Properties

 Label 975.4.a.j Level $975$ Weight $4$ Character orbit 975.a Self dual yes Analytic conductor $57.527$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [975,4,Mod(1,975)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(975, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("975.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$975 = 3 \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 975.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$57.5268622556$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{14})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 14$$ x^2 - 14 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 39) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{14}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta - 1) q^{2} + 3 q^{3} + ( - 2 \beta + 7) q^{4} + (3 \beta - 3) q^{6} - 2 \beta q^{7} + (\beta - 27) q^{8} + 9 q^{9} +O(q^{10})$$ q + (b - 1) * q^2 + 3 * q^3 + (-2*b + 7) * q^4 + (3*b - 3) * q^6 - 2*b * q^7 + (b - 27) * q^8 + 9 * q^9 $$q + (\beta - 1) q^{2} + 3 q^{3} + ( - 2 \beta + 7) q^{4} + (3 \beta - 3) q^{6} - 2 \beta q^{7} + (\beta - 27) q^{8} + 9 q^{9} + (12 \beta - 22) q^{11} + ( - 6 \beta + 21) q^{12} + 13 q^{13} + (2 \beta - 28) q^{14} + ( - 12 \beta - 15) q^{16} + (4 \beta - 82) q^{17} + (9 \beta - 9) q^{18} + ( - 2 \beta + 24) q^{19} - 6 \beta q^{21} + ( - 34 \beta + 190) q^{22} + (48 \beta - 4) q^{23} + (3 \beta - 81) q^{24} + (13 \beta - 13) q^{26} + 27 q^{27} + ( - 14 \beta + 56) q^{28} + (24 \beta + 202) q^{29} + (26 \beta + 20) q^{31} + ( - 11 \beta + 63) q^{32} + (36 \beta - 66) q^{33} + ( - 86 \beta + 138) q^{34} + ( - 18 \beta + 63) q^{36} + (28 \beta + 50) q^{37} + (26 \beta - 52) q^{38} + 39 q^{39} + ( - 94 \beta + 100) q^{41} + (6 \beta - 84) q^{42} + (52 \beta + 308) q^{43} + (128 \beta - 490) q^{44} + ( - 52 \beta + 676) q^{46} + (32 \beta + 162) q^{47} + ( - 36 \beta - 45) q^{48} - 287 q^{49} + (12 \beta - 246) q^{51} + ( - 26 \beta + 91) q^{52} + ( - 120 \beta + 82) q^{53} + (27 \beta - 27) q^{54} + (54 \beta - 28) q^{56} + ( - 6 \beta + 72) q^{57} + (178 \beta + 134) q^{58} + ( - 40 \beta + 70) q^{59} + ( - 136 \beta + 314) q^{61} + ( - 6 \beta + 344) q^{62} - 18 \beta q^{63} + (170 \beta - 97) q^{64} + ( - 102 \beta + 570) q^{66} + ( - 170 \beta + 236) q^{67} + (192 \beta - 686) q^{68} + (144 \beta - 12) q^{69} + (84 \beta + 214) q^{71} + (9 \beta - 243) q^{72} + (76 \beta + 450) q^{73} + (22 \beta + 342) q^{74} + ( - 62 \beta + 224) q^{76} + (44 \beta - 336) q^{77} + (39 \beta - 39) q^{78} + (88 \beta - 216) q^{79} + 81 q^{81} + (194 \beta - 1416) q^{82} + (64 \beta + 694) q^{83} + ( - 42 \beta + 168) q^{84} + (256 \beta + 420) q^{86} + (72 \beta + 606) q^{87} + ( - 346 \beta + 762) q^{88} + (190 \beta + 480) q^{89} - 26 \beta q^{91} + (344 \beta - 1372) q^{92} + (78 \beta + 60) q^{93} + (130 \beta + 286) q^{94} + ( - 33 \beta + 189) q^{96} + ( - 220 \beta + 266) q^{97} + ( - 287 \beta + 287) q^{98} + (108 \beta - 198) q^{99} +O(q^{100})$$ q + (b - 1) * q^2 + 3 * q^3 + (-2*b + 7) * q^4 + (3*b - 3) * q^6 - 2*b * q^7 + (b - 27) * q^8 + 9 * q^9 + (12*b - 22) * q^11 + (-6*b + 21) * q^12 + 13 * q^13 + (2*b - 28) * q^14 + (-12*b - 15) * q^16 + (4*b - 82) * q^17 + (9*b - 9) * q^18 + (-2*b + 24) * q^19 - 6*b * q^21 + (-34*b + 190) * q^22 + (48*b - 4) * q^23 + (3*b - 81) * q^24 + (13*b - 13) * q^26 + 27 * q^27 + (-14*b + 56) * q^28 + (24*b + 202) * q^29 + (26*b + 20) * q^31 + (-11*b + 63) * q^32 + (36*b - 66) * q^33 + (-86*b + 138) * q^34 + (-18*b + 63) * q^36 + (28*b + 50) * q^37 + (26*b - 52) * q^38 + 39 * q^39 + (-94*b + 100) * q^41 + (6*b - 84) * q^42 + (52*b + 308) * q^43 + (128*b - 490) * q^44 + (-52*b + 676) * q^46 + (32*b + 162) * q^47 + (-36*b - 45) * q^48 - 287 * q^49 + (12*b - 246) * q^51 + (-26*b + 91) * q^52 + (-120*b + 82) * q^53 + (27*b - 27) * q^54 + (54*b - 28) * q^56 + (-6*b + 72) * q^57 + (178*b + 134) * q^58 + (-40*b + 70) * q^59 + (-136*b + 314) * q^61 + (-6*b + 344) * q^62 - 18*b * q^63 + (170*b - 97) * q^64 + (-102*b + 570) * q^66 + (-170*b + 236) * q^67 + (192*b - 686) * q^68 + (144*b - 12) * q^69 + (84*b + 214) * q^71 + (9*b - 243) * q^72 + (76*b + 450) * q^73 + (22*b + 342) * q^74 + (-62*b + 224) * q^76 + (44*b - 336) * q^77 + (39*b - 39) * q^78 + (88*b - 216) * q^79 + 81 * q^81 + (194*b - 1416) * q^82 + (64*b + 694) * q^83 + (-42*b + 168) * q^84 + (256*b + 420) * q^86 + (72*b + 606) * q^87 + (-346*b + 762) * q^88 + (190*b + 480) * q^89 - 26*b * q^91 + (344*b - 1372) * q^92 + (78*b + 60) * q^93 + (130*b + 286) * q^94 + (-33*b + 189) * q^96 + (-220*b + 266) * q^97 + (-287*b + 287) * q^98 + (108*b - 198) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{2} + 6 q^{3} + 14 q^{4} - 6 q^{6} - 54 q^{8} + 18 q^{9}+O(q^{10})$$ 2 * q - 2 * q^2 + 6 * q^3 + 14 * q^4 - 6 * q^6 - 54 * q^8 + 18 * q^9 $$2 q - 2 q^{2} + 6 q^{3} + 14 q^{4} - 6 q^{6} - 54 q^{8} + 18 q^{9} - 44 q^{11} + 42 q^{12} + 26 q^{13} - 56 q^{14} - 30 q^{16} - 164 q^{17} - 18 q^{18} + 48 q^{19} + 380 q^{22} - 8 q^{23} - 162 q^{24} - 26 q^{26} + 54 q^{27} + 112 q^{28} + 404 q^{29} + 40 q^{31} + 126 q^{32} - 132 q^{33} + 276 q^{34} + 126 q^{36} + 100 q^{37} - 104 q^{38} + 78 q^{39} + 200 q^{41} - 168 q^{42} + 616 q^{43} - 980 q^{44} + 1352 q^{46} + 324 q^{47} - 90 q^{48} - 574 q^{49} - 492 q^{51} + 182 q^{52} + 164 q^{53} - 54 q^{54} - 56 q^{56} + 144 q^{57} + 268 q^{58} + 140 q^{59} + 628 q^{61} + 688 q^{62} - 194 q^{64} + 1140 q^{66} + 472 q^{67} - 1372 q^{68} - 24 q^{69} + 428 q^{71} - 486 q^{72} + 900 q^{73} + 684 q^{74} + 448 q^{76} - 672 q^{77} - 78 q^{78} - 432 q^{79} + 162 q^{81} - 2832 q^{82} + 1388 q^{83} + 336 q^{84} + 840 q^{86} + 1212 q^{87} + 1524 q^{88} + 960 q^{89} - 2744 q^{92} + 120 q^{93} + 