Properties

Label 9792.2.a.cm.1.2
Level $9792$
Weight $2$
Character 9792.1
Self dual yes
Analytic conductor $78.190$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9792,2,Mod(1,9792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9792.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9792 = 2^{6} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9792.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-1,0,-2,0,0,0,-9,0,3,0,0,0,2,0,3,0,0,0,11,0,-1,0,0,0, -6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.1895136592\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 408)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 9792.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155 q^{5} -5.12311 q^{7} -2.43845 q^{11} +3.56155 q^{13} +1.00000 q^{17} -4.68466 q^{19} +7.56155 q^{23} -2.56155 q^{25} -7.12311 q^{29} +8.24621 q^{31} -8.00000 q^{35} +4.00000 q^{37} +2.68466 q^{41} +4.68466 q^{43} +0.876894 q^{47} +19.2462 q^{49} +6.00000 q^{53} -3.80776 q^{55} -13.3693 q^{59} +4.00000 q^{61} +5.56155 q^{65} -12.0000 q^{67} -11.3693 q^{71} +8.24621 q^{73} +12.4924 q^{77} +2.00000 q^{79} +7.12311 q^{83} +1.56155 q^{85} -9.12311 q^{89} -18.2462 q^{91} -7.31534 q^{95} +1.12311 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{5} - 2 q^{7} - 9 q^{11} + 3 q^{13} + 2 q^{17} + 3 q^{19} + 11 q^{23} - q^{25} - 6 q^{29} - 16 q^{35} + 8 q^{37} - 7 q^{41} - 3 q^{43} + 10 q^{47} + 22 q^{49} + 12 q^{53} + 13 q^{55} - 2 q^{59}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.56155 0.698348 0.349174 0.937058i \(-0.386462\pi\)
0.349174 + 0.937058i \(0.386462\pi\)
\(6\) 0 0
\(7\) −5.12311 −1.93635 −0.968176 0.250270i \(-0.919480\pi\)
−0.968176 + 0.250270i \(0.919480\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.43845 −0.735219 −0.367610 0.929980i \(-0.619824\pi\)
−0.367610 + 0.929980i \(0.619824\pi\)
\(12\) 0 0
\(13\) 3.56155 0.987797 0.493899 0.869520i \(-0.335571\pi\)
0.493899 + 0.869520i \(0.335571\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −4.68466 −1.07473 −0.537367 0.843348i \(-0.680581\pi\)
−0.537367 + 0.843348i \(0.680581\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.56155 1.57669 0.788346 0.615232i \(-0.210938\pi\)
0.788346 + 0.615232i \(0.210938\pi\)
\(24\) 0 0
\(25\) −2.56155 −0.512311
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.12311 −1.32273 −0.661364 0.750065i \(-0.730022\pi\)
−0.661364 + 0.750065i \(0.730022\pi\)
\(30\) 0 0
\(31\) 8.24621 1.48106 0.740532 0.672022i \(-0.234574\pi\)
0.740532 + 0.672022i \(0.234574\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −8.00000 −1.35225
\(36\) 0 0
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.68466 0.419273 0.209637 0.977779i \(-0.432772\pi\)
0.209637 + 0.977779i \(0.432772\pi\)
\(42\) 0 0
\(43\) 4.68466 0.714404 0.357202 0.934027i \(-0.383731\pi\)
0.357202 + 0.934027i \(0.383731\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.876894 0.127908 0.0639541 0.997953i \(-0.479629\pi\)
0.0639541 + 0.997953i \(0.479629\pi\)
\(48\) 0 0
\(49\) 19.2462 2.74946
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −3.80776 −0.513439
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.3693 −1.74054 −0.870268 0.492578i \(-0.836055\pi\)
−0.870268 + 0.492578i \(0.836055\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.56155 0.689826
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.3693 −1.34929 −0.674645 0.738142i \(-0.735703\pi\)
−0.674645 + 0.738142i \(0.735703\pi\)
\(72\) 0 0
\(73\) 8.24621 0.965146 0.482573 0.875856i \(-0.339702\pi\)
0.482573 + 0.875856i \(0.339702\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 12.4924 1.42364
\(78\) 0 0
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.12311 0.781862 0.390931 0.920420i \(-0.372153\pi\)
