Properties

Label 98.10.a.d.1.2
Level $98$
Weight $10$
Character 98.1
Self dual yes
Analytic conductor $50.474$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{43}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 43 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.55744\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +52.4595 q^{3} +256.000 q^{4} +1836.08 q^{5} -839.352 q^{6} -4096.00 q^{8} -16931.0 q^{9} -29377.3 q^{10} +9380.00 q^{11} +13429.6 q^{12} +179044. q^{13} +96320.0 q^{15} +65536.0 q^{16} +97889.4 q^{17} +270896. q^{18} +562733. q^{19} +470037. q^{20} -150080. q^{22} -978936. q^{23} -214874. q^{24} +1.41808e6 q^{25} -2.86471e6 q^{26} -1.92075e6 q^{27} -4.31721e6 q^{29} -1.54112e6 q^{30} +7.97458e6 q^{31} -1.04858e6 q^{32} +492070. q^{33} -1.56623e6 q^{34} -4.33434e6 q^{36} +2.71439e6 q^{37} -9.00373e6 q^{38} +9.39258e6 q^{39} -7.52060e6 q^{40} +9.00237e6 q^{41} -3.47557e7 q^{43} +2.40128e6 q^{44} -3.10867e7 q^{45} +1.56630e7 q^{46} +4.21775e7 q^{47} +3.43799e6 q^{48} -2.26892e7 q^{50} +5.13523e6 q^{51} +4.58353e7 q^{52} +6.80679e7 q^{53} +3.07320e7 q^{54} +1.72225e7 q^{55} +2.95207e7 q^{57} +6.90754e7 q^{58} -3.42318e7 q^{59} +2.46579e7 q^{60} -1.65833e8 q^{61} -1.27593e8 q^{62} +1.67772e7 q^{64} +3.28740e8 q^{65} -7.87312e6 q^{66} +2.42944e8 q^{67} +2.50597e7 q^{68} -5.13545e7 q^{69} -9.42925e7 q^{71} +6.93494e7 q^{72} +1.33334e8 q^{73} -4.34303e7 q^{74} +7.43915e7 q^{75} +1.44060e8 q^{76} -1.50281e8 q^{78} +6.77625e8 q^{79} +1.20330e8 q^{80} +2.32491e8 q^{81} -1.44038e8 q^{82} +4.41313e8 q^{83} +1.79733e8 q^{85} +5.56091e8 q^{86} -2.26479e8 q^{87} -3.84205e7 q^{88} +5.55278e8 q^{89} +4.97387e8 q^{90} -2.50608e8 q^{92} +4.18343e8 q^{93} -6.74841e8 q^{94} +1.03322e9 q^{95} -5.50078e7 q^{96} -1.26895e9 q^{97} -1.58813e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{2} + 512 q^{4} - 8192 q^{8} - 33862 q^{9} + 18760 q^{11} + 192640 q^{15} + 131072 q^{16} + 541792 q^{18} - 300160 q^{22} - 1957872 q^{23} + 2836150 q^{25} - 8634428 q^{29} - 3082240 q^{30} - 2097152 q^{32}+ \cdots - 317625560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 52.4595 0.373920 0.186960 0.982368i \(-0.440137\pi\)
0.186960 + 0.982368i \(0.440137\pi\)
\(4\) 256.000 0.500000
\(5\) 1836.08 1.31379 0.656897 0.753980i \(-0.271869\pi\)
0.656897 + 0.753980i \(0.271869\pi\)
\(6\) −839.352 −0.264401
\(7\) 0 0
\(8\) −4096.00 −0.353553
\(9\) −16931.0 −0.860184
\(10\) −29377.3 −0.928993
\(11\) 9380.00 0.193168 0.0965841 0.995325i \(-0.469208\pi\)
0.0965841 + 0.995325i \(0.469208\pi\)
\(12\) 13429.6 0.186960
\(13\) 179044. 1.73866 0.869332 0.494229i \(-0.164550\pi\)
0.869332 + 0.494229i \(0.164550\pi\)
\(14\) 0 0
\(15\) 96320.0 0.491254
\(16\) 65536.0 0.250000
\(17\) 97889.4 0.284260 0.142130 0.989848i \(-0.454605\pi\)
0.142130 + 0.989848i \(0.454605\pi\)
\(18\) 270896. 0.608242
\(19\) 562733. 0.990630 0.495315 0.868714i \(-0.335053\pi\)
0.495315 + 0.868714i \(0.335053\pi\)
\(20\) 470037. 0.656897
\(21\) 0 0
\(22\) −150080. −0.136591
\(23\) −978936. −0.729422 −0.364711 0.931121i \(-0.618832\pi\)
−0.364711 + 0.931121i \(0.618832\pi\)
\(24\) −214874. −0.132201
\(25\) 1.41808e6 0.726054
\(26\) −2.86471e6 −1.22942
\(27\) −1.92075e6 −0.695560
\(28\) 0 0
\(29\) −4.31721e6 −1.13348 −0.566738 0.823898i \(-0.691795\pi\)
−0.566738 + 0.823898i \(0.691795\pi\)
\(30\) −1.54112e6 −0.347369
\(31\) 7.97458e6 1.55089 0.775444 0.631417i \(-0.217526\pi\)
0.775444 + 0.631417i \(0.217526\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 492070. 0.0722295
\(34\) −1.56623e6 −0.201002
\(35\) 0 0
\(36\) −4.33434e6 −0.430092
\(37\) 2.71439e6 0.238103 0.119052 0.992888i \(-0.462015\pi\)
0.119052 + 0.992888i \(0.462015\pi\)
\(38\) −9.00373e6 −0.700481
\(39\) 9.39258e6 0.650121
\(40\) −7.52060e6 −0.464496
\(41\) 9.00237e6 0.497542 0.248771 0.968562i \(-0.419973\pi\)
0.248771 + 0.968562i \(0.419973\pi\)
\(42\) 0 0
\(43\) −3.47557e7 −1.55031 −0.775154 0.631773i \(-0.782328\pi\)
−0.775154 + 0.631773i \(0.782328\pi\)
\(44\) 2.40128e6 0.0965841
\(45\) −3.10867e7 −1.13010
\(46\) 1.56630e7 0.515779
\(47\) 4.21775e7 1.26078 0.630392 0.776277i \(-0.282894\pi\)
0.630392 + 0.776277i \(0.282894\pi\)
\(48\) 3.43799e6 0.0934800
\(49\) 0 0
\(50\) −2.26892e7 −0.513398
\(51\) 5.13523e6 0.106290
\(52\) 4.58353e7 0.869332
\(53\) 6.80679e7 1.18495 0.592476 0.805588i \(-0.298150\pi\)
0.592476 + 0.805588i \(0.298150\pi\)
\(54\) 3.07320e7 0.491835
\(55\) 1.72225e7 0.253783
\(56\) 0 0
\(57\) 2.95207e7 0.370416
\(58\) 6.90754e7 0.801489
\(59\) −3.42318e7 −0.367786 −0.183893 0.982946i \(-0.558870\pi\)
−0.183893 + 0.982946i \(0.558870\pi\)
\(60\) 2.46579e7 0.245627
\(61\) −1.65833e8 −1.53351 −0.766753 0.641942i \(-0.778129\pi\)
−0.766753 + 0.641942i \(0.778129\pi\)
\(62\) −1.27593e8 −1.09664
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 3.28740e8 2.28424
\(66\) −7.87312e6 −0.0510739
\(67\) 2.42944e8 1.47289 0.736445 0.676497i \(-0.236503\pi\)
0.736445 + 0.676497i \(0.236503\pi\)
\(68\) 2.50597e7 0.142130
\(69\) −5.13545e7 −0.272746
\(70\) 0 0
\(71\) −9.42925e7 −0.440367 −0.220183 0.975459i \(-0.570666\pi\)
−0.220183 + 0.975459i \(0.570666\pi\)
\(72\) 6.93494e7 0.304121
