Properties

Label 98.10.a.b.1.1
Level $98$
Weight $10$
Character 98.1
Self dual yes
Analytic conductor $50.474$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,16,-170] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} -170.000 q^{3} +256.000 q^{4} -544.000 q^{5} -2720.00 q^{6} +4096.00 q^{8} +9217.00 q^{9} -8704.00 q^{10} +48824.0 q^{11} -43520.0 q^{12} +15876.0 q^{13} +92480.0 q^{15} +65536.0 q^{16} +21418.0 q^{17} +147472. q^{18} +716410. q^{19} -139264. q^{20} +781184. q^{22} -2.47000e6 q^{23} -696320. q^{24} -1.65719e6 q^{25} +254016. q^{26} +1.77922e6 q^{27} +5.55683e6 q^{29} +1.47968e6 q^{30} -5.79935e6 q^{31} +1.04858e6 q^{32} -8.30008e6 q^{33} +342688. q^{34} +2.35955e6 q^{36} -3.89443e6 q^{37} +1.14626e7 q^{38} -2.69892e6 q^{39} -2.22822e6 q^{40} +6.36086e6 q^{41} -1.87013e7 q^{43} +1.24989e7 q^{44} -5.01405e6 q^{45} -3.95200e7 q^{46} -5.65391e7 q^{47} -1.11411e7 q^{48} -2.65150e7 q^{50} -3.64106e6 q^{51} +4.06426e6 q^{52} -5.98947e7 q^{53} +2.84675e7 q^{54} -2.65603e7 q^{55} -1.21790e8 q^{57} +8.89092e7 q^{58} -1.65630e8 q^{59} +2.36749e7 q^{60} -5.14190e7 q^{61} -9.27896e7 q^{62} +1.67772e7 q^{64} -8.63654e6 q^{65} -1.32801e8 q^{66} +9.35465e7 q^{67} +5.48301e6 q^{68} +4.19900e8 q^{69} -9.56335e7 q^{71} +3.77528e7 q^{72} -3.06496e8 q^{73} -6.23109e7 q^{74} +2.81722e8 q^{75} +1.83401e8 q^{76} -4.31827e7 q^{78} +4.96474e8 q^{79} -3.56516e7 q^{80} -4.83886e8 q^{81} +1.01774e8 q^{82} +3.71487e8 q^{83} -1.16514e7 q^{85} -2.99221e8 q^{86} -9.44660e8 q^{87} +1.99983e8 q^{88} +1.65483e8 q^{89} -8.02248e7 q^{90} -6.32320e8 q^{92} +9.85889e8 q^{93} -9.04625e8 q^{94} -3.89727e8 q^{95} -1.78258e8 q^{96} -7.58017e8 q^{97} +4.50011e8 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) −170.000 −1.21172 −0.605861 0.795570i \(-0.707171\pi\)
−0.605861 + 0.795570i \(0.707171\pi\)
\(4\) 256.000 0.500000
\(5\) −544.000 −0.389255 −0.194627 0.980877i \(-0.562350\pi\)
−0.194627 + 0.980877i \(0.562350\pi\)
\(6\) −2720.00 −0.856817
\(7\) 0 0
\(8\) 4096.00 0.353553
\(9\) 9217.00 0.468272
\(10\) −8704.00 −0.275245
\(11\) 48824.0 1.00546 0.502732 0.864442i \(-0.332328\pi\)
0.502732 + 0.864442i \(0.332328\pi\)
\(12\) −43520.0 −0.605861
\(13\) 15876.0 0.154169 0.0770843 0.997025i \(-0.475439\pi\)
0.0770843 + 0.997025i \(0.475439\pi\)
\(14\) 0 0
\(15\) 92480.0 0.471669
\(16\) 65536.0 0.250000
\(17\) 21418.0 0.0621955 0.0310977 0.999516i \(-0.490100\pi\)
0.0310977 + 0.999516i \(0.490100\pi\)
\(18\) 147472. 0.331118
\(19\) 716410. 1.26116 0.630580 0.776124i \(-0.282817\pi\)
0.630580 + 0.776124i \(0.282817\pi\)
\(20\) −139264. −0.194627
\(21\) 0 0
\(22\) 781184. 0.710970
\(23\) −2.47000e6 −1.84044 −0.920220 0.391401i \(-0.871990\pi\)
−0.920220 + 0.391401i \(0.871990\pi\)
\(24\) −696320. −0.428409
\(25\) −1.65719e6 −0.848481
\(26\) 254016. 0.109014
\(27\) 1.77922e6 0.644307
\(28\) 0 0
\(29\) 5.55683e6 1.45893 0.729467 0.684016i \(-0.239768\pi\)
0.729467 + 0.684016i \(0.239768\pi\)
\(30\) 1.47968e6 0.333520
\(31\) −5.79935e6 −1.12785 −0.563925 0.825826i \(-0.690709\pi\)
−0.563925 + 0.825826i \(0.690709\pi\)
\(32\) 1.04858e6 0.176777
\(33\) −8.30008e6 −1.21834
\(34\) 342688. 0.0439788
\(35\) 0 0
\(36\) 2.35955e6 0.234136
\(37\) −3.89443e6 −0.341614 −0.170807 0.985304i \(-0.554638\pi\)
−0.170807 + 0.985304i \(0.554638\pi\)
\(38\) 1.14626e7 0.891775
\(39\) −2.69892e6 −0.186810
\(40\) −2.22822e6 −0.137622
\(41\) 6.36086e6 0.351551 0.175776 0.984430i \(-0.443757\pi\)
0.175776 + 0.984430i \(0.443757\pi\)
\(42\) 0 0
\(43\) −1.87013e7 −0.834187 −0.417094 0.908863i \(-0.636951\pi\)
−0.417094 + 0.908863i \(0.636951\pi\)
\(44\) 1.24989e7 0.502732
\(45\) −5.01405e6 −0.182277
\(46\) −3.95200e7 −1.30139
\(47\) −5.65391e7 −1.69008 −0.845042 0.534700i \(-0.820425\pi\)
−0.845042 + 0.534700i \(0.820425\pi\)
\(48\) −1.11411e7 −0.302931
\(49\) 0 0
\(50\) −2.65150e7 −0.599967
\(51\) −3.64106e6 −0.0753637
\(52\) 4.06426e6 0.0770843
\(53\) −5.98947e7 −1.04267 −0.521335 0.853352i \(-0.674566\pi\)
−0.521335 + 0.853352i \(0.674566\pi\)
\(54\) 2.84675e7 0.455594
\(55\) −2.65603e7 −0.391381
\(56\) 0 0
\(57\) −1.21790e8 −1.52818
\(58\) 8.89092e7 1.03162
\(59\) −1.65630e8 −1.77952 −0.889762 0.456424i \(-0.849130\pi\)
−0.889762 + 0.456424i \(0.849130\pi\)
\(60\) 2.36749e7 0.235834
\(61\) −5.14190e7 −0.475488 −0.237744 0.971328i \(-0.576408\pi\)
−0.237744 + 0.971328i \(0.576408\pi\)
\(62\) −9.27896e7 −0.797511
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −8.63654e6 −0.0600109
\(66\) −1.32801e8 −0.861499
\(67\) 9.35465e7 0.567141 0.283570 0.958951i \(-0.408481\pi\)
0.283570 + 0.958951i \(0.408481\pi\)
\(68\) 5.48301e6 0.0310977
\(69\) 4.19900e8 2.23010
\(70\) 0 0
\(71\) −9.56335e7 −0.446630 −0.223315 0.974746i \(-0.571688\pi\)
−0.223315 + 0.974746i \(0.571688\pi\)
\(72\) 3.77528e7 0.165559
\(73\) −3.06496e8 −1.26320 −0.631601 0.775294i \(-0.717602\pi\)
−0.631601 + 0.775294i \(0.717602\pi\)
\(74\) −6.23109e7 −0.241558
\(75\) 2.81722e8 1.02812
\(76\) 1.83401e8 0.630580
\(77\) 0 0
\(78\) −4.31827e7 −0.132094
\(79\) 4.96474e8 1.43408 0.717042 0.697030i \(-0.245495\pi\)
0.717042 + 0.697030i \(0.245495\pi\)
\(80\) −3.56516e7 −0.0973137
\(81\) −4.83886e8 −1.24899