0.390931 + 0.920420i \(0.372153\pi\)
\(84\) 0 0
\(85\) 1.56155 0.169374
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.12311 −0.967047 −0.483524 0.875331i \(-0.660643\pi\)
−0.483524 + 0.875331i \(0.660643\pi\)
\(90\) 0 0
\(91\) −18.2462 −1.91272
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.31534 −0.750538
\(96\) 0 0
\(97\) 1.12311 0.114034 0.0570170 0.998373i \(-0.481841\pi\)
0.0570170 + 0.998373i \(0.481841\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.12311 −0.509768 −0.254884 0.966972i \(-0.582037\pi\)
−0.254884 + 0.966972i \(0.582037\pi\)
\(102\) 0 0
\(103\) −12.6847 −1.24986 −0.624928 0.780682i \(-0.714872\pi\)
−0.624928 + 0.780682i \(0.714872\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.68466 −0.839578 −0.419789 0.907622i \(-0.637896\pi\)
−0.419789 + 0.907622i \(0.637896\pi\)
\(108\) 0 0
\(109\) 6.24621 0.598279 0.299139 0.954209i \(-0.403300\pi\)
0.299139 + 0.954209i \(0.403300\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.43845 −0.417534 −0.208767 0.977965i \(-0.566945\pi\)
−0.208767 + 0.977965i \(0.566945\pi\)
\(114\) 0 0
\(115\) 11.8078 1.10108
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.12311 −0.469634
\(120\) 0 0
\(121\) −5.05398 −0.459452
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.8078 −1.05612
\(126\) 0 0
\(127\) 14.9309 1.32490 0.662450 0.749106i \(-0.269517\pi\)
0.662450 + 0.749106i \(0.269517\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.5616 −1.18488 −0.592439 0.805615i \(-0.701835\pi\)
−0.592439 + 0.805615i \(0.701835\pi\)
\(132\) 0 0
\(133\) 24.0000 2.08106
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.246211 −0.0210352 −0.0105176 0.999945i \(-0.503348\pi\)
−0.0105176 + 0.999945i \(0.503348\pi\)
\(138\) 0 0
\(139\) 3.12311 0.264898 0.132449 0.991190i \(-0.457716\pi\)
0.132449 + 0.991190i \(0.457716\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.68466 −0.726248
\(144\) 0 0
\(145\) −11.1231 −0.923724
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.8769 1.03430
\(156\) 0 0
\(157\) 7.56155 0.603478 0.301739 0.953391i \(-0.402433\pi\)
0.301739 + 0.953391i \(0.402433\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −38.7386 −3.05303
\(162\) 0 0
\(163\) −13.3693 −1.04717 −0.523583 0.851975i \(-0.675405\pi\)
−0.523583 + 0.851975i \(0.675405\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.8078 1.68754 0.843768 0.536709i \(-0.180333\pi\)
0.843768 + 0.536709i \(0.180333\pi\)
\(168\) 0 0
\(169\) −0.315342 −0.0242570
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.68466 −0.356168 −0.178084 0.984015i \(-0.556990\pi\)
−0.178084 + 0.984015i \(0.556990\pi\)
\(174\) 0 0
\(175\) 13.1231 0.992014
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −15.1231 −1.13035 −0.565177 0.824970i \(-0.691192\pi\)
−0.565177 + 0.824970i \(0.691192\pi\)
\(180\) 0 0
\(181\) −7.12311 −0.529456 −0.264728 0.964323i \(-0.585282\pi\)
−0.264728 + 0.964323i \(0.585282\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.24621 0.459231
\(186\) 0 0
\(187\) −2.43845 −0.178317
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.36932 0.388510 0.194255 0.980951i \(-0.437771\pi\)
0.194255 + 0.980951i \(0.437771\pi\)
\(192\) 0 0
\(193\) 12.2462 0.881502 0.440751 0.897630i \(-0.354712\pi\)
0.440751 + 0.897630i \(0.354712\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.6847 −1.75871 −0.879355 0.476168i \(-0.842026\pi\)
−0.879355 + 0.476168i \(0.842026\pi\)
\(198\) 0 0
\(199\) −14.8769 −1.05460 −0.527298 0.849681i \(-0.676795\pi\)
−0.527298 + 0.849681i \(0.676795\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 36.4924 2.56127
\(204\) 0 0
\(205\) 4.19224 0.292798
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.4233 0.790166
\(210\) 0 0
\(211\) −19.1231 −1.31649 −0.658244 0.752804i \(-0.728701\pi\)
