e11i 0.0241617 + 0.0418494i
\(719\) 3.94608e11 6.83480e11i 0.0550662 0.0953775i −0.837178 0.546930i \(-0.815796\pi\)
0.892245 + 0.451553i \(0.149130\pi\)
\(720\) −3.69725e11 −0.0512722
\(721\) 0 0
\(722\) −3.27509e12 −0.448545
\(723\) 5.48768e11 9.50493e11i 0.0746906 0.129368i
\(724\) 2.58965e12 + 4.48540e12i 0.350281 + 0.606705i
\(725\) −4.18796e11 7.25376e11i −0.0562965 0.0975084i
\(726\) −1.57524e12 + 2.72839e12i −0.210442 + 0.364495i
\(727\) −4.67869e12 −0.621183 −0.310592 0.950543i \(-0.600527\pi\)
−0.310592 + 0.950543i \(0.600527\pi\)
\(728\) 0 0
\(729\) 8.48259e12 1.11238
\(730\) −2.51257e12 + 4.35190e12i −0.327465 + 0.567187i
\(731\) 2.42748e12 + 4.20452e12i 0.314432 + 0.544613i
\(732\) −7.88241e11 1.36527e12i −0.101475 0.175760i
\(733\) 3.69124e12 6.39342e12i 0.472285 0.818022i −0.527212 0.849734i \(-0.676762\pi\)
0.999497 + 0.0317116i \(0.0100958\pi\)
\(734\) −8.77754e12 −1.11620
\(735\) 0 0
\(736\) −5.61726e11 −0.0705626
\(737\) −2.56388e12 + 4.44078e12i −0.320107 + 0.554441i
\(738\) −1.07943e12 1.86963e12i −0.133949 0.232007i
\(739\) 1.86389e12 + 3.22835e12i 0.229890 + 0.398181i 0.957775 0.287518i \(-0.0928301\pi\)
−0.727885 + 0.685699i \(0.759497\pi\)
\(740\) 2.91003e12 5.04032e12i 0.356742 0.617896i
\(741\) −3.53569e12 −0.430816
\(742\) 0 0
\(743\) 8.63062e12 1.03894 0.519472 0.854487i \(-0.326129\pi\)
0.519472 + 0.854487i \(0.326129\pi\)
\(744\) 1.54276e12 2.67213e12i 0.184595 0.319727i
\(745\) −4.38577e12 7.59637e12i −0.521606 0.903448i
\(746\) 1.00819e12 + 1.74624e12i 0.119184 + 0.206433i
\(747\) 6.60395e11 1.14384e12i 0.0775999 0.134407i
\(748\) −3.92224e12 −0.458118
\(749\) 0 0
\(750\) 5.74482e12 0.662980
\(751\) −8.57905e12 + 1.48594e13i −0.984146 + 1.70459i −0.338475 + 0.940975i \(0.609911\pi\)
−0.645671 + 0.763616i \(0.723422\pi\)
\(752\) 8.93680e11 + 1.54790e12i 0.101907 + 0.176507i
\(753\) −6.13300e12 1.06227e13i −0.695178 1.20408i
\(754\) −1.72690e12 + 2.99108e12i −0.194579 + 0.337021i
\(755\) 1.15762e13 1.29659
\(756\) 0 0
\(757\) −6.69732e12 −0.741258 −0.370629 0.928781i \(-0.620858\pi\)
−0.370629 + 0.928781i \(0.620858\pi\)
\(758\) 4.24802e11 7.35778e11i 0.0467385 0.0809535i
\(759\) 9.14808e11 + 1.58449e12i 0.100056 + 0.173302i
\(760\) 8.98123e11 + 1.55559e12i 0.0976505 + 0.169136i
\(761\) −1.54048e12 + 2.66819e12i −0.166504 + 0.288393i −0.937188 0.348824i \(-0.886581\pi\)
0.770684 + 0.637217i \(0.219915\pi\)
\(762\) 1.54987e12 0.166532
\(763\) 0 0
\(764\) −4.56263e12 −0.484502
\(765\) 1.56337e12 2.70784e12i 0.165039 0.285855i