\(73\) 1.33334e8 0.549528 0.274764 0.961512i \(-0.411400\pi\)
0.274764 + 0.961512i \(0.411400\pi\)
\(74\) −4.34303e7 −0.168364
\(75\) 7.43915e7 0.271486
\(76\) 1.44060e8 0.495315
\(77\) 0 0
\(78\) −1.50281e8 −0.459705
\(79\) 6.77625e8 1.95735 0.978673 0.205424i \(-0.0658574\pi\)
0.978673 + 0.205424i \(0.0658574\pi\)
\(80\) 1.20330e8 0.328448
\(81\) 2.32491e8 0.600100
\(82\) −1.44038e8 −0.351815
\(83\) 4.41313e8 1.02069 0.510347 0.859968i \(-0.329517\pi\)
0.510347 + 0.859968i \(0.329517\pi\)
\(84\) 0 0
\(85\) 1.79733e8 0.373459
\(86\) 5.56091e8 1.09623
\(87\) −2.26479e8 −0.423829
\(88\) −3.84205e7 −0.0682953
\(89\) 5.55278e8 0.938113 0.469056 0.883168i \(-0.344594\pi\)
0.469056 + 0.883168i \(0.344594\pi\)
\(90\) 4.97387e8 0.799104
\(91\) 0 0
\(92\) −2.50608e8 −0.364711
\(93\) 4.18343e8 0.579908
\(94\) −6.74841e8 −0.891510
\(95\) 1.03322e9 1.30148
\(96\) −5.50078e7 −0.0661003
\(97\) −1.26895e9 −1.45536 −0.727680 0.685917i \(-0.759401\pi\)
−0.727680 + 0.685917i \(0.759401\pi\)
\(98\) 0 0
\(99\) −1.58813e8 −0.166160
\(100\) 3.63027e8 0.363027
\(101\) 1.36830e9 1.30838 0.654191 0.756329i \(-0.273009\pi\)
0.654191 + 0.756329i \(0.273009\pi\)
\(102\) −8.21637e7 −0.0751587
\(103\) −1.92152e8 −0.168219 −0.0841097 0.996456i \(-0.526805\pi\)
−0.0841097 + 0.996456i \(0.526805\pi\)
\(104\) −7.33365e8 −0.614710
\(105\) 0 0
\(106\) −1.08909e9 −0.837888
\(107\) −1.04855e9 −0.773325 −0.386663 0.922221i \(-0.626372\pi\)
−0.386663 + 0.922221i \(0.626372\pi\)
\(108\) −4.91713e8 −0.347780
\(109\) 2.03758e9 1.38259 0.691297 0.722571i \(-0.257040\pi\)
0.691297 + 0.722571i \(0.257040\pi\)
\(110\) −2.75559e8 −0.179452
\(111\) 1.42396e8 0.0890315
\(112\) 0 0
\(113\) −4.70999e8 −0.271748 −0.135874 0.990726i \(-0.543384\pi\)
−0.135874 + 0.990726i \(0.543384\pi\)
\(114\) −4.72331e8 −0.261924
\(115\) −1.79741e9 −0.958311
\(116\) −1.10521e9 −0.566738
\(117\) −3.03140e9 −1.49557
\(118\) 5.47708e8 0.260064
\(119\) 0 0
\(120\) −3.94527e8 −0.173684
\(121\) −2.26996e9 −0.962686
\(122\) 2.65332e9 1.08435
\(123\) 4.72260e8 0.186041
\(124\) 2.04149e9 0.775444
\(125\) −9.82396e8 −0.359908
\(126\) 0 0
\(127\) 2.87598e9 0.981001 0.490500 0.871441i \(-0.336814\pi\)
0.490500 + 0.871441i \(0.336814\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −1.82327e9 −0.579691
\(130\) −5.25984e9 −1.61521
\(131\) 5.97107e9 1.77146 0.885729 0.464202i \(-0.153659\pi\)
0.885729 + 0.464202i \(0.153659\pi\)
\(132\) 1.25970e8 0.0361147
\(133\) 0 0
\(134\) −3.88711e9 −1.04149
\(135\) −3.52666e9 −0.913822
\(136\) −4.00955e8 −0.100501
\(137\) −1.39710e9 −0.338832 −0.169416 0.985545i \(-0.554188\pi\)
−0.169416 + 0.985545i \(0.554188\pi\)
\(138\) 8.21672e8 0.192860
\(139\) 7.96582e9 1.80994 0.904969 0.425477i \(-0.139894\pi\)
0.904969 + 0.425477i \(0.139894\pi\)
\(140\) 0 0
\(141\) 2.21261e9 0.471433
\(142\) 1.50868e9 0.311386
\(143\) 1.67944e9 0.335855
\(144\) −1.10959e9 −0.215046
\(145\) −7.92676e9 −1.48915
\(146\) −2.13335e9 −0.388575
\(147\) 0 0
\(148\) 6.94885e8 0.119052
\(149\) −1.10260e10 −1.83266 −0.916329 0.400425i \(-0.868862\pi\)
−0.916329 + 0.400425i \(0.868862\pi\)
\(150\) −1.19026e9 −0.191970
\(151\) −3.94474e9 −0.617479 −0.308739 0.951147i \(-0.599907\pi\)
−0.308739 + 0.951147i \(0.599907\pi\)
\(152\) −2.30495e9 −0.350240
\(153\) −1.65737e9 −0.244516
\(154\) 0 0
\(155\) 1.46420e10 2.03755
\(156\) 2.40450e9 0.325060
\(157\) 6.76342e9 0.888419 0.444209 0.895923i \(-0.353485\pi\)
0.444209 + 0.895923i \(0.353485\pi\)
\(158\) −1.08420e10 −1.38405
\(159\) 3.57081e9 0.443077
\(160\) −1.92527e9 −0.232248
\(161\) 0 0
\(162\) −3.71986e9 −0.424335
\(163\) −2.94473e9 −0.326740 −0.163370 0.986565i \(-0.552236\pi\)
−0.163370 + 0.986565i \(0.552236\pi\)
\(164\) 2.30461e9 0.248771
\(165\) 9.03482e8 0.0948946
\(166\) −7.06102e9 −0.721740
\(167\) −1.59064e10 −1.58251 −0.791256 0.611485i \(-0.790573\pi\)
−0.791256 + 0.611485i \(0.790573\pi\)
\(168\) 0 0
\(169\) 2.14524e10 2.02295
\(170\) −2.87573e9 −0.264075
\(171\) −9.52763e9 −0.852124
\(172\) −8.89746e9 −0.775154
\(173\) 1.03299e10 0.876773 0.438386 0.898787i \(-0.355550\pi\)
0.438386 + 0.898787i \(0.355550\pi\)
\(174\) 3.62366e9 0.299693
\(175\) 0 0
\(176\) 6.14728e8 0.0482921
\(177\) −1.79578e9 −0.137523
\(178\) −8.88444e9 −0.663346
\(179\) 1.08025e10 0.786479 0.393239 0.919436i \(-0.371354\pi\)
0.393239 + 0.919436i \(0.371354\pi\)
\(180\) −7.95820e9 −0.565052
\(181\) 6.13942e9 0.425181 0.212591 0.977141i \(-0.431810\pi\)
0.212591 + 0.977141i \(0.431810\pi\)
\(182\) 0 0
\(183\) −8.69949e9 −0.573408
\(184\) 4.00972e9 0.257890
\(185\) 4.98385e9 0.312818
\(186\) −6.69348e9 −0.410057
\(187\) 9.18203e8 0.0549100
\(188\) 1.07975e10 0.630392
\(189\) 0 0
\(190\) −1.65316e10 −0.920288
\(191\) −9.38711e9 −0.510366 −0.255183 0.966893i \(-0.582136\pi\)
−0.255183 + 0.966893i \(0.582136\pi\)
\(192\) 8.80125e8 0.0467400
\(193\) 9.06409e9 0.470236 0.235118 0.971967i \(-0.424452\pi\)
0.235118 + 0.971967i \(0.424452\pi\)
\(194\) 2.03031e10 1.02909
\(195\) 1.72455e10 0.854125
\(196\) 0 0
\(197\) −7.31102e9 −0.345844 −0.172922 0.984936i \(-0.555321\pi\)
−0.172922 + 0.984936i \(0.555321\pi\)
\(198\) 2.54100e9 0.117493
\(199\) −1.51050e9 −0.0682782 −0.0341391 0.999417i \(-0.510869\pi\)