572 q^{94} + 378 q^{96} + 532 q^{97} + 574 q^{98} - 396 q^{99}+O(q^{100})$$ 2 * q - 2 * q^2 + 6 * q^3 + 14 * q^4 - 6 * q^6 - 54 * q^8 + 18 * q^9 - 44 * q^11 + 42 * q^12 + 26 * q^13 - 56 * q^14 - 30 * q^16 - 164 * q^17 - 18 * q^18 + 48 * q^19 + 380 * q^22 - 8 * q^23 - 162 * q^24 - 26 * q^26 + 54 * q^27 + 112 * q^28 + 404 * q^29 + 40 * q^31 + 126 * q^32 - 132 * q^33 + 276 * q^34 + 126 * q^36 + 100 * q^37 - 104 * q^38 + 78 * q^39 + 200 * q^41 - 168 * q^42 + 616 * q^43 - 980 * q^44 + 1352 * q^46 + 324 * q^47 - 90 * q^48 - 574 * q^49 - 492 * q^51 + 182 * q^52 + 164 * q^53 - 54 * q^54 - 56 * q^56 + 144 * q^57 + 268 * q^58 + 140 * q^59 + 628 * q^61 + 688 * q^62 - 194 * q^64 + 1140 * q^66 + 472 * q^67 - 1372 * q^68 - 24 * q^69 + 428 * q^71 - 486 * q^72 + 900 * q^73 + 684 * q^74 + 448 * q^76 - 672 * q^77 - 78 * q^78 - 432 * q^79 + 162 * q^81 - 2832 * q^82 + 1388 * q^83 + 336 * q^84 + 840 * q^86 + 1212 * q^87 + 1524 * q^88 + 960 * q^89 - 2744 * q^92 + 120 * q^93 + 572 * q^94 + 378 * q^96 + 532 * q^97 + 574 * q^98 - 396 * q^99

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −3.74166 3.74166
−4.74166 3.00000 14.4833 0 −14.2250 7.48331 −30.7417 9.00000 0
1.2 2.74166 3.00000 −0.483315 0 8.22497 −7.48331 −23.2583 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$5$$ $$1$$
$$13$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.4.a.j 2
5.b even 2 1 39.4.a.b 2
15.d odd 2 1 117.4.a.c 2
20.d odd 2 1 624.4.a.r 2
35.c odd 2 1 1911.4.a.h 2
40.e odd 2 1 2496.4.a.s 2
40.f even 2 1 2496.4.a.bc 2
60.h even 2 1 1872.4.a.t 2
65.d even 2 1 507.4.a.f 2
65.g odd 4 2 507.4.b.f 4
195.e odd 2 1 1521.4.a.s 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.b 2 5.b even 2 1
117.4.a.c 2 15.d odd 2 1
507.4.a.f 2 65.d even 2 1
507.4.b.f 4 65.g odd 4 2
624.4.a.r 2 20.d odd 2 1
975.4.a.j 2 1.a even 1 1 trivial
1521.4.a.s 2 195.e odd 2 1
1872.4.a.t 2 60.h even 2 1
1911.4.a.h 2 35.c odd 2 1
2496.4.a.s 2 40.e odd 2 1
2496.4.a.bc 2 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(975))$$:

 $$T_{2}^{2} + 2T_{2} - 13$$ T2^2 + 2*T2 - 13 $$T_{7}^{2} - 56$$ T7^2 - 56

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 2T - 13$$
$3$ $$(T - 3)^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2} - 56$$
$11$ $$T^{2} + 44T - 1532$$
$13$ $$(T - 13)^{2}$$
$17$ $$T^{2} + 164T + 6500$$
$19$ $$T^{2} - 48T + 520$$
$23$ $$T^{2} + 8T - 32240$$
$29$ $$T^{2} - 404T + 32740$$
$31$ $$T^{2} - 40T - 9064$$
$37$ $$T^{2} - 100T - 8476$$
$41$ $$T^{2} - 200T - 113704$$
$43$ $$T^{2} - 616T + 57008$$
$47$ $$T^{2} - 324T + 11908$$
$53$ $$T^{2} - 164T - 194876$$
$59$ $$T^{2} - 140T - 17500$$
$61$ $$T^{2} - 628T - 160348$$
$67$ $$T^{2} - 472T - 348904$$
$71$ $$T^{2} - 428T - 52988$$
$73$ $$T^{2} - 900T + 121636$$
$79$ $$T^{2} + 432T - 61760$$
$83$ $$T^{2} - 1388 T + 424292$$
$89$ $$T^{2} - 960T - 275000$$
$97$ $$T^{2} - 532T - 606844$$