−0.658244 + 0.752804i \(0.728701\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.31534 0.498902
\(216\) 0 0
\(217\) −42.2462 −2.86786
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.56155 0.239576
\(222\) 0 0
\(223\) −25.5616 −1.71173 −0.855864 0.517201i \(-0.826974\pi\)
−0.855864 + 0.517201i \(0.826974\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.31534 −0.220047 −0.110023 0.993929i \(-0.535093\pi\)
−0.110023 + 0.993929i \(0.535093\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.56155 −0.495374 −0.247687 0.968840i \(-0.579670\pi\)
−0.247687 + 0.968840i \(0.579670\pi\)
\(234\) 0 0
\(235\) 1.36932 0.0893244
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.75379 −0.372182 −0.186091 0.982533i \(-0.559582\pi\)
−0.186091 + 0.982533i \(0.559582\pi\)
\(240\) 0 0
\(241\) −19.3693 −1.24769 −0.623844 0.781549i \(-0.714430\pi\)
−0.623844 + 0.781549i \(0.714430\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 30.0540 1.92008
\(246\) 0 0
\(247\) −16.6847 −1.06162
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.2462 0.646735 0.323368 0.946273i \(-0.395185\pi\)
0.323368 + 0.946273i \(0.395185\pi\)
\(252\) 0 0
\(253\) −18.4384 −1.15922
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −13.1231 −0.818597 −0.409298 0.912401i \(-0.634227\pi\)
−0.409298 + 0.912401i \(0.634227\pi\)
\(258\) 0 0
\(259\) −20.4924 −1.27334
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) 9.36932 0.575553
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.3153 −0.689909 −0.344954 0.938619i \(-0.612106\pi\)
−0.344954 + 0.938619i \(0.612106\pi\)
\(270\) 0 0
\(271\) −18.0540 −1.09670 −0.548350 0.836249i \(-0.684744\pi\)
−0.548350 + 0.836249i \(0.684744\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.24621 0.376661
\(276\) 0 0
\(277\) 12.8769 0.773698 0.386849 0.922143i \(-0.373564\pi\)
0.386849 + 0.922143i \(0.373564\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.87689 −0.171621 −0.0858106 0.996311i \(-0.527348\pi\)
−0.0858106 + 0.996311i \(0.527348\pi\)
\(282\) 0 0
\(283\) −4.87689 −0.289901 −0.144951 0.989439i \(-0.546302\pi\)
−0.144951 + 0.989439i \(0.546302\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −13.7538 −0.811860
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.12311 0.299295 0.149648 0.988739i \(-0.452186\pi\)
0.149648 + 0.988739i \(0.452186\pi\)
\(294\) 0 0
\(295\) −20.8769 −1.21550
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 26.9309 1.55745
\(300\) 0 0
\(301\) −24.0000 −1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.24621 0.357657
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −31.3693 −1.77879 −0.889395 0.457139i \(-0.848874\pi\)
−0.889395 + 0.457139i \(0.848874\pi\)
\(312\) 0 0
\(313\) 29.6155 1.67397 0.836984 0.547227i \(-0.184317\pi\)
0.836984 + 0.547227i \(0.184317\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −19.1231 −1.07406 −0.537030 0.843563i \(-0.680454\pi\)
−0.537030 + 0.843563i \(0.680454\pi\)
\(318\) 0 0
\(319\) 17.3693 0.972495
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.68466 −0.260661
\(324\) 0 0
\(325\) −9.12311 −0.506059
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.49242 −0.247675
\(330\) 0 0
\(331\) 1.56155 0.0858307 0.0429154 0.999079i \(-0.486335\pi\)
0.0429154 + 0.999079i \(0.486335\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −18.7386 −1.02380
\(336\) 0 0
\(337\) −2.49242 −0.135771 −0.0678855 0.997693i \(-0.521625\pi\)
−0.0678855 + 0.997693i \(0.521625\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −20.1080 −1.08891
\(342\) 0 0
\(343\) −62.7386 −3.38757
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.4924 −0.885360 −0.442680 0.896680i \(-0.645972\pi\)
−0.442680 + 0.896680i \(0.645972\pi\)
\(348\) 0 0