−0.0341391 + 0.999417i \(0.510869\pi\)
\(200\) −5.80844e9 −0.256699
\(201\) 1.27447e10 0.550743
\(202\) −2.18928e10 −0.925166
\(203\) 0 0
\(204\) 1.31462e9 0.0531452
\(205\) 1.65291e10 0.653667
\(206\) 3.07442e9 0.118949
\(207\) 1.65744e10 0.627437
\(208\) 1.17338e10 0.434666
\(209\) 5.27844e9 0.191358
\(210\) 0 0
\(211\) −1.89147e10 −0.656945 −0.328472 0.944514i \(-0.606534\pi\)
−0.328472 + 0.944514i \(0.606534\pi\)
\(212\) 1.74254e10 0.592476
\(213\) −4.94654e9 −0.164662
\(214\) 1.67768e10 0.546823
\(215\) −6.38143e10 −2.03678
\(216\) 7.86740e9 0.245918
\(217\) 0 0
\(218\) −3.26012e10 −0.977641
\(219\) 6.99466e9 0.205479
\(220\) 4.40895e9 0.126892
\(221\) 1.75265e10 0.494232
\(222\) −2.27833e9 −0.0629548
\(223\) −5.37387e10 −1.45518 −0.727588 0.686015i \(-0.759359\pi\)
−0.727588 + 0.686015i \(0.759359\pi\)
\(224\) 0 0
\(225\) −2.40094e10 −0.624540
\(226\) 7.53598e9 0.192155
\(227\) −6.51335e9 −0.162813 −0.0814063 0.996681i \(-0.525941\pi\)
−0.0814063 + 0.996681i \(0.525941\pi\)
\(228\) 7.55730e9 0.185208
\(229\) −2.08552e10 −0.501134 −0.250567 0.968099i \(-0.580617\pi\)
−0.250567 + 0.968099i \(0.580617\pi\)
\(230\) 2.87585e10 0.677628
\(231\) 0 0
\(232\) 1.76833e10 0.400745
\(233\) 1.91559e10 0.425794 0.212897 0.977075i \(-0.431710\pi\)
0.212897 + 0.977075i \(0.431710\pi\)
\(234\) 4.85024e10 1.05753
\(235\) 7.74415e10 1.65641
\(236\) −8.76333e9 −0.183893
\(237\) 3.55479e10 0.731891
\(238\) 0 0
\(239\) −2.58648e10 −0.512764 −0.256382 0.966575i \(-0.582531\pi\)
−0.256382 + 0.966575i \(0.582531\pi\)
\(240\) 6.31243e9 0.122813
\(241\) 3.21806e10 0.614493 0.307246 0.951630i \(-0.400592\pi\)
0.307246 + 0.951630i \(0.400592\pi\)
\(242\) 3.63194e10 0.680722
\(243\) 5.00025e10 0.919949
\(244\) −4.24531e10 −0.766753
\(245\) 0 0
\(246\) −7.55616e9 −0.131551
\(247\) 1.00754e11 1.72237
\(248\) −3.26639e10 −0.548321
\(249\) 2.31511e10 0.381658
\(250\) 1.57183e10 0.254493
\(251\) −2.42280e10 −0.385288 −0.192644 0.981269i \(-0.561706\pi\)
−0.192644 + 0.981269i \(0.561706\pi\)
\(252\) 0 0
\(253\) −9.18242e9 −0.140901
\(254\) −4.60157e10 −0.693672
\(255\) 9.42871e9 0.139644
\(256\) 4.29497e9 0.0625000
\(257\) 3.56541e10 0.509812 0.254906 0.966966i \(-0.417955\pi\)
0.254906 + 0.966966i \(0.417955\pi\)
\(258\) 2.91723e10 0.409903
\(259\) 0 0
\(260\) 8.41575e10 1.14212
\(261\) 7.30948e10 0.974998
\(262\) −9.55371e10 −1.25261
\(263\) −1.19369e11 −1.53848 −0.769238 0.638963i \(-0.779364\pi\)
−0.769238 + 0.638963i \(0.779364\pi\)
\(264\) −2.01552e9 −0.0255370
\(265\) 1.24978e11 1.55678
\(266\) 0 0
\(267\) 2.91296e10 0.350779
\(268\) 6.21938e10 0.736445
\(269\) −1.05580e11 −1.22941 −0.614706 0.788756i \(-0.710725\pi\)
−0.614706 + 0.788756i \(0.710725\pi\)
\(270\) 5.64266e10 0.646170
\(271\) 6.30528e10 0.710138 0.355069 0.934840i \(-0.384457\pi\)
0.355069 + 0.934840i \(0.384457\pi\)
\(272\) 6.41528e9 0.0710650
\(273\) 0 0
\(274\) 2.23536e10 0.239591
\(275\) 1.33015e10 0.140251
\(276\) −1.31468e10 −0.136373
\(277\) −8.82953e10 −0.901111 −0.450556 0.892748i \(-0.648774\pi\)
−0.450556 + 0.892748i \(0.648774\pi\)
\(278\) −1.27453e11 −1.27982
\(279\) −1.35018e11 −1.33405
\(280\) 0 0
\(281\) −1.42216e10 −0.136072 −0.0680361 0.997683i \(-0.521673\pi\)
−0.0680361 + 0.997683i \(0.521673\pi\)
\(282\) −3.54018e10 −0.333353
\(283\) 1.44191e11 1.33629 0.668144 0.744032i \(-0.267089\pi\)
0.668144 + 0.744032i \(0.267089\pi\)
\(284\) −2.41389e10 −0.220183
\(285\) 5.42025e10 0.486650
\(286\) −2.68710e10 −0.237485
\(287\) 0 0
\(288\) 1.77534e10 0.152060
\(289\) −1.09006e11 −0.919196
\(290\) 1.26828e11 1.05299
\(291\) −6.65683e10 −0.544188
\(292\) 3.41336e10 0.274764
\(293\) −7.39164e10 −0.585918 −0.292959 0.956125i \(-0.594640\pi\)
−0.292959 + 0.956125i \(0.594640\pi\)
\(294\) 0 0
\(295\) −6.28524e10 −0.483195
\(296\) −1.11182e10 −0.0841822
\(297\) −1.80167e10 −0.134360
\(298\) 1.76417e11 1.29589
\(299\) −1.75273e11 −1.26822
\(300\) 1.90442e10 0.135743
\(301\) 0 0
\(302\) 6.31158e10 0.436623
\(303\) 7.17803e10 0.489230
\(304\) 3.68793e10 0.247657
\(305\) −3.04482e11 −2.01471
\(306\) 2.65179e10 0.172899
\(307\) 1.11736e11 0.717908 0.358954 0.933355i \(-0.383134\pi\)
0.358954 + 0.933355i \(0.383134\pi\)
\(308\) 0 0
\(309\) −1.00802e10 −0.0629006
\(310\) −2.34272e11 −1.44076
\(311\) −2.21039e11 −1.33982 −0.669912 0.742441i \(-0.733668\pi\)
−0.669912 + 0.742441i \(0.733668\pi\)
\(312\) −3.84720e10 −0.229852
\(313\) −1.07627e11 −0.633826 −0.316913 0.948455i \(-0.602646\pi\)
−0.316913 + 0.948455i \(0.602646\pi\)
\(314\) −1.08215e11 −0.628207
\(315\) 0 0
\(316\) 1.73472e11 0.978673
\(317\) −3.25634e11 −1.81119 −0.905594 0.424145i \(-0.860575\pi\)
−0.905594 + 0.424145i \(0.860575\pi\)
\(318\) −5.71330e10 −0.313303
\(319\) −4.04955e10 −0.218952
\(320\) 3.08044e10 0.164224
\(321\) −5.50064e10 −0.289162
\(322\) 0 0
\(323\) 5.50856e10 0.281596
\(324\) 5.95177e10 0.300050
\(325\) 2.53898e11 1.26236
\(326\) 4.71157e10 0.231040
\(327\) 1.06890e11 0.516979
\(328\) −3.68737e10 −0.175907
\(329\) 0 0
\(330\) −1.44557e10 −0.0671006
\(331\) −1.69545e11 −0.776350 −0.388175 0.921586i \(-0.626894\pi\)
−0.388175 + 0.921586i \(0.626894\pi\)
\(332\) 1.12976e11 0.510347