\(82\) 1.01774e8 0.248584
\(83\) 3.71487e8 0.859196 0.429598 0.903020i \(-0.358655\pi\)
0.429598 + 0.903020i \(0.358655\pi\)
\(84\) 0 0
\(85\) −1.16514e7 −0.0242099
\(86\) −2.99221e8 −0.589860
\(87\) −9.44660e8 −1.76782
\(88\) 1.99983e8 0.355485
\(89\) 1.65483e8 0.279574 0.139787 0.990182i \(-0.455358\pi\)
0.139787 + 0.990182i \(0.455358\pi\)
\(90\) −8.02248e7 −0.128889
\(91\) 0 0
\(92\) −6.32320e8 −0.920220
\(93\) 9.85889e8 1.36664
\(94\) −9.04625e8 −1.19507
\(95\) −3.89727e8 −0.490913
\(96\) −1.78258e8 −0.214204
\(97\) −7.58017e8 −0.869373 −0.434686 0.900582i \(-0.643141\pi\)
−0.434686 + 0.900582i \(0.643141\pi\)
\(98\) 0 0
\(99\) 4.50011e8 0.470830
\(100\) −4.24240e8 −0.424240
\(101\) 9.04212e8 0.864618 0.432309 0.901726i \(-0.357699\pi\)
0.432309 + 0.901726i \(0.357699\pi\)
\(102\) −5.82570e7 −0.0532902
\(103\) −1.98157e9 −1.73477 −0.867384 0.497639i \(-0.834200\pi\)
−0.867384 + 0.497639i \(0.834200\pi\)
\(104\) 6.50281e7 0.0545068
\(105\) 0 0
\(106\) −9.58315e8 −0.737279
\(107\) 4.16379e8 0.307087 0.153544 0.988142i \(-0.450931\pi\)
0.153544 + 0.988142i \(0.450931\pi\)
\(108\) 4.55480e8 0.322153
\(109\) −1.26921e9 −0.861220 −0.430610 0.902538i \(-0.641701\pi\)
−0.430610 + 0.902538i \(0.641701\pi\)
\(110\) −4.24964e8 −0.276748
\(111\) 6.62053e8 0.413942
\(112\) 0 0
\(113\) −2.83528e9 −1.63585 −0.817923 0.575328i \(-0.804874\pi\)
−0.817923 + 0.575328i \(0.804874\pi\)
\(114\) −1.94864e9 −1.08058
\(115\) 1.34368e9 0.716400
\(116\) 1.42255e9 0.729467
\(117\) 1.46329e8 0.0721929
\(118\) −2.65007e9 −1.25831
\(119\) 0 0
\(120\) 3.78798e8 0.166760
\(121\) 2.58353e7 0.0109567
\(122\) −8.22704e8 −0.336221
\(123\) −1.08135e9 −0.425982
\(124\) −1.48463e9 −0.563925
\(125\) 1.96401e9 0.719530
\(126\) 0 0
\(127\) 5.44282e9 1.85655 0.928277 0.371889i \(-0.121290\pi\)
0.928277 + 0.371889i \(0.121290\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) 3.17922e9 1.01080
\(130\) −1.38185e8 −0.0424341
\(131\) 6.44057e8 0.191075 0.0955374 0.995426i \(-0.469543\pi\)
0.0955374 + 0.995426i \(0.469543\pi\)
\(132\) −2.12482e9 −0.609171
\(133\) 0 0
\(134\) 1.49674e9 0.401029
\(135\) −9.67896e8 −0.250799
\(136\) 8.77281e7 0.0219894
\(137\) 1.67376e9 0.405928 0.202964 0.979186i \(-0.434942\pi\)
0.202964 + 0.979186i \(0.434942\pi\)
\(138\) 6.71840e9 1.57692
\(139\) 4.17330e9 0.948229 0.474115 0.880463i \(-0.342768\pi\)
0.474115 + 0.880463i \(0.342768\pi\)
\(140\) 0 0
\(141\) 9.61164e9 2.04791
\(142\) −1.53014e9 −0.315815
\(143\) 7.75130e8 0.155011
\(144\) 6.04045e8 0.117068
\(145\) −3.02291e9 −0.567897
\(146\) −4.90394e9 −0.893218
\(147\) 0 0
\(148\) −9.96974e8 −0.170807
\(149\) −4.64096e8 −0.0771382 −0.0385691 0.999256i \(-0.512280\pi\)
−0.0385691 + 0.999256i \(0.512280\pi\)
\(150\) 4.50755e9 0.726993
\(151\) 7.31929e9 1.14571 0.572853 0.819658i \(-0.305837\pi\)
0.572853 + 0.819658i \(0.305837\pi\)
\(152\) 2.93442e9 0.445888
\(153\) 1.97410e8 0.0291244
\(154\) 0 0
\(155\) 3.15485e9 0.439021
\(156\) −6.90924e8 −0.0934048
\(157\) 4.43050e9 0.581975 0.290987 0.956727i \(-0.406016\pi\)
0.290987 + 0.956727i \(0.406016\pi\)
\(158\) 7.94359e9 1.01405
\(159\) 1.01821e10 1.26343
\(160\) −5.70425e8 −0.0688112
\(161\) 0 0
\(162\) −7.74217e9 −0.883172
\(163\) −1.33645e10 −1.48289 −0.741446 0.671013i \(-0.765860\pi\)
−0.741446 + 0.671013i \(0.765860\pi\)
\(164\) 1.62838e9 0.175776
\(165\) 4.51524e9 0.474246
\(166\) 5.94379e9 0.607543
\(167\) 1.24456e10 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(168\) 0 0
\(169\) −1.03525e10 −0.976232
\(170\) −1.86422e8 −0.0171190
\(171\) 6.60315e9 0.590566
\(172\) −4.78753e9 −0.417094
\(173\) −1.04544e10 −0.887345 −0.443672 0.896189i \(-0.646325\pi\)
−0.443672 + 0.896189i \(0.646325\pi\)
\(174\) −1.51146e10 −1.25004
\(175\) 0 0
\(176\) 3.19973e9 0.251366
\(177\) 2.81570e10 2.15629
\(178\) 2.64772e9 0.197689
\(179\) −4.04391e9 −0.294417 −0.147208 0.989105i \(-0.547029\pi\)
−0.147208 + 0.989105i \(0.547029\pi\)
\(180\) −1.28360e9 −0.0911386
\(181\) −1.24735e10 −0.863843 −0.431922 0.901911i \(-0.642164\pi\)
−0.431922 + 0.901911i \(0.642164\pi\)
\(182\) 0 0
\(183\) 8.74123e9 0.576160
\(184\) −1.01171e10 −0.650694
\(185\) 2.11857e9 0.132975
\(186\) 1.57742e10 0.966362
\(187\) 1.04571e9 0.0625353
\(188\) −1.44740e10 −0.845042
\(189\) 0 0
\(190\) −6.23563e9 −0.347128
\(191\) −3.81947e9 −0.207660 −0.103830 0.994595i \(-0.533110\pi\)
−0.103830 + 0.994595i \(0.533110\pi\)
\(192\) −2.85213e9 −0.151465
\(193\) −2.41193e10 −1.25129 −0.625644 0.780109i \(-0.715164\pi\)
−0.625644 + 0.780109i \(0.715164\pi\)
\(194\) −1.21283e10 −0.614739
\(195\) 1.46821e9 0.0727165
\(196\) 0 0
\(197\) −1.24798e10 −0.590351 −0.295176 0.955443i \(-0.595378\pi\)
−0.295176 + 0.955443i \(0.595378\pi\)
\(198\) 7.20017e9 0.332927
\(199\) 2.93127e9 0.132500 0.0662502 0.997803i \(-0.478896\pi\)
0.0662502 + 0.997803i \(0.478896\pi\)
\(200\) −6.78785e9 −0.299983
\(201\) −1.59029e10 −0.687218
\(202\) 1.44674e10 0.611377
\(203\) 0 0
\(204\) −9.32111e8 −0.0376818
\(205\) −3.46031e9 −0.136843
\(206\) −3.17051e10 −1.22667
\(207\) −2.27660e10 −0.861827
\(208\) 1.04045e9 0.0385422
\(209\) 3.49780e10 1.26805
\(210\) 0 0
\(211\) 3.36978e10 1.17039 0.585195 0.810892i \(-0.301018\pi\)
