Properties

Label 975.4.a.h
Level $975$
Weight $4$
Character orbit 975.a
Self dual yes
Analytic conductor $57.527$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,4,Mod(1,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 975.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,3,3,1,0,9,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5268622556\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{2} + 3 q^{3} + q^{4} + 9 q^{6} - 2 q^{7} - 21 q^{8} + 9 q^{9} + 24 q^{11} + 3 q^{12} - 13 q^{13} - 6 q^{14} - 71 q^{16} - 24 q^{17} + 27 q^{18} - 70 q^{19} - 6 q^{21} + 72 q^{22} - 90 q^{23}+ \cdots + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
3.00000 3.00000 1.00000 0 9.00000 −2.00000 −21.0000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.4.a.h 1
5.b even 2 1 195.4.a.b 1
15.d odd 2 1 585.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.4.a.b 1 5.b even 2 1
585.4.a.d 1 15.d odd 2 1
975.4.a.h 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(975))\):

\( T_{2} - 3 \) Copy content Toggle raw display
\( T_{7} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 3 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 2 \) Copy content Toggle raw display
$11$ \( T - 24 \) Copy content Toggle raw display
$13$ \( T + 13 \) Copy content Toggle raw display
$17$ \( T + 24 \) Copy content Toggle raw display
$19$ \( T + 70 \) Copy content Toggle raw display
$23$ \( T + 90 \) Copy content Toggle raw display
$29$ \( T + 120 \) Copy content Toggle raw display
$31$ \( T + 196 \) Copy content Toggle raw display
$37$ \( T - 214 \) Copy content Toggle raw display
$41$ \( T + 54 \) Copy content Toggle raw display
$43$ \( T - 196 \) Copy content Toggle raw display
$47$ \( T + 120 \) Copy content Toggle raw display
$53$ \( T + 18 \) Copy content Toggle raw display
$59$ \( T + 312 \) Copy content Toggle raw display
$61$ \( T + 322 \) Copy content Toggle raw display
$67$ \( T - 376 \) Copy content Toggle raw display
$71$ \( T - 240 \) Copy content Toggle raw display
$73$ \( T + 1136 \) Copy content Toggle raw display
$79$ \( T + 808 \) Copy content Toggle raw display
$83$ \( T + 1092 \) Copy content Toggle raw display
$89$ \( T + 618 \) Copy content Toggle raw display
$97$ \( T - 880 \) Copy content Toggle raw display
show more
show less