\(333\) −4.59574e10 −0.204812
\(334\) 2.54502e11 1.11901
\(335\) 4.46066e11 1.93507
\(336\) 0 0
\(337\) −1.26756e11 −0.535347 −0.267673 0.963510i \(-0.586255\pi\)
−0.267673 + 0.963510i \(0.586255\pi\)
\(338\) −3.43238e11 −1.43044
\(339\) −2.47084e10 −0.101612
\(340\) 4.60117e10 0.186730
\(341\) 7.48016e10 0.299582
\(342\) 1.52442e11 0.602542
\(343\) 0 0
\(344\) 1.42359e11 0.548117
\(345\) −9.42911e10 −0.358331
\(346\) −1.65278e11 −0.619972
\(347\) −1.79108e11 −0.663180 −0.331590 0.943424i \(-0.607585\pi\)
−0.331590 + 0.943424i \(0.607585\pi\)
\(348\) −5.79786e10 −0.211915
\(349\) −1.73876e11 −0.627372 −0.313686 0.949527i \(-0.601564\pi\)
−0.313686 + 0.949527i \(0.601564\pi\)
\(350\) 0 0
\(351\) −3.43900e11 −1.20934
\(352\) −9.83564e9 −0.0341476
\(353\) −9.03498e10 −0.309700 −0.154850 0.987938i \(-0.549489\pi\)
−0.154850 + 0.987938i \(0.549489\pi\)
\(354\) 2.87325e10 0.0972431
\(355\) −1.73129e11 −0.578551
\(356\) 1.42151e11 0.469056
\(357\) 0 0
\(358\) −1.72841e11 −0.556124
\(359\) −1.83950e11 −0.584486 −0.292243 0.956344i \(-0.594402\pi\)
−0.292243 + 0.956344i \(0.594402\pi\)
\(360\) 1.27331e11 0.399552
\(361\) −6.01911e9 −0.0186530
\(362\) −9.82308e10 −0.300648
\(363\) −1.19081e11 −0.359967
\(364\) 0 0
\(365\) 2.44813e11 0.721966
\(366\) 1.39192e11 0.405461
\(367\) −3.61312e11 −1.03965 −0.519823 0.854274i \(-0.674002\pi\)
−0.519823 + 0.854274i \(0.674002\pi\)
\(368\) −6.41555e10 −0.182356
\(369\) −1.52419e11 −0.427977
\(370\) −7.97416e10 −0.221196
\(371\) 0 0
\(372\) 1.07096e11 0.289954
\(373\) 1.62421e11 0.434461 0.217231 0.976120i \(-0.430298\pi\)
0.217231 + 0.976120i \(0.430298\pi\)
\(374\) −1.46912e10 −0.0388272
\(375\) −5.15360e10 −0.134577
\(376\) −1.72759e11 −0.445755
\(377\) −7.72973e11 −1.97073
\(378\) 0 0
\(379\) −1.07832e10 −0.0268455 −0.0134227 0.999910i \(-0.504273\pi\)
−0.0134227 + 0.999910i \(0.504273\pi\)
\(380\) 2.64506e11 0.650742
\(381\) 1.50873e11 0.366816
\(382\) 1.50194e11 0.360883
\(383\) 6.97857e11 1.65719 0.828594 0.559850i \(-0.189141\pi\)
0.828594 + 0.559850i \(0.189141\pi\)
\(384\) −1.40820e10 −0.0330502
\(385\) 0 0
\(386\) −1.45025e11 −0.332507
\(387\) 5.88449e11 1.33355
\(388\) −3.24850e11 −0.727680
\(389\) −5.98959e11 −1.32625 −0.663123 0.748510i \(-0.730769\pi\)
−0.663123 + 0.748510i \(0.730769\pi\)
\(390\) −2.75929e11 −0.603957
\(391\) −9.58275e10 −0.207346
\(392\) 0 0
\(393\) 3.13239e11 0.662384
\(394\) 1.16976e11 0.244549
\(395\) 1.24418e12 2.57155
\(396\) −4.06561e10 −0.0830801
\(397\) −3.68159e11 −0.743838 −0.371919 0.928265i \(-0.621300\pi\)
−0.371919 + 0.928265i \(0.621300\pi\)
\(398\) 2.41680e10 0.0482800
\(399\) 0 0
\(400\) 9.29350e10 0.181514
\(401\) 1.11219e11 0.214798 0.107399 0.994216i \(-0.465748\pi\)
0.107399 + 0.994216i \(0.465748\pi\)
\(402\) −2.03916e11 −0.389434
\(403\) 1.42780e12 2.69647
\(404\) 3.50285e11 0.654191
\(405\) 4.26873e11 0.788408
\(406\) 0 0
\(407\) 2.54610e10 0.0459940
\(408\) −2.10339e10 −0.0375794
\(409\) −4.42431e11 −0.781791 −0.390896 0.920435i \(-0.627835\pi\)
−0.390896 + 0.920435i \(0.627835\pi\)
\(410\) −2.64465e11 −0.462212
\(411\) −7.32911e10 −0.126696
\(412\) −4.91908e10 −0.0841097
\(413\) 0 0
\(414\) −2.65190e11 −0.443665
\(415\) 8.10288e11 1.34098
\(416\) −1.87742e11 −0.307355
\(417\) 4.17883e11 0.676772
\(418\) −8.44550e10 −0.135311
\(419\) 7.54997e11 1.19669 0.598346 0.801238i \(-0.295825\pi\)
0.598346 + 0.801238i \(0.295825\pi\)
\(420\) 0 0
\(421\) 4.31285e11 0.669106 0.334553 0.942377i \(-0.391415\pi\)
0.334553 + 0.942377i \(0.391415\pi\)
\(422\) 3.02636e11 0.464530
\(423\) −7.14108e11 −1.08451
\(424\) −2.78806e11 −0.418944
\(425\) 1.38815e11 0.206388
\(426\) 7.91446e10 0.116434
\(427\) 0 0
\(428\) −2.68429e11 −0.386663
\(429\) 8.81024e10 0.125583
\(430\) 1.02103e12 1.44022
\(431\) 1.01375e12 1.41509 0.707545 0.706669i \(-0.249803\pi\)
0.707545 + 0.706669i \(0.249803\pi\)
\(432\) −1.25878e11 −0.173890
\(433\) 6.02971e11 0.824329 0.412165 0.911109i \(-0.364773\pi\)
0.412165 + 0.911109i \(0.364773\pi\)
\(434\) 0 0
\(435\) −4.15834e11 −0.556825
\(436\) 5.21620e11 0.691297
\(437\) −5.50880e11 −0.722587
\(438\) −1.11915e11 −0.145296
\(439\) 4.54285e11 0.583765 0.291883 0.956454i \(-0.405718\pi\)
0.291883 + 0.956454i \(0.405718\pi\)
\(440\) −7.05432e10 −0.0897259
\(441\) 0 0
\(442\) −2.80425e11 −0.349475
\(443\) 1.00889e12 1.24459 0.622294 0.782783i \(-0.286201\pi\)
0.622294 + 0.782783i \(0.286201\pi\)
\(444\) 3.64533e10 0.0445158
\(445\) 1.01954e12 1.23249
\(446\) 8.59819e11 1.02896
\(447\) −5.78421e11 −0.685268
\(448\) 0 0
\(449\) 1.51070e10 0.0175416 0.00877082 0.999962i \(-0.497208\pi\)
0.00877082 + 0.999962i \(0.497208\pi\)
\(450\) 3.84151e11 0.441617
\(451\) 8.44422e10 0.0961092
\(452\) −1.20576e11 −0.135874
\(453\) −2.06939e11 −0.230888
\(454\) 1.04214e11 0.115126
\(455\) 0 0
\(456\) −1.20917e11 −0.130962
\(457\) −1.03380e12 −1.10870 −0.554348 0.832285i \(-0.687032\pi\)
−0.554348 + 0.832285i \(0.687032\pi\)
\(458\) 3.33683e11 0.354356
\(459\) −1.88021e11 −0.197720
\(460\) −4.60136e11 −0.479155
\(461\) −6.16178e11 −0.635407 −0.317704 0.948190i \(-0.602912\pi\)
−0.317704 + 0.948190i \(0.602912\pi\)
\(462\) 0 0
\(463\) 8.87425e11 0.897464 0.448732 0.893666i \(-0.351876\pi\)