0.585195 + 0.810892i \(0.301018\pi\)
\(212\) −1.53330e10 −0.521335
\(213\) 1.62577e10 0.541191
\(214\) 6.66206e9 0.217143
\(215\) 1.01735e10 0.324711
\(216\) 7.28769e9 0.227797
\(217\) 0 0
\(218\) −2.03073e10 −0.608974
\(219\) 5.21044e10 1.53065
\(220\) −6.79943e9 −0.195691
\(221\) 3.40032e8 0.00958859
\(222\) 1.05928e10 0.292701
\(223\) 3.87208e10 1.04851 0.524255 0.851561i \(-0.324344\pi\)
0.524255 + 0.851561i \(0.324344\pi\)
\(224\) 0 0
\(225\) −1.52743e10 −0.397320
\(226\) −4.53644e10 −1.15672
\(227\) −7.69011e10 −1.92228 −0.961139 0.276063i \(-0.910970\pi\)
−0.961139 + 0.276063i \(0.910970\pi\)
\(228\) −3.11782e10 −0.764089
\(229\) −4.35114e10 −1.04555 −0.522773 0.852472i \(-0.675103\pi\)
−0.522773 + 0.852472i \(0.675103\pi\)
\(230\) 2.14989e10 0.506571
\(231\) 0 0
\(232\) 2.27608e10 0.515811
\(233\) −2.07043e10 −0.460213 −0.230107 0.973165i \(-0.573907\pi\)
−0.230107 + 0.973165i \(0.573907\pi\)
\(234\) 2.34127e9 0.0510481
\(235\) 3.07573e10 0.657873
\(236\) −4.24012e10 −0.889762
\(237\) −8.44006e10 −1.73771
\(238\) 0 0
\(239\) 2.16220e10 0.428653 0.214326 0.976762i \(-0.431244\pi\)
0.214326 + 0.976762i \(0.431244\pi\)
\(240\) 6.06077e9 0.117917
\(241\) −6.77789e10 −1.29425 −0.647124 0.762385i \(-0.724029\pi\)
−0.647124 + 0.762385i \(0.724029\pi\)
\(242\) 4.13365e8 0.00774754
\(243\) 4.72402e10 0.869127
\(244\) −1.31633e10 −0.237744
\(245\) 0 0
\(246\) −1.73015e10 −0.301215
\(247\) 1.13737e10 0.194431
\(248\) −2.37541e10 −0.398755
\(249\) −6.31528e10 −1.04111
\(250\) 3.14242e10 0.508784
\(251\) −4.87895e9 −0.0775881 −0.0387940 0.999247i \(-0.512352\pi\)
−0.0387940 + 0.999247i \(0.512352\pi\)
\(252\) 0 0
\(253\) −1.20595e11 −1.85050
\(254\) 8.70852e10 1.31278
\(255\) 1.98074e9 0.0293357
\(256\) 4.29497e9 0.0625000
\(257\) 2.75029e10 0.393259 0.196630 0.980478i \(-0.437000\pi\)
0.196630 + 0.980478i \(0.437000\pi\)
\(258\) 5.08675e10 0.714746
\(259\) 0 0
\(260\) −2.21096e9 −0.0300054
\(261\) 5.12173e10 0.683178
\(262\) 1.03049e10 0.135110
\(263\) −2.22595e10 −0.286889 −0.143445 0.989658i \(-0.545818\pi\)
−0.143445 + 0.989658i \(0.545818\pi\)
\(264\) −3.39971e10 −0.430749
\(265\) 3.25827e10 0.405864
\(266\) 0 0
\(267\) −2.81320e10 −0.338766
\(268\) 2.39479e10 0.283570
\(269\) −1.73017e10 −0.201466 −0.100733 0.994913i \(-0.532119\pi\)
−0.100733 + 0.994913i \(0.532119\pi\)
\(270\) −1.54863e10 −0.177342
\(271\) −4.81901e10 −0.542745 −0.271372 0.962474i \(-0.587477\pi\)
−0.271372 + 0.962474i \(0.587477\pi\)
\(272\) 1.40365e9 0.0155489
\(273\) 0 0
\(274\) 2.67801e10 0.287035
\(275\) −8.09106e10 −0.853116
\(276\) 1.07494e11 1.11505
\(277\) 8.03834e10 0.820365 0.410183 0.912003i \(-0.365465\pi\)
0.410183 + 0.912003i \(0.365465\pi\)
\(278\) 6.67728e10 0.670499
\(279\) −5.34526e10 −0.528141
\(280\) 0 0
\(281\) −1.95595e11 −1.87146 −0.935729 0.352719i \(-0.885257\pi\)
−0.935729 + 0.352719i \(0.885257\pi\)
\(282\) 1.53786e11 1.44809
\(283\) 6.02802e10 0.558645 0.279322 0.960197i \(-0.409890\pi\)
0.279322 + 0.960197i \(0.409890\pi\)
\(284\) −2.44822e10 −0.223315
\(285\) 6.62536e10 0.594850
\(286\) 1.24021e10 0.109609
\(287\) 0 0
\(288\) 9.66472e9 0.0827796
\(289\) −1.18129e11 −0.996132
\(290\) −4.83666e10 −0.401564
\(291\) 1.28863e11 1.05344
\(292\) −7.84631e10 −0.631601
\(293\) 4.86743e10 0.385830 0.192915 0.981216i \(-0.438206\pi\)
0.192915 + 0.981216i \(0.438206\pi\)
\(294\) 0 0
\(295\) 9.01025e10 0.692688
\(296\) −1.59516e10 −0.120779
\(297\) 8.68686e10 0.647827
\(298\) −7.42553e9 −0.0545449
\(299\) −3.92137e10 −0.283738
\(300\) 7.21209e10 0.514062
\(301\) 0 0
\(302\) 1.17109e11 0.810136
\(303\) −1.53716e11 −1.04768
\(304\) 4.69506e10 0.315290
\(305\) 2.79719e10 0.185086
\(306\) 3.15856e9 0.0205941
\(307\) −2.75178e11 −1.76804 −0.884018 0.467453i \(-0.845172\pi\)
−0.884018 + 0.467453i \(0.845172\pi\)
\(308\) 0 0
\(309\) 3.36867e11 2.10206
\(310\) 5.04775e10 0.310435
\(311\) −1.12322e11 −0.680835 −0.340418 0.940274i \(-0.610568\pi\)
−0.340418 + 0.940274i \(0.610568\pi\)
\(312\) −1.10548e10 −0.0660472
\(313\) 1.06140e11 0.625069 0.312535 0.949906i \(-0.398822\pi\)
0.312535 + 0.949906i \(0.398822\pi\)
\(314\) 7.08880e10 0.411518
\(315\) 0 0
\(316\) 1.27097e11 0.717042
\(317\) 2.31358e9 0.0128682 0.00643409 0.999979i \(-0.497952\pi\)
0.00643409 + 0.999979i \(0.497952\pi\)
\(318\) 1.62914e11 0.893378
\(319\) 2.71306e11 1.46691
\(320\) −9.12681e9 −0.0486568
\(321\) −7.07844e10 −0.372105
\(322\) 0 0
\(323\) 1.53441e10 0.0784385
\(324\) −1.23875e11 −0.624497
\(325\) −2.63095e10 −0.130809
\(326\) −2.13832e11 −1.04856
\(327\) 2.15766e11 1.04356
\(328\) 2.60541e10 0.124292
\(329\) 0 0
\(330\) 7.22439e10 0.335342
\(331\) −2.16185e11 −0.989921 −0.494960 0.868916i \(-0.664817\pi\)
−0.494960 + 0.868916i \(0.664817\pi\)
\(332\) 9.51007e10 0.429598
\(333\) −3.58950e10 −0.159968
\(334\) 1.99130e11 0.875544
\(335\) −5.08893e10 −0.220762
\(336\) 0 0
\(337\) 5.00291e10 0.211294 0.105647 0.994404i \(-0.466309\pi\)
0.105647 + 0.994404i \(0.466309\pi\)
\(338\) −1.65639e11 −0.690300
\(339\) 4.81997e11 1.98219
\(340\) −2.98276e9 −0.0121049
\(341\) −2.83147e11 −1.13401
\(342\) 1.05650e11 0.417594
\(343\) 0 0
\(344\) −7.66005e10 −0.294930