\(766\) −4.98152e12 8.62825e12i −0.522797 0.905510i
\(767\) −3.39695e12 5.88370e12i −0.354414 0.613862i
\(768\) 2.65316e11 4.59541e11i 0.0275194 0.0476650i
\(769\) −3.26639e11 −0.0336821 −0.0168410 0.999858i \(-0.505361\pi\)
−0.0168410 + 0.999858i \(0.505361\pi\)
\(770\) 0 0
\(771\) −6.87736e12 −0.700934
\(772\) −1.97846e12 + 3.42680e12i −0.200470 + 0.347224i
\(773\) 9.81182e12 + 1.69946e13i 0.988421 + 1.71200i 0.625618 + 0.780129i \(0.284847\pi\)
0.362803 + 0.931866i \(0.381820\pi\)
\(774\) −3.09675e11 5.36373e11i −0.0310150 0.0537195i
\(775\) 9.85524e11 1.70698e12i 0.0981317 0.169969i
\(776\) −3.19789e12 −0.316581
\(777\) 0 0
\(778\) −3.80607e12 −0.372450
\(779\) −5.24423e12 + 9.08327e12i −0.510227 + 0.883739i
\(780\) −1.68201e12 2.91332e12i −0.162705 0.281814i
\(781\) 5.11788e12 + 8.86443e12i 0.492221 + 0.852553i
\(782\) 2.37524e12 4.11404e12i 0.227132 0.393404i
\(783\) −7.71535e12 −0.733547
\(784\) 0 0
\(785\) 4.28304e12 0.402567
\(786\) −5.70655e12 + 9.88404e12i −0.533301 + 0.923705i
\(787\) 7.33958e12 + 1.27125e13i 0.682001 + 1.18126i 0.974369 + 0.224954i \(0.0722233\pi\)
−0.292368 + 0.956306i \(0.594443\pi\)
\(788\) −2.60678e12 4.51507e12i −0.240844 0.417154i
\(789\) −6.16334e12 + 1.06752e13i −0.566199 + 0.980686i
\(790\) −1.06199e13 −0.970060
\(791\) 0 0
\(792\) 5.00363e11 0.0451878
\(793\) −2.07632e12 + 3.59629e12i −0.186451 + 0.322942i
\(794\) 1.35636e12 + 2.34929e12i 0.121111 + 0.209770i
\(795\) −6.58424e12 1.14042e13i −0.584593 1.01254i
\(796\) −3.54592e12 + 6.14172e12i −0.313055 + 0.542227i
\(797\) 9.49591e12 0.833632 0.416816 0.908991i \(-0.363146\pi\)
0.416816 + 0.908991i \(0.363146\pi\)
\(798\) 0 0
\(799\) −1.51156e13 −1.31209
\(800\) 1.69486e11 2.93558e11i 0.0146295 0.0253390i
\(801\) −6.57386e11 1.13863e12i −0.0564253 0.0977315i
\(802\) 7.22837e12 + 1.25199e13i 0.616958 + 1.06860i
\(803\) 3.40036e12 5.88959e12i 0.288606 0.499879i
\(804\) 5.86680e12 0.495164
\(805\) 0 0
\(806\) −8.12759e12 −0.678351
\(807\) 1.21910e12 2.11154e12i 0.101183 0.175254i
\(808\) 2.66715e12 + 4.61963e12i 0.220138 + 0.381291i
\(809\) −7.23685e12 1.25346e13i −0.593993 1.02883i −0.993688 0.112178i \(-0.964217\pi\)
0.399695 0.916648i \(-0.369116\pi\)
\(810\) 2.86905e12 4.96933e12i 0.234183 0.405617i
\(811\) −7.11471e12 −0.577516 −0.288758 0.957402i \(-0.593242\pi\)
−0.288758 + 0.957402i \(0.593242\pi\)
\(812\) 0 0
\(813\) 7.27003e12 0.583618
\(814\) −3.93825e12 + 6.82126e12i −0.314408 + 0.544571i
\(815\) −4.19996e12 7.27455e12i −0.333454 0.577559i