0.448732 + 0.893666i \(0.351876\pi\)
\(464\) −2.82933e11 −0.283369
\(465\) 7.68112e11 0.761879
\(466\) −3.06494e11 −0.301082
\(467\) −1.76248e12 −1.71474 −0.857371 0.514699i \(-0.827904\pi\)
−0.857371 + 0.514699i \(0.827904\pi\)
\(468\) −7.76038e11 −0.747785
\(469\) 0 0
\(470\) −1.23906e12 −1.17126
\(471\) 3.54806e11 0.332198
\(472\) 1.40213e11 0.130032
\(473\) −3.26008e11 −0.299470
\(474\) −5.68766e11 −0.517525
\(475\) 7.97998e11 0.719251
\(476\) 0 0
\(477\) −1.15246e12 −1.01928
\(478\) 4.13836e11 0.362579
\(479\) −1.25213e11 −0.108678 −0.0543388 0.998523i \(-0.517305\pi\)
−0.0543388 + 0.998523i \(0.517305\pi\)
\(480\) −1.00999e11 −0.0868422
\(481\) 4.85997e11 0.413981
\(482\) −5.14889e11 −0.434512
\(483\) 0 0
\(484\) −5.81111e11 −0.481343
\(485\) −2.32989e12 −1.91204
\(486\) −8.00041e11 −0.650502
\(487\) 1.91907e12 1.54600 0.773001 0.634404i \(-0.218755\pi\)
0.773001 + 0.634404i \(0.218755\pi\)
\(488\) 6.79250e11 0.542176
\(489\) −1.54479e11 −0.122174
\(490\) 0 0
\(491\) −1.29801e12 −1.00789 −0.503944 0.863736i \(-0.668118\pi\)
−0.503944 + 0.863736i \(0.668118\pi\)
\(492\) 1.20898e11 0.0930203
\(493\) −4.22610e11 −0.322202
\(494\) −1.61207e12 −1.21790
\(495\) −2.91593e11 −0.218300
\(496\) 5.22622e11 0.387722
\(497\) 0 0
\(498\) −3.70417e11 −0.269873
\(499\) −4.26076e11 −0.307634 −0.153817 0.988099i \(-0.549157\pi\)
−0.153817 + 0.988099i \(0.549157\pi\)
\(500\) −2.51493e11 −0.179954
\(501\) −8.34441e11 −0.591733
\(502\) 3.87648e11 0.272440
\(503\) −1.75682e12 −1.22369 −0.611844 0.790978i \(-0.709572\pi\)
−0.611844 + 0.790978i \(0.709572\pi\)
\(504\) 0 0
\(505\) 2.51231e12 1.71895
\(506\) 1.46919e11 0.0996322
\(507\) 1.12538e12 0.756421
\(508\) 7.36251e11 0.490500
\(509\) 2.59034e12 1.71052 0.855258 0.518203i \(-0.173399\pi\)
0.855258 + 0.518203i \(0.173399\pi\)
\(510\) −1.50859e11 −0.0987430
\(511\) 0 0
\(512\) −6.87195e10 −0.0441942
\(513\) −1.08087e12 −0.689042
\(514\) −5.70465e11 −0.360491
\(515\) −3.52806e11 −0.221006
\(516\) −4.66756e11 −0.289845
\(517\) 3.95625e11 0.243544
\(518\) 0 0
\(519\) 5.41899e11 0.327843
\(520\) −1.34652e12 −0.807603
\(521\) −9.63629e11 −0.572981 −0.286490 0.958083i \(-0.592489\pi\)
−0.286490 + 0.958083i \(0.592489\pi\)
\(522\) −1.16952e12 −0.689428
\(523\) 6.27990e11 0.367024 0.183512 0.983017i \(-0.441253\pi\)
0.183512 + 0.983017i \(0.441253\pi\)
\(524\) 1.52859e12 0.885729
\(525\) 0 0
\(526\) 1.90990e12 1.08787
\(527\) 7.80627e11 0.440855
\(528\) 3.22483e10 0.0180574
\(529\) −8.42837e11 −0.467943
\(530\) −1.99965e12 −1.10081
\(531\) 5.79578e11 0.316364
\(532\) 0 0
\(533\) 1.61182e12 0.865057
\(534\) −4.66073e11 −0.248038
\(535\) −1.92522e12 −1.01599
\(536\) −9.95100e11 −0.520745
\(537\) 5.66696e11 0.294080
\(538\) 1.68928e12 0.869325
\(539\) 0 0
\(540\) −9.02825e11 −0.456911
\(541\) −3.11573e12 −1.56377 −0.781884 0.623424i \(-0.785741\pi\)
−0.781884 + 0.623424i \(0.785741\pi\)
\(542\) −1.00884e12 −0.502143
\(543\) 3.22071e11 0.158984
\(544\) −1.02645e11 −0.0502505
\(545\) 3.74116e12 1.81644
\(546\) 0 0
\(547\) 1.73766e12 0.829890 0.414945 0.909846i \(-0.363801\pi\)
0.414945 + 0.909846i \(0.363801\pi\)
\(548\) −3.57657e11 −0.169416
\(549\) 2.80771e12 1.31910
\(550\) −2.12825e11 −0.0991722
\(551\) −2.42944e12 −1.12286
\(552\) 2.10348e11 0.0964301
\(553\) 0 0
\(554\) 1.41272e12 0.637182
\(555\) 2.61450e11 0.116969
\(556\) 2.03925e12 0.904969
\(557\) −4.38426e12 −1.92996 −0.964980 0.262323i \(-0.915512\pi\)
−0.964980 + 0.262323i \(0.915512\pi\)
\(558\) 2.16028e12 0.943314
\(559\) −6.22281e12 −2.69546
\(560\) 0 0
\(561\) 4.81685e10 0.0205319
\(562\) 2.27545e11 0.0962176
\(563\) 2.60529e12 1.09287 0.546434 0.837502i \(-0.315985\pi\)
0.546434 + 0.837502i \(0.315985\pi\)
\(564\) 5.66429e11 0.235716
\(565\) −8.64793e11 −0.357021
\(566\) −2.30706e12 −0.944898
\(567\) 0 0
\(568\) 3.86222e11 0.155693
\(569\) −1.02052e12 −0.408145 −0.204073 0.978956i \(-0.565418\pi\)
−0.204073 + 0.978956i \(0.565418\pi\)
\(570\) −8.67239e11 −0.344114
\(571\) 3.02032e11 0.118902 0.0594512 0.998231i \(-0.481065\pi\)
0.0594512 + 0.998231i \(0.481065\pi\)
\(572\) 4.29936e11 0.167927
\(573\) −4.92443e11 −0.190836
\(574\) 0 0
\(575\) −1.38820e12 −0.529600
\(576\) −2.84055e11 −0.107523
\(577\) −7.23583e11 −0.271767 −0.135884 0.990725i \(-0.543387\pi\)
−0.135884 + 0.990725i \(0.543387\pi\)
\(578\) 1.74409e12 0.649970
\(579\) 4.75498e11 0.175831
\(580\) −2.02925e12 −0.744577
\(581\) 0 0
\(582\) 1.06509e12 0.384799
\(583\) 6.38477e11 0.228895
\(584\) −5.46138e11 −0.194287
\(585\) −5.56590e12 −1.96487
\(586\) 1.18266e12 0.414306
\(587\) 4.21402e12 1.46496 0.732479 0.680789i \(-0.238363\pi\)
0.732479 + 0.680789i \(0.238363\pi\)
\(588\) 0 0
\(589\) 4.48756e12 1.53635
\(590\) 1.00564e12 0.341671
\(591\) −3.83533e11 −0.129318
\(592\) 1.77891e11 0.0595258
\(593\) −5.62279e12 −1.86727 −0.933633 0.358232i \(-0.883380\pi\)
−0.933633 + 0.358232i \(0.883380\pi\)
\(594\) 2.88267e11 0.0950069
\(595\) 0 0
\(596\) −2.82267e12 −0.916329
\(597\) −7.92401e10 −0.0255306
\(598\) 2.80437e12 0.896767
\(599\) 7.65734e11 0.243028 0.121514 0.992590i \(-0.461225\pi\)
0.121514 + 0.992590i \(0.461225\pi\)
\(600\) −3.04708e11 −0.0959849