\(349\) −15.5616 −0.832991 −0.416495 0.909138i \(-0.636742\pi\)
−0.416495 + 0.909138i \(0.636742\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) −17.7538 −0.942273
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.4924 1.50377 0.751886 0.659293i \(-0.229144\pi\)
0.751886 + 0.659293i \(0.229144\pi\)
\(360\) 0 0
\(361\) 2.94602 0.155054
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.8769 0.674007
\(366\) 0 0
\(367\) −2.87689 −0.150173 −0.0750863 0.997177i \(-0.523923\pi\)
−0.0750863 + 0.997177i \(0.523923\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −30.7386 −1.59587
\(372\) 0 0
\(373\) −30.4924 −1.57884 −0.789419 0.613855i \(-0.789618\pi\)
−0.789419 + 0.613855i \(0.789618\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −25.3693 −1.30659
\(378\) 0 0
\(379\) 0.492423 0.0252940 0.0126470 0.999920i \(-0.495974\pi\)
0.0126470 + 0.999920i \(0.495974\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.2462 −0.932338 −0.466169 0.884696i \(-0.654366\pi\)
−0.466169 + 0.884696i \(0.654366\pi\)
\(384\) 0 0
\(385\) 19.5076 0.994198
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.3693 1.38768 0.693840 0.720129i \(-0.255918\pi\)
0.693840 + 0.720129i \(0.255918\pi\)
\(390\) 0 0
\(391\) 7.56155 0.382404
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.12311 0.157140
\(396\) 0 0
\(397\) −10.2462 −0.514243 −0.257121 0.966379i \(-0.582774\pi\)
−0.257121 + 0.966379i \(0.582774\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 32.9309 1.64449 0.822245 0.569134i \(-0.192722\pi\)
0.822245 + 0.569134i \(0.192722\pi\)
\(402\) 0 0
\(403\) 29.3693 1.46299
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.75379 −0.483477
\(408\) 0 0
\(409\) −12.4384 −0.615042 −0.307521 0.951541i \(-0.599499\pi\)
−0.307521 + 0.951541i \(0.599499\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 68.4924 3.37029
\(414\) 0 0
\(415\) 11.1231 0.546012
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) −29.4233 −1.43400 −0.717002 0.697071i \(-0.754486\pi\)
−0.717002 + 0.697071i \(0.754486\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.56155 −0.124254
\(426\) 0 0
\(427\) −20.4924 −0.991698
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.6155 1.23386 0.616928 0.787019i \(-0.288377\pi\)
0.616928 + 0.787019i \(0.288377\pi\)
\(432\) 0 0
\(433\) −12.0540 −0.579277 −0.289639 0.957136i \(-0.593535\pi\)
−0.289639 + 0.957136i \(0.593535\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −35.4233 −1.69453
\(438\) 0 0
\(439\) 5.61553 0.268015 0.134007 0.990980i \(-0.457215\pi\)
0.134007 + 0.990980i \(0.457215\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.36932 0.255104 0.127552 0.991832i \(-0.459288\pi\)
0.127552 + 0.991832i \(0.459288\pi\)
\(444\) 0 0
\(445\) −14.2462 −0.675335
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.246211 0.0116194 0.00580971 0.999983i \(-0.498151\pi\)
0.00580971 + 0.999983i \(0.498151\pi\)
\(450\) 0 0
\(451\) −6.54640 −0.308258
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −28.4924 −1.33575
\(456\) 0 0
\(457\) −8.93087 −0.417768 −0.208884 0.977940i \(-0.566983\pi\)
−0.208884 + 0.977940i \(0.566983\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 38.9848 1.81571 0.907853 0.419289i \(-0.137721\pi\)
0.907853 + 0.419289i \(0.137721\pi\)
\(462\) 0 0
\(463\) 26.2462 1.21976 0.609882 0.792492i \(-0.291217\pi\)
0.609882 + 0.792492i \(0.291217\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.876894 −0.0405778 −0.0202889 0.999794i \(-0.506459\pi\)
−0.0202889 + 0.999794i \(0.506459\pi\)
\(468\) 0 0
\(469\) 61.4773 2.83876
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.4233 −0.525244
\(474\) 0 0
\(475\) 12.0000 0.550598
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 16.0540 0.733525 0.366762 0.930315i \(-0.380466\pi\)