\(816\) 2.24377e12 + 3.88632e12i 0.177163 + 0.306854i
\(817\) −1.50450e12 + 2.60588e12i −0.118139 + 0.204623i
\(818\) 1.67216e13 1.30583
\(819\) 0 0
\(820\) −9.97919e12 −0.770785
\(821\) −3.73509e12 + 6.46937e12i −0.286918 + 0.496956i −0.973072 0.230500i \(-0.925964\pi\)
0.686155 + 0.727456i \(0.259297\pi\)
\(822\) 7.09333e12 + 1.22860e13i 0.541910 + 0.938616i
\(823\) −7.92422e12 1.37252e13i −0.602085 1.04284i −0.992505 0.122204i \(-0.961004\pi\)
0.390420 0.920637i \(-0.372330\pi\)
\(824\) −4.40215e12 + 7.62475e12i −0.332654 + 0.576173i
\(825\) −1.10408e12 −0.0829767
\(826\) 0 0
\(827\) 2.27588e12 0.169190 0.0845948 0.996415i \(-0.473040\pi\)
0.0845948 + 0.996415i \(0.473040\pi\)
\(828\) −3.03011e11 + 5.24831e11i −0.0224038 + 0.0388046i
\(829\) −6.39444e12 1.10755e13i −0.470226 0.814456i 0.529194 0.848501i \(-0.322494\pi\)
−0.999420 + 0.0340449i \(0.989161\pi\)
\(830\) −3.05263e12 5.28731e12i −0.223266 0.386708i
\(831\) −2.59138e12 + 4.48840e12i −0.188506 + 0.326503i
\(832\) −1.39775e12 −0.101129
\(833\) 0 0
\(834\) −6.15404e12 −0.440467
\(835\) 2.05843e11 3.56530e11i 0.0146537 0.0253809i
\(836\) −1.21546e12 2.10524e12i −0.0860624 0.149065i
\(837\) −9.07800e12 1.57236e13i −0.639331 1.10735i
\(838\) −3.34006e12 + 5.78515e12i −0.233968 + 0.405244i
\(839\) −1.07948e13 −0.752119 −0.376060 0.926595i \(-0.622721\pi\)
−0.376060 + 0.926595i \(0.622721\pi\)
\(840\) 0 0
\(841\) −7.79383e12 −0.537241
\(842\) −1.34318e12 + 2.32646e12i −0.0920936 + 0.159511i
\(843\) 1.62290e12 + 2.81094e12i 0.110679 + 0.191703i
\(844\) 1.67284e12 + 2.89745e12i 0.113479 + 0.196551i
\(845\) 2.33856e12 4.05051e12i 0.157795 0.273309i
\(846\) 1.92831e12 0.129422
\(847\) 0 0
\(848\) −5.47150e12 −0.363350
\(849\) 7.64246e12 1.32371e13i 0.504834 0.874398i
\(850\) 1.43333e12 + 2.48261e12i 0.0941808 + 0.163126i
\(851\) −4.76988e12 8.26168e12i −0.311763 0.539990i
\(852\) 5.85549e12 1.01420e13i 0.380702 0.659395i
\(853\) 1.76557e13 1.14187 0.570933 0.820997i \(-0.306582\pi\)
0.570933 + 0.820997i \(0.306582\pi\)
\(854\) 0 0
\(855\) 1.93789e12 0.124017
\(856\) 1.70985e12 2.96155e12i 0.108849 0.188533i
\(857\) −8.21628e12 1.42310e13i −0.520309 0.901202i −0.999721 0.0236121i \(-0.992483\pi\)
0.479412 0.877590i \(-0.340850\pi\)
\(858\) 2.27632e12 + 3.94271e12i 0.143397 + 0.248371i
\(859\) 4.22012e11 7.30946e11i 0.0264457 0.0458053i −0.852500 0.522728i \(-0.824914\pi\)
0.878945 + 0.476922i \(0.158248\pi\)
\(860\) −2.86290e12 −0.178469
\(861\) 0 0
\(862\) −2.56639e12 −0.158321