\(601\) −9.63630e11 −0.301283 −0.150642 0.988588i \(-0.548134\pi\)
−0.150642 + 0.988588i \(0.548134\pi\)
\(602\) 0 0
\(603\) −4.11329e12 −1.26696
\(604\) −1.00985e12 −0.308739
\(605\) −4.16784e12 −1.26477
\(606\) −1.14848e12 −0.345938
\(607\) 2.28495e12 0.683167 0.341583 0.939851i \(-0.389037\pi\)
0.341583 + 0.939851i \(0.389037\pi\)
\(608\) −5.90068e11 −0.175120
\(609\) 0 0
\(610\) 4.87172e12 1.42462
\(611\) 7.55165e12 2.19208
\(612\) −4.24286e11 −0.122258
\(613\) 1.19459e12 0.341703 0.170851 0.985297i \(-0.445348\pi\)
0.170851 + 0.985297i \(0.445348\pi\)
\(614\) −1.78777e12 −0.507637
\(615\) 8.67108e11 0.244419
\(616\) 0 0
\(617\) −3.40574e12 −0.946082 −0.473041 0.881040i \(-0.656844\pi\)
−0.473041 + 0.881040i \(0.656844\pi\)
\(618\) 1.61283e11 0.0444775
\(619\) −1.61630e10 −0.00442501 −0.00221250 0.999998i \(-0.500704\pi\)
−0.00221250 + 0.999998i \(0.500704\pi\)
\(620\) 3.74835e12 1.01877
\(621\) 1.88029e12 0.507357
\(622\) 3.53663e12 0.947398
\(623\) 0 0
\(624\) 6.15552e11 0.162530
\(625\) −4.57344e12 −1.19890
\(626\) 1.72203e12 0.448183
\(627\) 2.76904e11 0.0715526
\(628\) 1.73144e12 0.444209
\(629\) 2.65711e11 0.0676832
\(630\) 0 0
\(631\) −4.72735e12 −1.18710 −0.593548 0.804799i \(-0.702273\pi\)
−0.593548 + 0.804799i \(0.702273\pi\)
\(632\) −2.77555e12 −0.692026
\(633\) −9.92257e11 −0.245645
\(634\) 5.21015e12 1.28070
\(635\) 5.28054e12 1.28883
\(636\) 9.14127e11 0.221539
\(637\) 0 0
\(638\) 6.47927e11 0.154822
\(639\) 1.59647e12 0.378796
\(640\) −4.92870e11 −0.116124
\(641\) −1.83470e12 −0.429243 −0.214621 0.976697i \(-0.568852\pi\)
−0.214621 + 0.976697i \(0.568852\pi\)
\(642\) 8.80103e11 0.204468
\(643\) 3.00823e12 0.694003 0.347001 0.937865i \(-0.387200\pi\)
0.347001 + 0.937865i \(0.387200\pi\)
\(644\) 0 0
\(645\) −3.34767e12 −0.761594
\(646\) −8.81370e11 −0.199119
\(647\) −5.10356e12 −1.14500 −0.572499 0.819906i \(-0.694026\pi\)
−0.572499 + 0.819906i \(0.694026\pi\)
\(648\) −9.52284e11 −0.212167
\(649\) −3.21094e11 −0.0710446
\(650\) −4.06237e12 −0.892626
\(651\) 0 0
\(652\) −7.53852e11 −0.163370
\(653\) 4.12342e12 0.887458 0.443729 0.896161i \(-0.353655\pi\)
0.443729 + 0.896161i \(0.353655\pi\)
\(654\) −1.71024e12 −0.365560
\(655\) 1.09634e13 2.32733
\(656\) 5.89979e11 0.124385
\(657\) −2.25749e12 −0.472695
\(658\) 0 0
\(659\) −7.14612e12 −1.47600 −0.737999 0.674802i \(-0.764229\pi\)
−0.737999 + 0.674802i \(0.764229\pi\)
\(660\) 2.31291e11 0.0474473
\(661\) 7.53617e12 1.53548 0.767740 0.640761i \(-0.221381\pi\)
0.767740 + 0.640761i \(0.221381\pi\)
\(662\) 2.71271e12 0.548963
\(663\) 9.19434e11 0.184803
\(664\) −1.80762e12 −0.360870
\(665\) 0 0
\(666\) 7.35318e11 0.144824
\(667\) 4.22628e12 0.826783
\(668\) −4.07203e12 −0.791256
\(669\) −2.81911e12 −0.544119
\(670\) −7.13706e12 −1.36830
\(671\) −1.55551e12 −0.296225
\(672\) 0 0
\(673\) 2.71281e12 0.509743 0.254872 0.966975i \(-0.417967\pi\)
0.254872 + 0.966975i \(0.417967\pi\)
\(674\) 2.02810e12 0.378547
\(675\) −2.72377e12 −0.505014
\(676\) 5.49180e12 1.01147
\(677\) −1.68158e12 −0.307658 −0.153829 0.988097i \(-0.549160\pi\)
−0.153829 + 0.988097i \(0.549160\pi\)
\(678\) 3.95334e11 0.0718506
\(679\) 0 0
\(680\) −7.36187e11 −0.132038
\(681\) −3.41687e11 −0.0608789
\(682\) −1.19682e12 −0.211837
\(683\) 3.57937e12 0.629380 0.314690 0.949194i \(-0.398099\pi\)
0.314690 + 0.949194i \(0.398099\pi\)
\(684\) −2.43907e12 −0.426062
\(685\) −2.56519e12 −0.445156
\(686\) 0 0
\(687\) −1.09405e12 −0.187384
\(688\) −2.27775e12 −0.387577
\(689\) 1.21872e13 2.06023
\(690\) 1.50866e12 0.253379
\(691\) −4.21356e12 −0.703069 −0.351535 0.936175i \(-0.614340\pi\)
−0.351535 + 0.936175i \(0.614340\pi\)
\(692\) 2.64444e12 0.438386
\(693\) 0 0
\(694\) 2.86572e12 0.468939
\(695\) 1.46259e13 2.37789
\(696\) 9.27658e11 0.149846
\(697\) 8.81237e11 0.141431
\(698\) 2.78202e12 0.443619
\(699\) 1.00491e12 0.159213
\(700\) 0 0
\(701\) −6.32382e12 −0.989119 −0.494560 0.869144i \(-0.664671\pi\)
−0.494560 + 0.869144i \(0.664671\pi\)
\(702\) 5.50240e12 0.855135
\(703\) 1.52748e12 0.235872
\(704\) 1.57370e11 0.0241460
\(705\) 4.06254e12 0.619365
\(706\) 1.44560e12 0.218991
\(707\) 0 0
\(708\) −4.59720e11 −0.0687613
\(709\) −8.01320e12 −1.19096 −0.595481 0.803369i \(-0.703039\pi\)
−0.595481 + 0.803369i \(0.703039\pi\)
\(710\) 2.77006e12 0.409097
\(711\) −1.14729e13 −1.68368
\(712\) −2.27442e12 −0.331673
\(713\) −7.80660e12 −1.13125
\(714\) 0 0
\(715\) 3.08358e12 0.441244
\(716\) 2.76545e12 0.393239
\(717\) −1.35685e12 −0.191733
\(718\) 2.94319e12 0.413294
\(719\) 1.84798e12 0.257879 0.128940 0.991652i \(-0.458843\pi\)
0.128940 + 0.991652i \(0.458843\pi\)
\(720\) −2.03730e12 −0.282526
\(721\) 0 0
\(722\) 9.63057e10 0.0131897
\(723\) 1.68818e12 0.229771
\(724\) 1.57169e12 0.212591
\(725\) −6.12213e12 −0.822966
\(726\) 1.90530e12 0.254535
\(727\) 9.54988e12 1.26792 0.633962 0.773365i \(-0.281428\pi\)
0.633962 + 0.773365i \(0.281428\pi\)
\(728\) 0 0
\(729\) −1.95301e12 −0.256113
\(730\) −3.91701e12 −0.510507
\(731\) −3.40222e12 −0.440690
\(732\) −2.22707e12 −0.286704
\(733\) −2.45279e12 −0.313828 −0.156914 0.987612i \(-0.550155\pi\)
−0.156914 + 0.987612i \(0.550155\pi\)
\(734\) 5.78100e12 0.735141
\(735\) 0 0