0.366762 + 0.930315i \(0.380466\pi\)
\(480\) 0 0
\(481\) 14.2462 0.649571
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.75379 0.0796354
\(486\) 0 0
\(487\) 20.7386 0.939757 0.469879 0.882731i \(-0.344298\pi\)
0.469879 + 0.882731i \(0.344298\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 27.6155 1.24627 0.623136 0.782114i \(-0.285858\pi\)
0.623136 + 0.782114i \(0.285858\pi\)
\(492\) 0 0
\(493\) −7.12311 −0.320809
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 58.2462 2.61270
\(498\) 0 0
\(499\) 36.1080 1.61641 0.808207 0.588899i \(-0.200438\pi\)
0.808207 + 0.588899i \(0.200438\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.68466 0.119703 0.0598515 0.998207i \(-0.480937\pi\)
0.0598515 + 0.998207i \(0.480937\pi\)
\(504\) 0 0
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.6307 −0.559845 −0.279923 0.960023i \(-0.590309\pi\)
−0.279923 + 0.960023i \(0.590309\pi\)
\(510\) 0 0
\(511\) −42.2462 −1.86886
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −19.8078 −0.872834
\(516\) 0 0
\(517\) −2.13826 −0.0940406
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −38.3002 −1.67796 −0.838981 0.544161i \(-0.816848\pi\)
−0.838981 + 0.544161i \(0.816848\pi\)
\(522\) 0 0
\(523\) 8.49242 0.371348 0.185674 0.982611i \(-0.440553\pi\)
0.185674 + 0.982611i \(0.440553\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.24621 0.359211
\(528\) 0 0
\(529\) 34.1771 1.48596
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.56155 0.414157
\(534\) 0 0
\(535\) −13.5616 −0.586317
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −46.9309 −2.02146
\(540\) 0 0
\(541\) −22.7386 −0.977610 −0.488805 0.872393i \(-0.662567\pi\)
−0.488805 + 0.872393i \(0.662567\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.75379 0.417806
\(546\) 0 0
\(547\) −26.7386 −1.14326 −0.571631 0.820511i \(-0.693689\pi\)
−0.571631 + 0.820511i \(0.693689\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 33.3693 1.42158
\(552\) 0 0
\(553\) −10.2462 −0.435713
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −28.7386 −1.21769 −0.608847 0.793287i \(-0.708368\pi\)
−0.608847 + 0.793287i \(0.708368\pi\)
\(558\) 0 0
\(559\) 16.6847 0.705686
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.36932 0.226290 0.113145 0.993579i \(-0.463908\pi\)
0.113145 + 0.993579i \(0.463908\pi\)
\(564\) 0 0
\(565\) −6.93087 −0.291584
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.1231 0.717838 0.358919 0.933369i \(-0.383145\pi\)
0.358919 + 0.933369i \(0.383145\pi\)
\(570\) 0 0
\(571\) 0.492423 0.0206072 0.0103036 0.999947i \(-0.496720\pi\)
0.0103036 + 0.999947i \(0.496720\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −19.3693 −0.807756
\(576\) 0 0
\(577\) −3.94602 −0.164275 −0.0821376 0.996621i \(-0.526175\pi\)
−0.0821376 + 0.996621i \(0.526175\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −36.4924 −1.51396
\(582\) 0 0
\(583\) −14.6307 −0.605941
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.50758 −0.309871 −0.154935 0.987925i \(-0.549517\pi\)
−0.154935 + 0.987925i \(0.549517\pi\)
\(588\) 0 0
\(589\) −38.6307 −1.59175
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 42.4924 1.74495 0.872477 0.488655i \(-0.162512\pi\)
0.872477 + 0.488655i \(0.162512\pi\)
\(594\) 0 0
\(595\) −8.00000 −0.327968
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −33.3693 −1.36343 −0.681717 0.731616i \(-0.738766\pi\)
−0.681717 + 0.731616i \(0.738766\pi\)
\(600\) 0 0
\(601\) −24.7386 −1.00911 −0.504555 0.863380i \(-0.668343\pi\)
−0.504555 + 0.863380i \(0.668343\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.89205 −0.320857
\(606\) 0 0
\(607\) 11.7538 0.477072 0.238536 0.971134i \(-0.423333\pi\)
0.238536 + 0.971134i \(0.423333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.12311 0.126347
\(612\) 0 0