\(345\) −2.28426e11 −0.868078
\(346\) −1.67271e11 −0.627448
\(347\) −1.84606e11 −0.683541 −0.341770 0.939784i \(-0.611026\pi\)
−0.341770 + 0.939784i \(0.611026\pi\)
\(348\) −2.41833e11 −0.883912
\(349\) −2.74666e11 −0.991039 −0.495520 0.868597i \(-0.665022\pi\)
−0.495520 + 0.868597i \(0.665022\pi\)
\(350\) 0 0
\(351\) 2.82469e10 0.0993319
\(352\) 5.11957e10 0.177743
\(353\) 1.58053e11 0.541774 0.270887 0.962611i \(-0.412683\pi\)
0.270887 + 0.962611i \(0.412683\pi\)
\(354\) 4.50513e11 1.52473
\(355\) 5.20246e10 0.173853
\(356\) 4.23635e10 0.139787
\(357\) 0 0
\(358\) −6.47025e10 −0.208184
\(359\) 3.40759e11 1.08274 0.541368 0.840786i \(-0.317907\pi\)
0.541368 + 0.840786i \(0.317907\pi\)
\(360\) −2.05375e10 −0.0644447
\(361\) 1.90556e11 0.590526
\(362\) −1.99576e11 −0.610829
\(363\) −4.39200e9 −0.0132765
\(364\) 0 0
\(365\) 1.66734e11 0.491707
\(366\) 1.39860e11 0.407406
\(367\) 6.10216e11 1.75584 0.877922 0.478803i \(-0.158929\pi\)
0.877922 + 0.478803i \(0.158929\pi\)
\(368\) −1.61874e11 −0.460110
\(369\) 5.86280e10 0.164622
\(370\) 3.38971e10 0.0940275
\(371\) 0 0
\(372\) 2.52388e11 0.683321
\(373\) 4.34930e11 1.16340 0.581701 0.813402i \(-0.302387\pi\)
0.581701 + 0.813402i \(0.302387\pi\)
\(374\) 1.67314e10 0.0442191
\(375\) −3.33882e11 −0.871871
\(376\) −2.31584e11 −0.597535
\(377\) 8.82202e10 0.224922
\(378\) 0 0
\(379\) −7.30677e11 −1.81907 −0.909534 0.415630i \(-0.863561\pi\)
−0.909534 + 0.415630i \(0.863561\pi\)
\(380\) −9.97701e10 −0.245456
\(381\) −9.25280e11 −2.24963
\(382\) −6.11115e10 −0.146838
\(383\) −2.11074e11 −0.501233 −0.250617 0.968086i \(-0.580633\pi\)
−0.250617 + 0.968086i \(0.580633\pi\)
\(384\) −4.56340e10 −0.107102
\(385\) 0 0
\(386\) −3.85909e11 −0.884794
\(387\) −1.72370e11 −0.390627
\(388\) −1.94052e11 −0.434686
\(389\) 7.21857e9 0.0159837 0.00799186 0.999968i \(-0.497456\pi\)
0.00799186 + 0.999968i \(0.497456\pi\)
\(390\) 2.34914e10 0.0514184
\(391\) −5.29025e10 −0.114467
\(392\) 0 0
\(393\) −1.09490e11 −0.231530
\(394\) −1.99677e11 −0.417441
\(395\) −2.70082e11 −0.558224
\(396\) 1.15203e11 0.235415
\(397\) 6.99387e11 1.41306 0.706529 0.707684i \(-0.250260\pi\)
0.706529 + 0.707684i \(0.250260\pi\)
\(398\) 4.69004e10 0.0936920
\(399\) 0 0
\(400\) −1.08606e11 −0.212120
\(401\) 6.40644e11 1.23728 0.618638 0.785676i \(-0.287685\pi\)
0.618638 + 0.785676i \(0.287685\pi\)
\(402\) −2.54447e11 −0.485936
\(403\) −9.20704e10 −0.173879
\(404\) 2.31478e11 0.432309
\(405\) 2.63234e11 0.486177
\(406\) 0 0
\(407\) −1.90142e11 −0.343481
\(408\) −1.49138e10 −0.0266451
\(409\) 1.31500e10 0.0232365 0.0116182 0.999933i \(-0.496302\pi\)
0.0116182 + 0.999933i \(0.496302\pi\)
\(410\) −5.53649e10 −0.0967625
\(411\) −2.84538e11 −0.491873
\(412\) −5.07281e11 −0.867384
\(413\) 0 0
\(414\) −3.64256e11 −0.609404
\(415\) −2.02089e11 −0.334446
\(416\) 1.66472e10 0.0272534
\(417\) −7.09461e11 −1.14899
\(418\) 5.59648e11 0.896647
\(419\) 5.79915e11 0.919182 0.459591 0.888131i \(-0.347996\pi\)
0.459591 + 0.888131i \(0.347996\pi\)
\(420\) 0 0
\(421\) 1.66175e11 0.257808 0.128904 0.991657i \(-0.458854\pi\)
0.128904 + 0.991657i \(0.458854\pi\)
\(422\) 5.39165e11 0.827591
\(423\) −5.21121e11 −0.791419
\(424\) −2.45329e11 −0.368639
\(425\) −3.54937e10 −0.0527717
\(426\) 2.60123e11 0.382680
\(427\) 0 0
\(428\) 1.06593e11 0.153544
\(429\) −1.31772e11 −0.187830
\(430\) 1.62776e11 0.229606
\(431\) 7.57723e11 1.05770 0.528850 0.848715i \(-0.322623\pi\)
0.528850 + 0.848715i \(0.322623\pi\)
\(432\) 1.16603e11 0.161077
\(433\) 1.07485e12 1.46944 0.734719 0.678371i \(-0.237314\pi\)
0.734719 + 0.678371i \(0.237314\pi\)
\(434\) 0 0
\(435\) 5.13895e11 0.688134
\(436\) −3.24918e11 −0.430610
\(437\) −1.76953e12 −2.32109
\(438\) 8.33670e11 1.08233
\(439\) −1.70418e11 −0.218991 −0.109496 0.993987i \(-0.534924\pi\)
−0.109496 + 0.993987i \(0.534924\pi\)
\(440\) −1.08791e11 −0.138374
\(441\) 0 0
\(442\) 5.44051e9 0.00678016
\(443\) 1.22937e12 1.51658 0.758290 0.651918i \(-0.226035\pi\)
0.758290 + 0.651918i \(0.226035\pi\)
\(444\) 1.69486e11 0.206971
\(445\) −9.00225e10 −0.108826
\(446\) 6.19533e11 0.741409
\(447\) 7.88963e10 0.0934701
\(448\) 0 0
\(449\) −7.25792e10 −0.0842759 −0.0421380 0.999112i \(-0.513417\pi\)
−0.0421380 + 0.999112i \(0.513417\pi\)
\(450\) −2.44389e11 −0.280948
\(451\) 3.10563e11 0.353472
\(452\) −7.25831e11 −0.817923
\(453\) −1.24428e12 −1.38828
\(454\) −1.23042e12 −1.35926
\(455\) 0 0
\(456\) −4.98851e11 −0.540292
\(457\) −6.64172e11 −0.712291 −0.356146 0.934431i \(-0.615909\pi\)
−0.356146 + 0.934431i \(0.615909\pi\)
\(458\) −6.96183e11 −0.739313
\(459\) 3.81073e10 0.0400730
\(460\) 3.43982e11 0.358200
\(461\) 1.21501e12 1.25293 0.626463 0.779451i \(-0.284502\pi\)
0.626463 + 0.779451i \(0.284502\pi\)
\(462\) 0 0
\(463\) 2.93878e11 0.297202 0.148601 0.988897i \(-0.452523\pi\)
0.148601 + 0.988897i \(0.452523\pi\)
\(464\) 3.64172e11 0.364734
\(465\) −5.36324e11 −0.531972
\(466\) −3.31269e11 −0.325420
\(467\) −4.73112e11 −0.460297 −0.230149 0.973155i \(-0.573921\pi\)
−0.230149 + 0.973155i \(0.573921\pi\)
\(468\) 3.74602e10 0.0360964
\(469\) 0 0
\(470\) 4.92116e11 0.465187
\(471\) −7.53185e11 −0.705192
\(472\) −6.78419e11 −0.629157