\(736\) 1.02649e12 0.128945
\(737\) 2.27882e12 0.284516
\(738\) 2.43871e12 0.302626
\(739\) 1.03314e13 1.27426 0.637131 0.770755i \(-0.280121\pi\)
0.637131 + 0.770755i \(0.280121\pi\)
\(740\) 1.27587e12 0.156409
\(741\) 5.28551e12 0.644029
\(742\) 0 0
\(743\) 2.90098e12 0.349216 0.174608 0.984638i \(-0.444134\pi\)
0.174608 + 0.984638i \(0.444134\pi\)
\(744\) −1.71353e12 −0.205028
\(745\) −2.02447e13 −2.40774
\(746\) −2.59873e12 −0.307211
\(747\) −7.47188e12 −0.877985
\(748\) 2.35060e11 0.0274550
\(749\) 0 0
\(750\) 8.24576e11 0.0951602
\(751\) 1.75532e12 0.201362 0.100681 0.994919i \(-0.467898\pi\)
0.100681 + 0.994919i \(0.467898\pi\)
\(752\) 2.76415e12 0.315196
\(753\) −1.27099e12 −0.144067
\(754\) 1.23676e13 1.39352
\(755\) −7.24286e12 −0.811240
\(756\) 0 0
\(757\) 1.28835e13 1.42594 0.712972 0.701193i \(-0.247349\pi\)
0.712972 + 0.701193i \(0.247349\pi\)
\(758\) 1.72531e11 0.0189826
\(759\) −4.81705e11 −0.0526858
\(760\) −4.23209e12 −0.460144
\(761\) −1.97149e12 −0.213090 −0.106545 0.994308i \(-0.533979\pi\)
−0.106545 + 0.994308i \(0.533979\pi\)
\(762\) −2.41396e12 −0.259378
\(763\) 0 0
\(764\) −2.40310e12 −0.255183
\(765\) −3.04306e12 −0.321243
\(766\) −1.11657e13 −1.17181
\(767\) −6.12900e12 −0.639456
\(768\) 2.25312e11 0.0233700
\(769\) 8.44373e12 0.870694 0.435347 0.900263i \(-0.356626\pi\)
0.435347 + 0.900263i \(0.356626\pi\)
\(770\) 0 0
\(771\) 1.87039e12 0.190629
\(772\) 2.32041e12 0.235118
\(773\) 1.27925e13 1.28869 0.644344 0.764736i \(-0.277131\pi\)
0.644344 + 0.764736i \(0.277131\pi\)
\(774\) −9.41518e12 −0.942962
\(775\) 1.13086e13 1.12603
\(776\) 5.19760e12 0.514547
\(777\) 0 0
\(778\) 9.58335e12 0.937798
\(779\) 5.06593e12 0.492879
\(780\) 4.41486e12 0.427062
\(781\) −8.84463e11 −0.0850649
\(782\) 1.53324e12 0.146615
\(783\) 8.29230e12 0.788401
\(784\) 0 0
\(785\) 1.24182e13 1.16720
\(786\) −5.01183e12 −0.468376
\(787\) 1.46833e13 1.36439 0.682194 0.731171i \(-0.261026\pi\)
0.682194 + 0.731171i \(0.261026\pi\)
\(788\) −1.87162e12 −0.172922
\(789\) −6.26204e12 −0.575267
\(790\) −1.99068e13 −1.81836
\(791\) 0 0
\(792\) 6.50497e11 0.0587465
\(793\) −2.96914e13 −2.66625
\(794\) 5.89055e12 0.525973
\(795\) 6.55630e12 0.582112
\(796\) −3.86688e11 −0.0341391
\(797\) −1.35485e13 −1.18940 −0.594699 0.803948i \(-0.702729\pi\)
−0.594699 + 0.803948i \(0.702729\pi\)
\(798\) 0 0
\(799\) 4.12874e12 0.358391
\(800\) −1.48696e12 −0.128349
\(801\) −9.40141e12 −0.806950
\(802\) −1.77951e12 −0.151885
\(803\) 1.25068e12 0.106151
\(804\) 3.26265e12 0.275371
\(805\) 0 0
\(806\) −2.28448e13 −1.90669
\(807\) −5.53869e12 −0.459702
\(808\) −5.60455e12 −0.462583
\(809\) −1.43230e13 −1.17562 −0.587810 0.808999i \(-0.700010\pi\)
−0.587810 + 0.808999i \(0.700010\pi\)
\(810\) −6.82997e12 −0.557489
\(811\) −2.09686e13 −1.70206 −0.851030 0.525117i \(-0.824021\pi\)
−0.851030 + 0.525117i \(0.824021\pi\)
\(812\) 0 0
\(813\) 3.30772e12 0.265535
\(814\) −4.07376e11 −0.0325226
\(815\) −5.40678e12 −0.429269
\(816\) 3.36543e11 0.0265726
\(817\) −1.95582e13 −1.53578
\(818\) 7.07890e12 0.552810
\(819\) 0 0
\(820\) 4.23145e12 0.326834
\(821\) −1.45338e13 −1.11644 −0.558219 0.829694i \(-0.688515\pi\)
−0.558219 + 0.829694i \(0.688515\pi\)
\(822\) 1.17266e12 0.0895877
\(823\) 1.83532e13 1.39448 0.697240 0.716837i \(-0.254411\pi\)
0.697240 + 0.716837i \(0.254411\pi\)
\(824\) 7.87053e11 0.0594746
\(825\) 6.97792e11 0.0524425
\(826\) 0 0
\(827\) −7.78350e11 −0.0578629 −0.0289315 0.999581i \(-0.509210\pi\)
−0.0289315 + 0.999581i \(0.509210\pi\)
\(828\) 4.24304e12 0.313719
\(829\) −9.79518e12 −0.720306 −0.360153 0.932893i \(-0.617276\pi\)
−0.360153 + 0.932893i \(0.617276\pi\)
\(830\) −1.29646e13 −0.948218
\(831\) −4.63193e12 −0.336943
\(832\) 3.00386e12 0.217333
\(833\) 0 0
\(834\) −6.68613e12 −0.478550
\(835\) −2.92054e13 −2.07910
\(836\) 1.35128e12 0.0956791
\(837\) −1.53172e13 −1.07873
\(838\) −1.20800e13 −0.846189
\(839\) 2.38998e12 0.166520 0.0832598 0.996528i \(-0.473467\pi\)
0.0832598 + 0.996528i \(0.473467\pi\)
\(840\) 0 0
\(841\) 4.13119e12 0.284769
\(842\) −6.90056e12 −0.473130
\(843\) −7.46057e11 −0.0508801
\(844\) −4.84217e12 −0.328472
\(845\) 3.93883e13 2.65774
\(846\) 1.14257e13 0.766862
\(847\) 0 0
\(848\) 4.46090e12 0.296238
\(849\) 7.56420e12 0.499664
\(850\) −2.22103e12 −0.145938
\(851\) −2.65722e12 −0.173678
\(852\) −1.26631e12 −0.0823309
\(853\) 1.36355e13 0.881860 0.440930 0.897541i \(-0.354649\pi\)
0.440930 + 0.897541i \(0.354649\pi\)
\(854\) 0 0
\(855\) −1.74935e13 −1.11951
\(856\) 4.29486e12 0.273412
\(857\) 3.26982e12 0.207067 0.103533 0.994626i \(-0.466985\pi\)
0.103533 + 0.994626i \(0.466985\pi\)
\(858\) −1.40964e12 −0.0888004
\(859\) 1.96336e11 0.0123035 0.00615177 0.999981i \(-0.498042\pi\)
0.00615177 + 0.999981i \(0.498042\pi\)
\(860\) −1.63365e13 −1.01839
\(861\) 0 0
\(862\) −1.62200e13 −1.00062
\(863\) −9.03351e12 −0.554381 −0.277190 0.960815i \(-0.589403\pi\)
−0.277190 + 0.960815i \(0.589403\pi\)
\(864\) 2.01405e12 0.122959
\(865\) 1.89665e13 1.15190
\(866\) −9.64753e12 −0.582889
\(867\) −5.71838e12 −0.343706
\(868\) 0 0
\(869\) 6.35612e12 0.378097
\(870\) 6.65334e12 0.393734
\(871\) 4.34978e13 2.56086
\(872\) −8.34591e12 −0.488821