\(863\) 1.23131e12 2.13270e12i 0.0755649 0.130882i −0.825767 0.564012i \(-0.809257\pi\)
0.901332 + 0.433129i \(0.142591\pi\)
\(864\) −1.56120e12 2.70407e12i −0.0953115 0.165084i
\(865\) −1.06747e12 1.84891e12i −0.0648312 0.112291i
\(866\) 3.55882e11 6.16405e11i 0.0215018 0.0372422i
\(867\) −2.32996e13 −1.40043
\(868\) 0 0
\(869\) 1.43723e13 0.854944
\(870\) −3.26939e12 + 5.66276e12i −0.193478 + 0.335113i
\(871\) −7.72692e12 1.33834e13i −0.454909 0.787925i
\(872\) −2.10048e12 3.63814e12i −0.123026 0.213086i
\(873\) −1.72503e12 + 2.98784e12i −0.100515 + 0.174098i
\(874\) 2.94426e12 0.170677
\(875\) 0 0
\(876\) −7.78086e12 −0.446436
\(877\) −1.50166e12 + 2.60096e12i −0.0857184 + 0.148469i −0.905697 0.423925i \(-0.860652\pi\)
0.819979 + 0.572394i \(0.193985\pi\)
\(878\) −4.60068e12 7.96861e12i −0.261274 0.452540i
\(879\) −2.06230e12 3.57201e12i −0.116521 0.201819i
\(880\) 1.15645e12 2.00302e12i 0.0650060 0.112594i
\(881\) 4.67820e11 0.0261630 0.0130815 0.999914i \(-0.495836\pi\)
0.0130815 + 0.999914i \(0.495836\pi\)
\(882\) 0 0
\(883\) −9.28272e12 −0.513869 −0.256934 0.966429i \(-0.582712\pi\)
−0.256934 + 0.966429i \(0.582712\pi\)
\(884\) 5.91034e12 1.02370e13i 0.325520 0.563816i
\(885\) −6.43116e12 1.11391e13i −0.352407 0.610387i
\(886\) 6.63871e12 + 1.14986e13i 0.361936 + 0.626892i
\(887\) 4.98915e12 8.64147e12i 0.270627 0.468739i −0.698396 0.715712i \(-0.746102\pi\)
0.969022 + 0.246973i \(0.0794358\pi\)
\(888\) 9.01171e12 0.486350
\(889\) 0 0
\(890\) −6.07744e12 −0.324688
\(891\) −3.88279e12 + 6.72519e12i −0.206393 + 0.357483i
\(892\) −5.35268e12 9.27112e12i −0.283093 0.490332i
\(893\) −4.68418e12 8.11323e12i −0.246491 0.426936i
\(894\) 6.79087e12 1.17621e13i 0.355555 0.615839i
\(895\) 1.07610e13 0.560594
\(896\) 0 0
\(897\) −5.51401e12 −0.284382
\(898\) −6.58964e12 + 1.14136e13i −0.338157 + 0.585705i
\(899\) 7.89899e12 + 1.36814e13i 0.403323 + 0.698576i
\(900\) −1.82851e11 3.16708e11i −0.00928981 0.0160904i
\(901\) 2.31361e13 4.00729e13i 1.16958 2.02577i
\(902\) 1.35052e13 0.679317
\(903\) 0 0
\(904\) −1.90834e12 −0.0950379
\(905\) 1.29144e13 2.23684e13i 0.639965 1.10845i
\(906\) 8.96220e12 + 1.55230e13i 0.441914 + 0.765417i
\(907\) 5.19978e11 + 9.00628e11i 0.0255124 + 0.0441888i 0.878500 0.477743i \(-0.158545\pi\)
−0.852987 + 0.521932i \(0.825212\pi\)
\(908\) −7.18365e12 + 1.24425e13i −0.350719 + 0.607463i
\(909\) 5.75494e12 0.279578
\(910\) 0 0
\(911\) 2.92798e13 1.40843 0.704215 0.709986i \(-0.251299\pi\)
0.704215 + 0.709986i \(0.251299\pi\)