\(473\) −9.13072e11 −0.838745
\(474\) −1.35041e12 −1.22875
\(475\) −1.18723e12 −1.07007
\(476\) 0 0
\(477\) −5.52049e11 −0.488253
\(478\) 3.45952e11 0.303103
\(479\) 2.05945e12 1.78748 0.893742 0.448582i \(-0.148071\pi\)
0.893742 + 0.448582i \(0.148071\pi\)
\(480\) 9.69723e10 0.0833801
\(481\) −6.18280e10 −0.0526662
\(482\) −1.08446e12 −0.915172
\(483\) 0 0
\(484\) 6.61383e9 0.00547834
\(485\) 4.12361e11 0.338407
\(486\) 7.55843e11 0.614566
\(487\) −1.22247e12 −0.984821 −0.492411 0.870363i \(-0.663884\pi\)
−0.492411 + 0.870363i \(0.663884\pi\)
\(488\) −2.10612e11 −0.168110
\(489\) 2.27197e12 1.79685
\(490\) 0 0
\(491\) 1.98225e11 0.153918 0.0769592 0.997034i \(-0.475479\pi\)
0.0769592 + 0.997034i \(0.475479\pi\)
\(492\) −2.76825e11 −0.212991
\(493\) 1.19016e11 0.0907391
\(494\) 1.81980e11 0.137484
\(495\) −2.44806e11 −0.183273
\(496\) −3.80066e11 −0.281963
\(497\) 0 0
\(498\) −1.01044e12 −0.736174
\(499\) −3.00745e11 −0.217143 −0.108571 0.994089i \(-0.534628\pi\)
−0.108571 + 0.994089i \(0.534628\pi\)
\(500\) 5.02787e11 0.359765
\(501\) −2.11576e12 −1.50036
\(502\) −7.80633e10 −0.0548631
\(503\) −3.30194e11 −0.229993 −0.114996 0.993366i \(-0.536686\pi\)
−0.114996 + 0.993366i \(0.536686\pi\)
\(504\) 0 0
\(505\) −4.91891e11 −0.336556
\(506\) −1.92952e12 −1.30850
\(507\) 1.75992e12 1.18292
\(508\) 1.39336e12 0.928277
\(509\) 6.32399e10 0.0417600 0.0208800 0.999782i \(-0.493353\pi\)
0.0208800 + 0.999782i \(0.493353\pi\)
\(510\) 3.16918e10 0.0207434
\(511\) 0 0
\(512\) 6.87195e10 0.0441942
\(513\) 1.27465e12 0.812574
\(514\) 4.40046e11 0.278076
\(515\) 1.07797e12 0.675267
\(516\) 8.13880e11 0.505402
\(517\) −2.76046e12 −1.69932
\(518\) 0 0
\(519\) 1.77725e12 1.07522
\(520\) −3.53753e10 −0.0212170
\(521\) 1.88994e12 1.12377 0.561886 0.827215i \(-0.310076\pi\)
0.561886 + 0.827215i \(0.310076\pi\)
\(522\) 8.19476e11 0.483080
\(523\) −8.95863e11 −0.523581 −0.261791 0.965125i \(-0.584313\pi\)
−0.261791 + 0.965125i \(0.584313\pi\)
\(524\) 1.64879e11 0.0955374
\(525\) 0 0
\(526\) −3.56152e11 −0.202861
\(527\) −1.24210e11 −0.0701472
\(528\) −5.43954e11 −0.304586
\(529\) 4.29975e12 2.38722
\(530\) 5.21323e11 0.286989
\(531\) −1.52661e12 −0.833302
\(532\) 0 0
\(533\) 1.00985e11 0.0541981
\(534\) −4.50113e11 −0.239544
\(535\) −2.26510e11 −0.119535
\(536\) 3.83166e11 0.200515
\(537\) 6.87464e11 0.356752
\(538\) −2.76826e11 −0.142458
\(539\) 0 0
\(540\) −2.47781e11 −0.125400
\(541\) 1.00221e12 0.503005 0.251502 0.967857i \(-0.419075\pi\)
0.251502 + 0.967857i \(0.419075\pi\)
\(542\) −7.71041e11 −0.383778
\(543\) 2.12050e12 1.04674
\(544\) 2.24584e10 0.0109947
\(545\) 6.90450e11 0.335234
\(546\) 0 0
\(547\) 2.73436e12 1.30591 0.652955 0.757396i \(-0.273529\pi\)
0.652955 + 0.757396i \(0.273529\pi\)
\(548\) 4.28481e11 0.202964
\(549\) −4.73929e11 −0.222658
\(550\) −1.29457e12 −0.603244
\(551\) 3.98097e12 1.83995
\(552\) 1.71991e12 0.788461
\(553\) 0 0
\(554\) 1.28613e12 0.580086
\(555\) −3.60157e11 −0.161129
\(556\) 1.06837e12 0.474115
\(557\) −4.22359e12 −1.85923 −0.929614 0.368534i \(-0.879860\pi\)
−0.929614 + 0.368534i \(0.879860\pi\)
\(558\) −8.55241e11 −0.373452
\(559\) −2.96902e11 −0.128606
\(560\) 0 0
\(561\) −1.77771e11 −0.0757754
\(562\) −3.12953e12 −1.32332
\(563\) 3.08311e12 1.29330 0.646652 0.762785i \(-0.276169\pi\)
0.646652 + 0.762785i \(0.276169\pi\)
\(564\) 2.46058e12 1.02396
\(565\) 1.54239e12 0.636761
\(566\) 9.64483e11 0.395021
\(567\) 0 0
\(568\) −3.91715e11 −0.157907
\(569\) −2.74669e11 −0.109851 −0.0549256 0.998490i \(-0.517492\pi\)
−0.0549256 + 0.998490i \(0.517492\pi\)
\(570\) 1.06006e12 0.420623
\(571\) 2.82499e12 1.11213 0.556064 0.831140i \(-0.312311\pi\)
0.556064 + 0.831140i \(0.312311\pi\)
\(572\) 1.98433e11 0.0775055
\(573\) 6.49310e11 0.251626
\(574\) 0 0
\(575\) 4.09326e12 1.56158
\(576\) 1.54636e11 0.0585340
\(577\) −3.76585e12 −1.41440 −0.707199 0.707014i \(-0.750042\pi\)
−0.707199 + 0.707014i \(0.750042\pi\)
\(578\) −1.89007e12 −0.704371
\(579\) 4.10028e12 1.51621
\(580\) −7.73866e11 −0.283949
\(581\) 0 0
\(582\) 2.06181e12 0.744894
\(583\) −2.92430e12 −1.04837
\(584\) −1.25541e12 −0.446609
\(585\) −7.96030e10 −0.0281014
\(586\) 7.78789e11 0.272823
\(587\) 3.00831e12 1.04580 0.522902 0.852393i \(-0.324849\pi\)
0.522902 + 0.852393i \(0.324849\pi\)
\(588\) 0 0
\(589\) −4.15471e12 −1.42240
\(590\) 1.44164e12 0.489805
\(591\) 2.12157e12 0.715342
\(592\) −2.55225e11 −0.0854036
\(593\) −3.64775e12 −1.21138 −0.605688 0.795703i \(-0.707102\pi\)
−0.605688 + 0.795703i \(0.707102\pi\)
\(594\) 1.38990e12 0.458083
\(595\) 0 0
\(596\) −1.18809e11 −0.0385691
\(597\) −4.98316e11 −0.160554
\(598\) −6.27420e11 −0.200633
\(599\) 4.17778e12 1.32594 0.662972 0.748644i \(-0.269295\pi\)
0.662972 + 0.748644i \(0.269295\pi\)
\(600\) 1.15393e12 0.363497
\(601\) −4.84445e12 −1.51464 −0.757321 0.653043i \(-0.773492\pi\)
−0.757321 + 0.653043i \(0.773492\pi\)
\(602\) 0 0
\(603\) 8.62218e11 0.265576
\(604\) 1.87374e12 0.572853
\(605\) −1.40544e10 −0.00426494
\(606\) −2.45946e12 −0.740819
\(607\) 1.58444e12 0.473726 0.236863 0.971543i \(-0.423881\pi\)
0.236863 + 0.971543i \(0.423881\pi\)
\(608\) 7.51210e11 0.222944
\(609\) 0 0