\(613\) −16.4384 −0.663943 −0.331971 0.943289i \(-0.607714\pi\)
−0.331971 + 0.943289i \(0.607714\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 24.8769 0.999887 0.499943 0.866058i \(-0.333354\pi\)
0.499943 + 0.866058i \(0.333354\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 46.7386 1.87254
\(624\) 0 0
\(625\) −5.63068 −0.225227
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −23.8078 −0.947772 −0.473886 0.880586i \(-0.657149\pi\)
−0.473886 + 0.880586i \(0.657149\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23.3153 0.925241
\(636\) 0 0
\(637\) 68.5464 2.71591
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −47.6695 −1.88283 −0.941416 0.337247i \(-0.890504\pi\)
−0.941416 + 0.337247i \(0.890504\pi\)
\(642\) 0 0
\(643\) −16.4924 −0.650398 −0.325199 0.945646i \(-0.605431\pi\)
−0.325199 + 0.945646i \(0.605431\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.8769 0.978012 0.489006 0.872281i \(-0.337360\pi\)
0.489006 + 0.872281i \(0.337360\pi\)
\(648\) 0 0
\(649\) 32.6004 1.27968
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31.4233 −1.22969 −0.614844 0.788649i \(-0.710781\pi\)
−0.614844 + 0.788649i \(0.710781\pi\)
\(654\) 0 0
\(655\) −21.1771 −0.827457
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −3.61553 −0.140841 −0.0704205 0.997517i \(-0.522434\pi\)
−0.0704205 + 0.997517i \(0.522434\pi\)
\(660\) 0 0
\(661\) −9.31534 −0.362325 −0.181162 0.983453i \(-0.557986\pi\)
−0.181162 + 0.983453i \(0.557986\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 37.4773 1.45331
\(666\) 0 0
\(667\) −53.8617 −2.08553
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.75379 −0.376541
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19.8078 −0.761274 −0.380637 0.924724i \(-0.624295\pi\)
−0.380637 + 0.924724i \(0.624295\pi\)
\(678\) 0 0
\(679\) −5.75379 −0.220810
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.80776 −0.298756 −0.149378 0.988780i \(-0.547727\pi\)
−0.149378 + 0.988780i \(0.547727\pi\)
\(684\) 0 0
\(685\) −0.384472 −0.0146899
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 21.3693 0.814106
\(690\) 0 0
\(691\) −9.75379 −0.371052 −0.185526 0.982639i \(-0.559399\pi\)
−0.185526 + 0.982639i \(0.559399\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.87689 0.184991
\(696\) 0 0
\(697\) 2.68466 0.101689
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −37.1231 −1.40212 −0.701060 0.713102i \(-0.747290\pi\)
−0.701060 + 0.713102i \(0.747290\pi\)
\(702\) 0 0
\(703\) −18.7386 −0.706741
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.2462 0.987090
\(708\) 0 0
\(709\) 11.1231 0.417737 0.208869 0.977944i \(-0.433022\pi\)
0.208869 + 0.977944i \(0.433022\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 62.3542 2.33518
\(714\) 0 0
\(715\) −13.5616 −0.507173
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −38.7926 −1.44672 −0.723360 0.690471i \(-0.757403\pi\)
−0.723360 + 0.690471i \(0.757403\pi\)
\(720\) 0 0
\(721\) 64.9848 2.42016
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 18.2462 0.677647
\(726\) 0 0
\(727\) 3.50758 0.130089 0.0650444 0.997882i \(-0.479281\pi\)
0.0650444 + 0.997882i \(0.479281\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.68466 0.173268
\(732\) 0 0
\(733\) 30.0000 1.10808 0.554038 0.832492i \(-0.313086\pi\)
0.554038 + 0.832492i \(0.313086\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.2614 1.07786
\(738\) 0 0
\(739\) 39.8078 1.46435 0.732176 0.681115i \(-0.238505\pi\)
0.732176 + 0.681115i \(0.238505\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.12311 0.187949 0.0939743 0.995575i \(-0.470043\pi\)
0.0939743 + 0.995575i \(0.470043\pi\)
\(744\) 0 0
\(745\) −21.8617 −0.800952
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 44.4924 1.62572
\(750\) 0 0