\(912\) −1.39064e12 + 2.40866e12i −0.0665638 + 0.115292i
\(913\) 4.13124e12 + 7.15552e12i 0.196771 + 0.340818i
\(914\) 1.27863e13 + 2.21464e13i 0.606018 + 1.04965i
\(915\) −3.93092e12 + 6.80855e12i −0.185395 + 0.321114i
\(916\) 1.14965e12 0.0539556
\(917\) 0 0
\(918\) 2.64059e13 1.22718
\(919\) 6.57595e12 1.13899e13i 0.304115 0.526743i −0.672949 0.739689i \(-0.734972\pi\)
0.977064 + 0.212946i \(0.0683058\pi\)
\(920\) 1.40065e12 + 2.42600e12i 0.0644591 + 0.111646i
\(921\) 1.43793e13 + 2.49056e13i 0.658519 + 1.14059i
\(922\) −1.02001e13 + 1.76671e13i −0.464853 + 0.805149i
\(923\) −3.08481e13 −1.39901
\(924\) 0 0
\(925\) 5.75675e12 0.258547
\(926\) 2.51013e12 4.34767e12i 0.112188 0.194315i
\(927\) 4.74929e12 + 8.22602e12i 0.211237 + 0.365873i
\(928\) 1.35843e12 + 2.35288e12i 0.0601274 + 0.104144i
\(929\) −1.68476e13 + 2.91809e13i −0.742108 + 1.28537i 0.209425 + 0.977825i \(0.432841\pi\)
−0.951534 + 0.307545i \(0.900493\pi\)
\(930\) −1.53873e13 −0.674510
\(931\) 0 0
\(932\) −1.65034e13 −0.716475
\(933\) −4.71220e11 + 8.16176e11i −0.0203590 + 0.0352628i
\(934\) 7.53189e12 + 1.30456e13i 0.323849 + 0.560924i
\(935\) 9.78000e12 + 1.69395e13i 0.418492 + 0.724849i
\(936\) −7.53985e11 + 1.30594e12i −0.0321086 + 0.0556137i
\(937\) 1.90556e13 0.807598 0.403799 0.914848i \(-0.367689\pi\)
0.403799 + 0.914848i \(0.367689\pi\)
\(938\) 0 0
\(939\) 2.09619e13 0.879905
\(940\) 4.45674e12 7.71929e12i 0.186184 0.322480i
\(941\) 8.37175e12 + 1.45003e13i 0.348067 + 0.602870i 0.985906 0.167300i \(-0.0535048\pi\)
−0.637839 + 0.770170i \(0.720171\pi\)
\(942\) 3.31590e12 + 5.74331e12i 0.137206 + 0.237647i
\(943\) −8.17854e12 + 1.41656e13i −0.336801 + 0.583356i
\(944\) −5.34430e12 −0.219037
\(945\) 0 0
\(946\) 3.87448e12 0.157291
\(947\) 1.17483e13 2.03486e13i 0.474677 0.822165i −0.524902 0.851163i \(-0.675898\pi\)
0.999579 + 0.0289973i \(0.00923141\pi\)
\(948\) −8.22186e12 1.42407e13i −0.330623 0.572655i
\(949\) 1.02478e13 + 1.77498e13i 0.410142 + 0.710387i
\(950\) −8.88352e11 + 1.53867e12i −0.0353858 + 0.0612900i
\(951\) 1.06257e13 0.421256
\(952\) 0 0
\(953\) 2.77607e13 1.09022 0.545108 0.838366i \(-0.316489\pi\)
0.545108 + 0.838366i \(0.316489\pi\)
\(954\) −2.95149e12 + 5.11212e12i −0.115365 + 0.199818i
\(955\) 1.13768e13 + 1.97052e13i 0.442594 + 0.766594i
\(956\) 1.57693e11 + 2.73133e11i 0.00610595 + 0.0105758i
\(957\) 4.42459e12 7.66362e12i 0.170518 0.295346i
\(958\) −1.13606e13 −0.435771
\(959\) 0 0
\(960\) −2.64624e12 −0.100556
\(961\) −5.36834e12 + 9.29823e12i −0.203041 + 0.351678i