\(610\) 4.47551e11 0.130876
\(611\) −8.97614e11 −0.260558
\(612\) 5.05369e10 0.0145622
\(613\) −2.79203e11 −0.0798635 −0.0399318 0.999202i \(-0.512714\pi\)
−0.0399318 + 0.999202i \(0.512714\pi\)
\(614\) −4.40285e12 −1.25019
\(615\) 5.88252e11 0.165816
\(616\) 0 0
\(617\) −5.55576e12 −1.54333 −0.771667 0.636027i \(-0.780577\pi\)
−0.771667 + 0.636027i \(0.780577\pi\)
\(618\) 5.38986e12 1.48638
\(619\) 2.70437e12 0.740385 0.370192 0.928955i \(-0.379292\pi\)
0.370192 + 0.928955i \(0.379292\pi\)
\(620\) 8.07640e11 0.219511
\(621\) −4.39467e12 −1.18581
\(622\) −1.79715e12 −0.481423
\(623\) 0 0
\(624\) −1.76876e11 −0.0467024
\(625\) 2.16828e12 0.568400
\(626\) 1.69823e12 0.441991
\(627\) −5.94626e12 −1.53653
\(628\) 1.13421e12 0.290987
\(629\) −8.34109e10 −0.0212469
\(630\) 0 0
\(631\) −4.73158e12 −1.18816 −0.594078 0.804407i \(-0.702483\pi\)
−0.594078 + 0.804407i \(0.702483\pi\)
\(632\) 2.03356e12 0.507025
\(633\) −5.72863e12 −1.41819
\(634\) 3.70172e10 0.00909918
\(635\) −2.96090e12 −0.722672
\(636\) 2.60662e12 0.631713
\(637\) 0 0
\(638\) 4.34090e12 1.03726
\(639\) −8.81454e11 −0.209144
\(640\) −1.46029e11 −0.0344056
\(641\) 1.38865e12 0.324887 0.162444 0.986718i \(-0.448062\pi\)
0.162444 + 0.986718i \(0.448062\pi\)
\(642\) −1.13255e12 −0.263118
\(643\) −3.09398e12 −0.713786 −0.356893 0.934145i \(-0.616164\pi\)
−0.356893 + 0.934145i \(0.616164\pi\)
\(644\) 0 0
\(645\) −1.72950e12 −0.393460
\(646\) 2.45505e11 0.0554644
\(647\) −2.31453e12 −0.519270 −0.259635 0.965707i \(-0.583602\pi\)
−0.259635 + 0.965707i \(0.583602\pi\)
\(648\) −1.98200e12 −0.441586
\(649\) −8.08670e12 −1.78925
\(650\) −4.20953e11 −0.0924960
\(651\) 0 0
\(652\) −3.42132e12 −0.741446
\(653\) −8.10575e11 −0.174455 −0.0872276 0.996188i \(-0.527801\pi\)
−0.0872276 + 0.996188i \(0.527801\pi\)
\(654\) 3.45225e12 0.737908
\(655\) −3.50367e11 −0.0743768
\(656\) 4.16865e11 0.0878878
\(657\) −2.82498e12 −0.591522
\(658\) 0 0
\(659\) 4.57355e11 0.0944645 0.0472323 0.998884i \(-0.484960\pi\)
0.0472323 + 0.998884i \(0.484960\pi\)
\(660\) 1.15590e12 0.237123
\(661\) −7.94557e12 −1.61889 −0.809447 0.587193i \(-0.800233\pi\)
−0.809447 + 0.587193i \(0.800233\pi\)
\(662\) −3.45897e12 −0.699980
\(663\) −5.78055e10 −0.0116187
\(664\) 1.52161e12 0.303772
\(665\) 0 0
\(666\) −5.74319e11 −0.113115
\(667\) −1.37254e13 −2.68508
\(668\) 3.18608e12 0.619103
\(669\) −6.58254e12 −1.27050
\(670\) −8.14229e11 −0.156102
\(671\) −2.51048e12 −0.478086
\(672\) 0 0
\(673\) −8.92805e12 −1.67760 −0.838801 0.544439i \(-0.816743\pi\)
−0.838801 + 0.544439i \(0.816743\pi\)
\(674\) 8.00465e11 0.149408
\(675\) −2.94850e12 −0.546682
\(676\) −2.65023e12 −0.488116
\(677\) 8.01730e12 1.46683 0.733414 0.679782i \(-0.237926\pi\)
0.733414 + 0.679782i \(0.237926\pi\)
\(678\) 7.71195e12 1.40162
\(679\) 0 0
\(680\) −4.77241e10 −0.00855949
\(681\) 1.30732e13 2.32927
\(682\) −4.53036e12 −0.801868
\(683\) 4.14724e12 0.729233 0.364617 0.931158i \(-0.381200\pi\)
0.364617 + 0.931158i \(0.381200\pi\)
\(684\) 1.69041e12 0.295283
\(685\) −9.10523e11 −0.158010
\(686\) 0 0
\(687\) 7.39694e12 1.26691
\(688\) −1.22561e12 −0.208547
\(689\) −9.50888e11 −0.160747
\(690\) −3.65481e12 −0.613824
\(691\) 6.05580e12 1.01046 0.505231 0.862984i \(-0.331407\pi\)
0.505231 + 0.862984i \(0.331407\pi\)
\(692\) −2.67633e12 −0.443672
\(693\) 0 0
\(694\) −2.95370e12 −0.483336
\(695\) −2.27028e12 −0.369103
\(696\) −3.86933e12 −0.625020
\(697\) 1.36237e11 0.0218649
\(698\) −4.39466e12 −0.700771
\(699\) 3.51973e12 0.557651
\(700\) 0 0
\(701\) 1.88599e12 0.294990 0.147495 0.989063i \(-0.452879\pi\)
0.147495 + 0.989063i \(0.452879\pi\)
\(702\) 4.51950e11 0.0702383
\(703\) −2.79001e12 −0.430831
\(704\) 8.19131e11 0.125683
\(705\) −5.22873e12 −0.797160
\(706\) 2.52886e12 0.383092
\(707\) 0 0
\(708\) 7.20820e12 1.07815
\(709\) −4.76210e12 −0.707767 −0.353884 0.935289i \(-0.615139\pi\)
−0.353884 + 0.935289i \(0.615139\pi\)
\(710\) 8.32394e11 0.122932
\(711\) 4.57600e12 0.671542
\(712\) 6.77817e11 0.0988444
\(713\) 1.43244e13 2.07574
\(714\) 0 0
\(715\) −4.21671e11 −0.0603387
\(716\) −1.03524e12 −0.147208
\(717\) −3.67574e12 −0.519408
\(718\) 5.45215e12 0.765610
\(719\) −5.34893e12 −0.746427 −0.373213 0.927746i \(-0.621744\pi\)
−0.373213 + 0.927746i \(0.621744\pi\)
\(720\) −3.28601e11 −0.0455693
\(721\) 0 0
\(722\) 3.04889e12 0.417565
\(723\) 1.15224e13 1.56827
\(724\) −3.19322e12 −0.431922
\(725\) −9.20871e12 −1.23788
\(726\) −7.02720e10 −0.00938788
\(727\) −9.08222e12 −1.20583 −0.602917 0.797804i \(-0.705995\pi\)
−0.602917 + 0.797804i \(0.705995\pi\)
\(728\) 0 0
\(729\) 1.49349e12 0.195852
\(730\) 2.66774e12 0.347689
\(731\) −4.00544e11 −0.0518827
\(732\) 2.23776e12 0.288080
\(733\) 1.20547e13 1.54237 0.771185 0.636611i \(-0.219664\pi\)
0.771185 + 0.636611i \(0.219664\pi\)
\(734\) 9.76345e12 1.24157
\(735\) 0 0
\(736\) −2.58998e12 −0.325347
\(737\) 4.56731e12 0.570239
\(738\) 9.38048e11 0.116405
\(739\) 1.08128e13 1.33364 0.666822 0.745217i \(-0.267654\pi\)
0.666822 + 0.745217i \(0.267654\pi\)
\(740\) 5.42354e11 0.0664875
\(741\) −1.93353e12 −0.235597
\(742\) 0 0
\(743\) 6.39433e12 0.769742 0.384871 0.922970i \(-0.374246\pi\)
0.384871 + 0.922970i \(0.374246\pi\)