\(751\) 14.9848 0.546805 0.273402 0.961900i \(-0.411851\pi\)
0.273402 + 0.961900i \(0.411851\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 24.9848 0.909292
\(756\) 0 0
\(757\) −14.3002 −0.519749 −0.259875 0.965642i \(-0.583681\pi\)
−0.259875 + 0.965642i \(0.583681\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 28.2462 1.02392 0.511962 0.859008i \(-0.328919\pi\)
0.511962 + 0.859008i \(0.328919\pi\)
\(762\) 0 0
\(763\) −32.0000 −1.15848
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −47.6155 −1.71930
\(768\) 0 0
\(769\) 52.0540 1.87711 0.938557 0.345124i \(-0.112163\pi\)
0.938557 + 0.345124i \(0.112163\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 22.8769 0.822825 0.411412 0.911449i \(-0.365036\pi\)
0.411412 + 0.911449i \(0.365036\pi\)
\(774\) 0 0
\(775\) −21.1231 −0.758764
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.5767 −0.450607
\(780\) 0 0
\(781\) 27.7235 0.992024
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.8078 0.421437
\(786\) 0 0
\(787\) 47.2311 1.68361 0.841803 0.539785i \(-0.181495\pi\)
0.841803 + 0.539785i \(0.181495\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22.7386 0.808493
\(792\) 0 0
\(793\) 14.2462 0.505898
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.86174 0.136790 0.0683949 0.997658i \(-0.478212\pi\)
0.0683949 + 0.997658i \(0.478212\pi\)
\(798\) 0 0
\(799\) 0.876894 0.0310223
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.1080 −0.709594
\(804\) 0 0
\(805\) −60.4924 −2.13208
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −41.8078 −1.46988 −0.734941 0.678131i \(-0.762790\pi\)
−0.734941 + 0.678131i \(0.762790\pi\)
\(810\) 0 0
\(811\) −53.3693 −1.87405 −0.937025 0.349262i \(-0.886432\pi\)
−0.937025 + 0.349262i \(0.886432\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.8769 −0.731286
\(816\) 0 0
\(817\) −21.9460 −0.767794
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.7926 1.84247 0.921237 0.389001i \(-0.127180\pi\)
0.921237 + 0.389001i \(0.127180\pi\)
\(822\) 0 0
\(823\) 27.3693 0.954034 0.477017 0.878894i \(-0.341718\pi\)
0.477017 + 0.878894i \(0.341718\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.5616 −0.471581 −0.235791 0.971804i \(-0.575768\pi\)
−0.235791 + 0.971804i \(0.575768\pi\)
\(828\) 0 0
\(829\) 22.4924 0.781194 0.390597 0.920562i \(-0.372269\pi\)
0.390597 + 0.920562i \(0.372269\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 19.2462 0.666842
\(834\) 0 0
\(835\) 34.0540 1.17849
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.94602 0.136232 0.0681160 0.997677i \(-0.478301\pi\)
0.0681160 + 0.997677i \(0.478301\pi\)
\(840\) 0 0
\(841\) 21.7386 0.749608
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.492423 −0.0169398
\(846\) 0 0
\(847\) 25.8920 0.889661
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 30.2462 1.03683
\(852\) 0 0
\(853\) 7.61553 0.260751 0.130375 0.991465i \(-0.458382\pi\)
0.130375 + 0.991465i \(0.458382\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 16.4924 0.562714 0.281357 0.959603i \(-0.409215\pi\)
0.281357 + 0.959603i \(0.409215\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 50.7386 1.72716 0.863582 0.504209i \(-0.168216\pi\)
0.863582 + 0.504209i \(0.168216\pi\)
\(864\) 0 0
\(865\) −7.31534 −0.248729
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −4.87689 −0.165437
\(870\) 0 0
\(871\) −42.7386 −1.44814
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 60.4924 2.04502
\(876\) 0 0
\(877\) −34.3542 −1.16006 −0.580029 0.814596i \(-0.696959\pi\)
−0.580029 + 0.814596i \(0.696959\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −34.0000 −1.14549 −0.572745 0.819734i \(-0.694121\pi\)
−0.572745 + 0.819734i \(0.694121\pi\)
\(882\) 0 0
\(883\) 25.5616 0.860215 0.430107 0.902778i \(-0.358476\pi\)