\(962\) −1.18689e13 2.05576e13i −0.446811 0.773899i
\(963\) −1.84468e12 3.19509e12i −0.0691200 0.119719i
\(964\) −1.13709e12 + 1.96949e12i −0.0424080 + 0.0734528i
\(965\) 1.97330e13 0.732520
\(966\) 0 0
\(967\) −1.72985e13 −0.636193 −0.318097 0.948058i \(-0.603044\pi\)
−0.318097 + 0.948058i \(0.603044\pi\)
\(968\) 3.26401e12 5.65344e12i 0.119485 0.206954i
\(969\) −1.17606e13 2.03699e13i −0.428521 0.742219i
\(970\) 7.97384e12 + 1.38111e13i 0.289198 + 0.500905i
\(971\) −6.05022e12 + 1.04793e13i −0.218416 + 0.378308i −0.954324 0.298774i \(-0.903422\pi\)
0.735908 + 0.677082i \(0.236756\pi\)
\(972\) −6.11961e12 −0.219900
\(973\) 0 0
\(974\) 1.94981e13 0.694187
\(975\) 1.66371e12 2.88163e12i 0.0589598 0.102121i
\(976\) 1.63330e12 + 2.82895e12i 0.0576157 + 0.0997933i
\(977\) 1.49843e13 + 2.59535e13i 0.526151 + 0.911320i 0.999536 + 0.0304647i \(0.00969871\pi\)
−0.473385 + 0.880856i \(0.656968\pi\)
\(978\) 6.50317e12 1.12638e13i 0.227300 0.393696i
\(979\) 8.22483e12 0.286157
\(980\) 0 0
\(981\) −4.53225e12 −0.156244
\(982\) 4.60975e11 7.98432e11i 0.0158189 0.0273991i
\(983\) 3.81824e11 + 6.61338e11i 0.0130428 + 0.0225909i 0.872473 0.488662i \(-0.162515\pi\)
−0.859430 + 0.511253i \(0.829182\pi\)
\(984\) −7.72582e12 1.33815e13i −0.262704 0.455017i
\(985\) −1.29999e13 + 2.25164e13i −0.440023 + 0.762143i
\(986\) −2.29764e13 −0.774169
\(987\) 0 0
\(988\) 7.32622e12 0.244610
\(989\) −2.34632e12 + 4.06394e12i −0.0779837 + 0.135072i
\(990\) −1.24764e12 2.16098e12i −0.0412792 0.0714976i
\(991\) 2.07406e13 + 3.59237e13i 0.683107 + 1.18318i 0.974028 + 0.226429i \(0.0727051\pi\)
−0.290921 + 0.956747i \(0.593962\pi\)
\(992\) −3.19671e12 + 5.53686e12i −0.104809 + 0.181535i
\(993\) −4.43876e13 −1.44874
\(994\) 0 0
\(995\) 3.53666e13 1.14390
\(996\) 4.72665e12 8.18681e12i 0.152190 0.263601i
\(997\) 2.54631e13 + 4.41033e13i 0.816173 + 1.41365i 0.908483 + 0.417923i \(0.137242\pi\)
−0.0923096 + 0.995730i \(0.529425\pi\)
\(998\) −1.91100e13 3.30994e13i −0.609779 1.05617i
\(999\) 2.65137e13 4.59231e13i 0.842220 1.45877i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.c.g.79.2 4
7.2 even 3 98.10.a.f.1.1 2
7.3 odd 6 inner 98.10.c.g.67.1 4
7.4 even 3 inner 98.10.c.g.67.2 4
7.5 odd 6 98.10.a.f.1.2 yes 2
7.6 odd 2 inner 98.10.c.g.79.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
98.10.a.f.1.1 2 7.2 even 3
98.10.a.f.1.2 yes 2 7.5 odd 6
98.10.c.g.67.1 4 7.3 odd 6 inner
98.10.c.g.67.2 4 7.4 even 3 inner
98.10.c.g.79.1 4 7.6 odd 2 inner
98.10.c.g.79.2 4 1.1 even 1 trivial