\(744\) 4.03820e12 0.483181
\(745\) 2.52468e11 0.0300264
\(746\) 6.95889e12 0.822650
\(747\) 3.42400e12 0.402337
\(748\) 2.67702e11 0.0312676
\(749\) 0 0
\(750\) −5.34211e12 −0.616506
\(751\) −2.30580e12 −0.264510 −0.132255 0.991216i \(-0.542222\pi\)
−0.132255 + 0.991216i \(0.542222\pi\)
\(752\) −3.70534e12 −0.422521
\(753\) 8.29422e11 0.0940152
\(754\) 1.41152e12 0.159044
\(755\) −3.98170e12 −0.445971
\(756\) 0 0
\(757\) −6.85316e12 −0.758507 −0.379253 0.925293i \(-0.623819\pi\)
−0.379253 + 0.925293i \(0.623819\pi\)
\(758\) −1.16908e13 −1.28628
\(759\) 2.05012e13 2.24229
\(760\) −1.59632e12 −0.173564
\(761\) 1.55520e12 0.168095 0.0840474 0.996462i \(-0.473215\pi\)
0.0840474 + 0.996462i \(0.473215\pi\)
\(762\) −1.48045e13 −1.59073
\(763\) 0 0
\(764\) −9.77784e11 −0.103830
\(765\) −1.07391e11 −0.0113368
\(766\) −3.37718e12 −0.354425
\(767\) −2.62954e12 −0.274347
\(768\) −7.30144e11 −0.0757327
\(769\) 1.31148e12 0.135236 0.0676179 0.997711i \(-0.478460\pi\)
0.0676179 + 0.997711i \(0.478460\pi\)
\(770\) 0 0
\(771\) −4.67549e12 −0.476521
\(772\) −6.17454e12 −0.625644
\(773\) 9.82010e12 0.989255 0.494627 0.869105i \(-0.335305\pi\)
0.494627 + 0.869105i \(0.335305\pi\)
\(774\) −2.75792e12 −0.276215
\(775\) 9.61062e12 0.956959
\(776\) −3.10484e12 −0.307370
\(777\) 0 0
\(778\) 1.15497e11 0.0113022
\(779\) 4.55698e12 0.443362
\(780\) 3.75862e11 0.0363583
\(781\) −4.66921e12 −0.449070
\(782\) −8.46439e11 −0.0809404
\(783\) 9.88682e12 0.940001
\(784\) 0 0
\(785\) −2.41019e12 −0.226536
\(786\) −1.75184e12 −0.163716
\(787\) 4.81658e12 0.447562 0.223781 0.974639i \(-0.428160\pi\)
0.223781 + 0.974639i \(0.428160\pi\)
\(788\) −3.19484e12 −0.295176
\(789\) 3.78411e12 0.347630
\(790\) −4.32131e12 −0.394724
\(791\) 0 0
\(792\) 1.84324e12 0.166464
\(793\) −8.16328e11 −0.0733053
\(794\) 1.11902e13 0.999183
\(795\) −5.53906e12 −0.491795
\(796\) 7.50406e11 0.0662502
\(797\) −7.71344e12 −0.677151 −0.338575 0.940939i \(-0.609945\pi\)
−0.338575 + 0.940939i \(0.609945\pi\)
\(798\) 0 0
\(799\) −1.21095e12 −0.105116
\(800\) −1.73769e12 −0.149992
\(801\) 1.52525e12 0.130917
\(802\) 1.02503e13 0.874887
\(803\) −1.49644e13 −1.27010
\(804\) −4.07114e12 −0.343609
\(805\) 0 0
\(806\) −1.47313e12 −0.122951
\(807\) 2.94128e12 0.244121
\(808\) 3.70365e12 0.305688
\(809\) 2.12869e13 1.74721 0.873604 0.486637i \(-0.161777\pi\)
0.873604 + 0.486637i \(0.161777\pi\)
\(810\) 4.21174e12 0.343779
\(811\) −2.45053e13 −1.98914 −0.994570 0.104067i \(-0.966814\pi\)
−0.994570 + 0.104067i \(0.966814\pi\)
\(812\) 0 0
\(813\) 8.19231e12 0.657656
\(814\) −3.04227e12 −0.242878
\(815\) 7.27030e12 0.577223
\(816\) −2.38621e11 −0.0188409
\(817\) −1.33978e13 −1.05204
\(818\) 2.10400e11 0.0164307
\(819\) 0 0
\(820\) −8.85839e11 −0.0684214
\(821\) −9.72826e12 −0.747293 −0.373646 0.927571i \(-0.621893\pi\)
−0.373646 + 0.927571i \(0.621893\pi\)
\(822\) −4.55261e12 −0.347807
\(823\) −8.28745e11 −0.0629683 −0.0314841 0.999504i \(-0.510023\pi\)
−0.0314841 + 0.999504i \(0.510023\pi\)
\(824\) −8.11650e12 −0.613333
\(825\) 1.37548e13 1.03374
\(826\) 0 0
\(827\) 2.42842e13 1.80530 0.902649 0.430376i \(-0.141619\pi\)
0.902649 + 0.430376i \(0.141619\pi\)
\(828\) −5.82809e12 −0.430913
\(829\) −1.95570e13 −1.43816 −0.719078 0.694929i \(-0.755436\pi\)
−0.719078 + 0.694929i \(0.755436\pi\)
\(830\) −3.23342e12 −0.236489
\(831\) −1.36652e13 −0.994055
\(832\) 2.66355e11 0.0192711
\(833\) 0 0
\(834\) −1.13514e13 −0.812459
\(835\) −6.77043e12 −0.481978
\(836\) 8.95437e12 0.634025
\(837\) −1.03183e13 −0.726682
\(838\) 9.27865e12 0.649960
\(839\) 7.69577e12 0.536196 0.268098 0.963392i \(-0.413605\pi\)
0.268098 + 0.963392i \(0.413605\pi\)
\(840\) 0 0
\(841\) 1.63712e13 1.12849
\(842\) 2.65880e12 0.182298
\(843\) 3.32512e13 2.26769
\(844\) 8.62664e12 0.585195
\(845\) 5.63173e12 0.380003
\(846\) −8.33793e12 −0.559618
\(847\) 0 0
\(848\) −3.92526e12 −0.260667
\(849\) −1.02476e13 −0.676923
\(850\) −5.67899e11 −0.0373152
\(851\) 9.61924e12 0.628721
\(852\) 4.16197e12 0.270596
\(853\) 2.79895e12 0.181019 0.0905097 0.995896i \(-0.471150\pi\)
0.0905097 + 0.995896i \(0.471150\pi\)
\(854\) 0 0
\(855\) −3.59211e12 −0.229881
\(856\) 1.70549e12 0.108572
\(857\) 5.56141e12 0.352185 0.176093 0.984374i \(-0.443654\pi\)
0.176093 + 0.984374i \(0.443654\pi\)
\(858\) −2.10835e12 −0.132816
\(859\) −3.51052e12 −0.219989 −0.109995 0.993932i \(-0.535083\pi\)
−0.109995 + 0.993932i \(0.535083\pi\)
\(860\) 2.60442e12 0.162356
\(861\) 0 0
\(862\) 1.21236e13 0.747908
\(863\) 1.43838e13 0.882721 0.441361 0.897330i \(-0.354496\pi\)
0.441361 + 0.897330i \(0.354496\pi\)
\(864\) 1.86565e12 0.113898
\(865\) 5.68720e12 0.345403
\(866\) 1.71976e13 1.03905
\(867\) 2.00820e13 1.20704
\(868\) 0 0
\(869\) 2.42399e13 1.44192
\(870\) 8.22232e12 0.486584
\(871\) 1.48514e12 0.0874353
\(872\) −5.19868e12 −0.304487
\(873\) −6.98664e12 −0.407103
\(874\) −2.83125e13 −1.64126
\(875\) 0 0
\(876\) 1.33387e13 0.765325
\(877\) −6.34278e12 −0.362061 −0.181030 0.983477i \(-0.557943\pi\)
−0.181030 + 0.983477i \(0.557943\pi\)
\(878\) −2.72670e12 −0.154850
\(879\) −8.27463e12 −0.467519
\(880\) −1.74065e12 −0.0978453