0.430107 + 0.902778i \(0.358476\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −47.5616 −1.59696 −0.798480 0.602021i \(-0.794362\pi\)
−0.798480 + 0.602021i \(0.794362\pi\)
\(888\) 0 0
\(889\) −76.4924 −2.56547
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.10795 −0.137467
\(894\) 0 0
\(895\) −23.6155 −0.789380
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −58.7386 −1.95904
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11.1231 −0.369745
\(906\) 0 0
\(907\) −41.3693 −1.37365 −0.686823 0.726825i \(-0.740995\pi\)
−0.686823 + 0.726825i \(0.740995\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −28.4384 −0.942208 −0.471104 0.882078i \(-0.656144\pi\)
−0.471104 + 0.882078i \(0.656144\pi\)
\(912\) 0 0
\(913\) −17.3693 −0.574840
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 69.4773 2.29434
\(918\) 0 0
\(919\) 38.9309 1.28421 0.642105 0.766616i \(-0.278061\pi\)
0.642105 + 0.766616i \(0.278061\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −40.4924 −1.33282
\(924\) 0 0
\(925\) −10.2462 −0.336893
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30.7926 1.01027 0.505136 0.863040i \(-0.331442\pi\)
0.505136 + 0.863040i \(0.331442\pi\)
\(930\) 0 0
\(931\) −90.1619 −2.95494
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.80776 −0.124527
\(936\) 0 0
\(937\) 12.2462 0.400066 0.200033 0.979789i \(-0.435895\pi\)
0.200033 + 0.979789i \(0.435895\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −47.6155 −1.55222 −0.776111 0.630596i \(-0.782810\pi\)
−0.776111 + 0.630596i \(0.782810\pi\)
\(942\) 0 0
\(943\) 20.3002 0.661065
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.2462 0.462940 0.231470 0.972842i \(-0.425647\pi\)
0.231470 + 0.972842i \(0.425647\pi\)
\(948\) 0 0
\(949\) 29.3693 0.953368
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −42.1080 −1.36401 −0.682005 0.731347i \(-0.738892\pi\)
−0.682005 + 0.731347i \(0.738892\pi\)
\(954\) 0 0
\(955\) 8.38447 0.271315
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.26137 0.0407316
\(960\) 0 0
\(961\) 37.0000 1.19355
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.1231 0.615595
\(966\) 0 0
\(967\) 9.56155 0.307479 0.153739 0.988111i \(-0.450868\pi\)
0.153739 + 0.988111i \(0.450868\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −46.3542 −1.48758 −0.743788 0.668416i \(-0.766973\pi\)
−0.743788 + 0.668416i \(0.766973\pi\)
\(972\) 0 0
\(973\) −16.0000 −0.512936
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.50758 −0.176203 −0.0881015 0.996112i \(-0.528080\pi\)
−0.0881015 + 0.996112i \(0.528080\pi\)
\(978\) 0 0
\(979\) 22.2462 0.710992
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −55.5616 −1.77214 −0.886069 0.463553i \(-0.846574\pi\)
−0.886069 + 0.463553i \(0.846574\pi\)
\(984\) 0 0
\(985\) −38.5464 −1.22819
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 35.4233 1.12640
\(990\) 0 0
\(991\) −24.6307 −0.782419 −0.391210 0.920302i \(-0.627943\pi\)
−0.391210 + 0.920302i \(0.627943\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −23.2311 −0.736474
\(996\) 0 0
\(997\) −13.3693 −0.423411 −0.211705 0.977334i \(-0.567902\pi\)
−0.211705 + 0.977334i \(0.567902\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9792.2.a.cm.1.2 2
3.2 odd 2 3264.2.a.bo.1.1 2
4.3 odd 2 9792.2.a.cn.1.2 2
8.3 odd 2 2448.2.a.ba.1.1 2
8.5 even 2 1224.2.a.j.1.1 2
12.11 even 2 3264.2.a.bi.1.1 2
24.5 odd 2 408.2.a.e.1.2 2
24.11 even 2 816.2.a.l.1.2 2
408.101 odd 2 6936.2.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
408.2.a.e.1.2 2 24.5 odd 2
816.2.a.l.1.2 2 24.11 even 2
1224.2.a.j.1.1 2 8.5 even 2
2448.2.a.ba.1.1 2 8.3 odd 2
3264.2.a.bi.1.1 2 12.11 even 2
3264.2.a.bo.1.1 2 3.2 odd 2
6936.2.a.y.1.1 2 408.101 odd 2
9792.2.a.cm.1.2 2 1.1 even 1 trivial
9792.2.a.cn.1.2 2 4.3 odd 2