\(873\) 2.14845e13 1.25188
\(874\) 8.81408e12 0.510946
\(875\) 0 0
\(876\) 1.79063e12 0.102740
\(877\) 7.05313e12 0.402609 0.201305 0.979529i \(-0.435482\pi\)
0.201305 + 0.979529i \(0.435482\pi\)
\(878\) −7.26856e12 −0.412784
\(879\) −3.87762e12 −0.219086
\(880\) 1.12869e12 0.0634458
\(881\) 3.36898e13 1.88411 0.942056 0.335456i \(-0.108890\pi\)
0.942056 + 0.335456i \(0.108890\pi\)
\(882\) 0 0
\(883\) 2.36891e13 1.31137 0.655686 0.755034i \(-0.272379\pi\)
0.655686 + 0.755034i \(0.272379\pi\)
\(884\) 4.48680e12 0.247116
\(885\) −3.29720e12 −0.180676
\(886\) −1.61422e13 −0.880057
\(887\) −2.18995e13 −1.18790 −0.593948 0.804503i \(-0.702432\pi\)
−0.593948 + 0.804503i \(0.702432\pi\)
\(888\) −5.83253e11 −0.0314774
\(889\) 0 0
\(890\) −1.63126e13 −0.871500
\(891\) 2.18077e12 0.115920
\(892\) −1.37571e13 −0.727588
\(893\) 2.37347e13 1.24897
\(894\) 9.25474e12 0.484557
\(895\) 1.98343e13 1.03327
\(896\) 0 0
\(897\) −9.19473e12 −0.474213
\(898\) −2.41712e11 −0.0124038
\(899\) −3.44280e13 −1.75789
\(900\) −6.14641e12 −0.312270
\(901\) 6.66313e12 0.336835
\(902\) −1.35108e12 −0.0679595
\(903\) 0 0
\(904\) 1.92921e12 0.0960775
\(905\) 1.12725e13 0.558600
\(906\) 3.31102e12 0.163262
\(907\) 1.41797e13 0.695720 0.347860 0.937546i \(-0.386908\pi\)
0.347860 + 0.937546i \(0.386908\pi\)
\(908\) −1.66742e12 −0.0814063
\(909\) −2.31667e13 −1.12545
\(910\) 0 0
\(911\) −5.44567e12 −0.261950 −0.130975 0.991386i \(-0.541811\pi\)
−0.130975 + 0.991386i \(0.541811\pi\)
\(912\) 1.93467e12 0.0926040
\(913\) 4.13952e12 0.197166
\(914\) 1.65408e13 0.783966
\(915\) −1.59730e13 −0.753340
\(916\) −5.33893e12 −0.250567
\(917\) 0 0
\(918\) 3.00834e12 0.139809
\(919\) 2.75583e13 1.27448 0.637240 0.770665i \(-0.280076\pi\)
0.637240 + 0.770665i \(0.280076\pi\)
\(920\) 7.36218e12 0.338814
\(921\) 5.86159e12 0.268440
\(922\) 9.85885e12 0.449301
\(923\) −1.68825e13 −0.765649
\(924\) 0 0
\(925\) 3.84921e12 0.172876
\(926\) −1.41988e13 −0.634603
\(927\) 3.25332e12 0.144700
\(928\) 4.52693e12 0.200372
\(929\) −1.01769e13 −0.448276 −0.224138 0.974557i \(-0.571957\pi\)
−0.224138 + 0.974557i \(0.571957\pi\)
\(930\) −1.22898e13 −0.538730
\(931\) 0 0
\(932\) 4.90390e12 0.212897
\(933\) −1.15956e13 −0.500987
\(934\) 2.81997e13 1.21251
\(935\) 1.68590e12 0.0721404
\(936\) 1.24166e13 0.528764
\(937\) −1.96831e13 −0.834192 −0.417096 0.908863i \(-0.636952\pi\)
−0.417096 + 0.908863i \(0.636952\pi\)
\(938\) 0 0
\(939\) −5.64604e12 −0.237000
\(940\) 1.98250e13 0.828206
\(941\) −7.56033e12 −0.314331 −0.157166 0.987572i \(-0.550236\pi\)
−0.157166 + 0.987572i \(0.550236\pi\)
\(942\) −5.67689e12 −0.234899
\(943\) −8.81274e12 −0.362918
\(944\) −2.24341e12 −0.0919465
\(945\) 0 0
\(946\) 5.21613e12 0.211757
\(947\) 2.42370e13 0.979274 0.489637 0.871926i \(-0.337129\pi\)
0.489637 + 0.871926i \(0.337129\pi\)
\(948\) 9.10026e12 0.365945
\(949\) 2.38728e13 0.955443
\(950\) −1.27680e13 −0.508587
\(951\) −1.70826e13 −0.677239
\(952\) 0 0
\(953\) 2.69411e13 1.05803 0.529015 0.848613i \(-0.322562\pi\)
0.529015 + 0.848613i \(0.322562\pi\)
\(954\) 1.84393e13 0.720738
\(955\) −1.72355e13 −0.670516
\(956\) −6.62138e12 −0.256382
\(957\) −2.12437e12 −0.0818704
\(958\) 2.00341e12 0.0768467
\(959\) 0 0
\(960\) 1.61598e12 0.0614067
\(961\) 3.71543e13 1.40525
\(962\) −7.77595e12 −0.292729
\(963\) 1.77530e13 0.665202
\(964\) 8.23822e12 0.307246
\(965\) 1.66424e13 0.617794
\(966\) 0 0
\(967\) 2.13513e13 0.785245 0.392623 0.919700i \(-0.371568\pi\)
0.392623 + 0.919700i \(0.371568\pi\)
\(968\) 9.29777e12 0.340361
\(969\) 2.88977e12 0.105294
\(970\) 3.72782e13 1.35202
\(971\) 6.21151e11 0.0224239 0.0112119 0.999937i \(-0.496431\pi\)
0.0112119 + 0.999937i \(0.496431\pi\)
\(972\) 1.28007e13 0.459975
\(973\) 0 0
\(974\) −3.07051e13 −1.09319
\(975\) 1.33194e13 0.472023
\(976\) −1.08680e13 −0.383376
\(977\) −2.12880e13 −0.747496 −0.373748 0.927530i \(-0.621927\pi\)
−0.373748 + 0.927530i \(0.621927\pi\)
\(978\) 2.47167e12 0.0863904
\(979\) 5.20850e12 0.181214
\(980\) 0 0
\(981\) −3.44982e13 −1.18928
\(982\) 2.07682e13 0.712685
\(983\) 5.65684e12 0.193234 0.0966169 0.995322i \(-0.469198\pi\)
0.0966169 + 0.995322i \(0.469198\pi\)
\(984\) −1.93438e12 −0.0657753
\(985\) −1.34236e13 −0.454368
\(986\) 6.76175e12 0.227831
\(987\) 0 0
\(988\) 2.57931e13 0.861186
\(989\) 3.40236e13 1.13083
\(990\) 4.66549e12 0.154362
\(991\) −1.82458e13 −0.600939 −0.300469 0.953791i \(-0.597143\pi\)
−0.300469 + 0.953791i \(0.597143\pi\)
\(992\) −8.36195e12 −0.274161
\(993\) −8.89422e12 −0.290293
\(994\) 0 0
\(995\) −2.77340e12 −0.0897035
\(996\) 5.92668e12 0.190829
\(997\) −9.67315e12 −0.310056 −0.155028 0.987910i \(-0.549547\pi\)
−0.155028 + 0.987910i \(0.549547\pi\)
\(998\) 6.81721e12 0.217530
\(999\) −5.21368e12 −0.165615
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.a.d.1.2 yes 2
7.2 even 3 98.10.c.i.67.1 4
7.3 odd 6 98.10.c.i.79.2 4
7.4 even 3 98.10.c.i.79.1 4
7.5 odd 6 98.10.c.i.67.2 4
7.6 odd 2 inner 98.10.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
98.10.a.d.1.1 2 7.6 odd 2 inner
98.10.a.d.1.2 yes 2 1.1 even 1 trivial
98.10.c.i.67.1 4 7.2 even 3
98.10.c.i.67.2 4 7.5 odd 6
98.10.c.i.79.1 4 7.4 even 3
98.10.c.i.79.2 4 7.3 odd 6