\(881\) 2.89282e13 1.61782 0.808910 0.587933i \(-0.200058\pi\)
0.808910 + 0.587933i \(0.200058\pi\)
\(882\) 0 0
\(883\) −7.17154e12 −0.396999 −0.198500 0.980101i \(-0.563607\pi\)
−0.198500 + 0.980101i \(0.563607\pi\)
\(884\) 8.70482e10 0.00479430
\(885\) −1.53174e13 −0.839346
\(886\) 1.96699e13 1.07238
\(887\) 1.68020e13 0.911389 0.455695 0.890136i \(-0.349391\pi\)
0.455695 + 0.890136i \(0.349391\pi\)
\(888\) 2.71177e12 0.146351
\(889\) 0 0
\(890\) −1.44036e12 −0.0769513
\(891\) −2.36252e13 −1.25582
\(892\) 9.91254e12 0.524255
\(893\) −4.05052e13 −2.13147
\(894\) 1.26234e12 0.0660933
\(895\) 2.19989e12 0.114603
\(896\) 0 0
\(897\) 6.66633e12 0.343812
\(898\) −1.16127e12 −0.0595921
\(899\) −3.22260e13 −1.64546
\(900\) −3.91022e12 −0.198660
\(901\) −1.28282e12 −0.0648493
\(902\) 4.96900e12 0.249942
\(903\) 0 0
\(904\) −1.16133e13 −0.578359
\(905\) 6.78559e12 0.336255
\(906\) −1.99085e13 −0.981660
\(907\) −1.87924e13 −0.922038 −0.461019 0.887390i \(-0.652516\pi\)
−0.461019 + 0.887390i \(0.652516\pi\)
\(908\) −1.96867e13 −0.961139
\(909\) 8.33412e12 0.404876
\(910\) 0 0
\(911\) −3.39496e13 −1.63306 −0.816529 0.577304i \(-0.804105\pi\)
−0.816529 + 0.577304i \(0.804105\pi\)
\(912\) −7.98161e12 −0.382044
\(913\) 1.81375e13 0.863890
\(914\) −1.06267e13 −0.503666
\(915\) −4.75523e12 −0.224273
\(916\) −1.11389e13 −0.522773
\(917\) 0 0
\(918\) 6.09717e11 0.0283359
\(919\) 1.03287e13 0.477667 0.238833 0.971061i \(-0.423235\pi\)
0.238833 + 0.971061i \(0.423235\pi\)
\(920\) 5.50371e12 0.253286
\(921\) 4.67803e13 2.14237
\(922\) 1.94401e13 0.885952
\(923\) −1.51828e12 −0.0688563
\(924\) 0 0
\(925\) 6.45381e12 0.289853
\(926\) 4.70205e12 0.210154
\(927\) −1.82641e13 −0.812344
\(928\) 5.82675e12 0.257906
\(929\) 2.79767e13 1.23233 0.616163 0.787619i \(-0.288686\pi\)
0.616163 + 0.787619i \(0.288686\pi\)
\(930\) −8.58118e12 −0.376161
\(931\) 0 0
\(932\) −5.30030e12 −0.230107
\(933\) 1.90947e13 0.824984
\(934\) −7.56980e12 −0.325479
\(935\) −5.68868e11 −0.0243421
\(936\) 5.99364e11 0.0255240
\(937\) −3.31649e13 −1.40556 −0.702782 0.711406i \(-0.748059\pi\)
−0.702782 + 0.711406i \(0.748059\pi\)
\(938\) 0 0
\(939\) −1.80437e13 −0.757411
\(940\) 7.87386e12 0.328937
\(941\) −3.19309e13 −1.32757 −0.663786 0.747923i \(-0.731051\pi\)
−0.663786 + 0.747923i \(0.731051\pi\)
\(942\) −1.20510e13 −0.498646
\(943\) −1.57113e13 −0.647009
\(944\) −1.08547e13 −0.444881
\(945\) 0 0
\(946\) −1.46092e13 −0.593082
\(947\) 3.56921e13 1.44210 0.721052 0.692881i \(-0.243659\pi\)
0.721052 + 0.692881i \(0.243659\pi\)
\(948\) −2.16066e13 −0.868856
\(949\) −4.86594e12 −0.194746
\(950\) −1.89956e13 −0.756654
\(951\) −3.93308e11 −0.0155927
\(952\) 0 0
\(953\) −3.04923e13 −1.19749 −0.598745 0.800940i \(-0.704334\pi\)
−0.598745 + 0.800940i \(0.704334\pi\)
\(954\) −8.83279e12 −0.345247
\(955\) 2.07779e12 0.0808327
\(956\) 5.53524e12 0.214326
\(957\) −4.61221e13 −1.77748
\(958\) 3.29512e13 1.26394
\(959\) 0 0
\(960\) 1.55156e12 0.0589586
\(961\) 7.19282e12 0.272047
\(962\) −9.89248e11 −0.0372406
\(963\) 3.83776e12 0.143800
\(964\) −1.73514e13 −0.647124
\(965\) 1.31209e13 0.487069
\(966\) 0 0
\(967\) −3.45533e13 −1.27078 −0.635389 0.772192i \(-0.719160\pi\)
−0.635389 + 0.772192i \(0.719160\pi\)
\(968\) 1.05821e11 0.00387377
\(969\) −2.60849e12 −0.0950457
\(970\) 6.59778e12 0.239290
\(971\) 2.06708e13 0.746225 0.373112 0.927786i \(-0.378291\pi\)
0.373112 + 0.927786i \(0.378291\pi\)
\(972\) 1.20935e13 0.434563
\(973\) 0 0
\(974\) −1.95595e13 −0.696374
\(975\) 4.47262e12 0.158504
\(976\) −3.36980e12 −0.118872
\(977\) 1.78789e11 0.00627791 0.00313896 0.999995i \(-0.499001\pi\)
0.00313896 + 0.999995i \(0.499001\pi\)
\(978\) 3.63515e13 1.27057
\(979\) 8.07952e12 0.281102
\(980\) 0 0
\(981\) −1.16983e13 −0.403285
\(982\) 3.17159e12 0.108837
\(983\) 1.42657e13 0.487305 0.243652 0.969863i \(-0.421654\pi\)
0.243652 + 0.969863i \(0.421654\pi\)
\(984\) −4.42919e12 −0.150608
\(985\) 6.78902e12 0.229797
\(986\) 1.90426e12 0.0641622
\(987\) 0 0
\(988\) 2.91167e12 0.0972157
\(989\) 4.61922e13 1.53527
\(990\) −3.91689e12 −0.129594
\(991\) −2.71296e13 −0.893537 −0.446768 0.894650i \(-0.647425\pi\)
−0.446768 + 0.894650i \(0.647425\pi\)
\(992\) −6.08106e12 −0.199378
\(993\) 3.67515e13 1.19951
\(994\) 0 0
\(995\) −1.59461e12 −0.0515764
\(996\) −1.61671e13 −0.520554
\(997\) 3.86723e12 0.123957 0.0619787 0.998077i \(-0.480259\pi\)
0.0619787 + 0.998077i \(0.480259\pi\)
\(998\) −4.81191e12 −0.153543
\(999\) −6.92905e12 −0.220104
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.a.b.1.1 1
7.2 even 3 98.10.c.d.67.1 2
7.3 odd 6 98.10.c.a.79.1 2
7.4 even 3 98.10.c.d.79.1 2
7.5 odd 6 98.10.c.a.67.1 2
7.6 odd 2 14.10.a.b.1.1 1
21.20 even 2 126.10.a.a.1.1 1
28.27 even 2 112.10.a.a.1.1 1
35.13 even 4 350.10.c.d.99.1 2
35.27 even 4 350.10.c.d.99.2 2
35.34 odd 2 350.10.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.a.b.1.1 1 7.6 odd 2
98.10.a.b.1.1 1 1.1 even 1 trivial
98.10.c.a.67.1 2 7.5 odd 6
98.10.c.a.79.1 2 7.3 odd 6
98.10.c.d.67.1 2 7.2 even 3
98.10.c.d.79.1 2 7.4 even 3
112.10.a.a.1.1 1 28.27 even 2
126.10.a.a.1.1 1 21.20 even 2
350.10.a.a.1.1 1 35.34 odd 2
350.10.c.d.99.1 2 35.13 even 4
350.10.c.d.99.2 2 35.27 even 4