# Properties

 Label 975.2.c.g Level $975$ Weight $2$ Character orbit 975.c Analytic conductor $7.785$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [975,2,Mod(274,975)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(975, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("975.274");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$975 = 3 \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 975.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$7.78541419707$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + i q^{2} - i q^{3} + q^{4} + q^{6} - 3 i q^{7} + 3 i q^{8} - q^{9} +O(q^{10})$$ q + i * q^2 - i * q^3 + q^4 + q^6 - 3*i * q^7 + 3*i * q^8 - q^9 $$q + i q^{2} - i q^{3} + q^{4} + q^{6} - 3 i q^{7} + 3 i q^{8} - q^{9} - q^{11} - i q^{12} - i q^{13} + 3 q^{14} - q^{16} - 5 i q^{17} - i q^{18} + 8 q^{19} - 3 q^{21} - i q^{22} + 3 q^{24} + q^{26} + i q^{27} - 3 i q^{28} - q^{29} + 3 q^{31} + 5 i q^{32} + i q^{33} + 5 q^{34} - q^{36} - 8 i q^{37} + 8 i q^{38} - q^{39} - 2 q^{41} - 3 i q^{42} - 8 i q^{43} - q^{44} - 11 i q^{47} + i q^{48} - 2 q^{49} - 5 q^{51} - i q^{52} + 11 i q^{53} - q^{54} + 9 q^{56} - 8 i q^{57} - i q^{58} - 5 q^{59} + q^{61} + 3 i q^{62} + 3 i q^{63} - 7 q^{64} - q^{66} + 3 i q^{67} - 5 i q^{68} + 16 q^{71} - 3 i q^{72} + 4 i q^{73} + 8 q^{74} + 8 q^{76} + 3 i q^{77} - i q^{78} - 12 q^{79} + q^{81} - 2 i q^{82} + 3 i q^{83} - 3 q^{84} + 8 q^{86} + i q^{87} - 3 i q^{88} - 3 q^{91} - 3 i q^{93} + 11 q^{94} + 5 q^{96} - 2 i q^{97} - 2 i q^{98} + q^{99} +O(q^{100})$$ q + i * q^2 - i * q^3 + q^4 + q^6 - 3*i * q^7 + 3*i * q^8 - q^9 - q^11 - i * q^12 - i * q^13 + 3 * q^14 - q^16 - 5*i * q^17 - i * q^18 + 8 * q^19 - 3 * q^21 - i * q^22 + 3 * q^24 + q^26 + i * q^27 - 3*i * q^28 - q^29 + 3 * q^31 + 5*i * q^32 + i * q^33 + 5 * q^34 - q^36 - 8*i * q^37 + 8*i * q^38 - q^39 - 2 * q^41 - 3*i * q^42 - 8*i * q^43 - q^44 - 11*i * q^47 + i * q^48 - 2 * q^49 - 5 * q^51 - i * q^52 + 11*i * q^53 - q^54 + 9 * q^56 - 8*i * q^57 - i * q^58 - 5 * q^59 + q^61 + 3*i * q^62 + 3*i * q^63 - 7 * q^64 - q^66 + 3*i * q^67 - 5*i * q^68 + 16 * q^71 - 3*i * q^72 + 4*i * q^73 + 8 * q^74 + 8 * q^76 + 3*i * q^77 - i * q^78 - 12 * q^79 + q^81 - 2*i * q^82 + 3*i * q^83 - 3 * q^84 + 8 * q^86 + i * q^87 - 3*i * q^88 - 3 * q^91 - 3*i * q^93 + 11 * q^94 + 5 * q^96 - 2*i * q^97 - 2*i * q^98 + q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{4} + 2 q^{6} - 2 q^{9}+O(q^{10})$$ 2 * q + 2 * q^4 + 2 * q^6 - 2 * q^9 $$2 q + 2 q^{4} + 2 q^{6} - 2 q^{9} - 2 q^{11} + 6 q^{14} - 2 q^{16} + 16 q^{19} - 6 q^{21} + 6 q^{24} + 2 q^{26} - 2 q^{29} + 6 q^{31} + 10 q^{34} - 2 q^{36} - 2 q^{39} - 4 q^{41} - 2 q^{44} - 4 q^{49} - 10 q^{51} - 2 q^{54} + 18 q^{56} - 10 q^{59} + 2 q^{61} - 14 q^{64} - 2 q^{66} + 32 q^{71} + 16 q^{74} + 16 q^{76} - 24 q^{79} + 2 q^{81} - 6 q^{84} + 16 q^{86} - 6 q^{91} + 22 q^{94} + 10 q^{96} + 2 q^{99}+O(q^{100})$$ 2 * q + 2 * q^4 + 2 * q^6 - 2 * q^9 - 2 * q^11 + 6 * q^14 - 2 * q^16 + 16 * q^19 - 6 * q^21 + 6 * q^24 + 2 * q^26 - 2 * q^29 + 6 * q^31 + 10 * q^34 - 2 * q^36 - 2 * q^39 - 4 * q^41 - 2 * q^44 - 4 * q^49 - 10 * q^51 - 2 * q^54 + 18 * q^56 - 10 * q^59 + 2 * q^61 - 14 * q^64 - 2 * q^66 + 32 * q^71 + 16 * q^74 + 16 * q^76 - 24 * q^79 + 2 * q^81 - 6 * q^84 + 16 * q^86 - 6 * q^91 + 22 * q^94 + 10 * q^96 + 2 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/975\mathbb{Z}\right)^\times$$.

 $$n$$ $$301$$ $$326$$ $$352$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
274.1
 − 1.00000i 1.00000i
1.00000i 1.00000i 1.00000 0 1.00000 3.00000i 3.00000i −1.00000 0
274.2 1.00000i 1.00000i 1.00000 0 1.00000 3.00000i 3.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.c.g 2
3.b odd 2 1 2925.2.c.i 2
5.b even 2 1 inner 975.2.c.g 2
5.c odd 4 1 975.2.a.d 1
5.c odd 4 1 975.2.a.k yes 1
15.d odd 2 1 2925.2.c.i 2
15.e even 4 1 2925.2.a.b 1
15.e even 4 1 2925.2.a.o 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
975.2.a.d 1 5.c odd 4 1
975.2.a.k yes 1 5.c odd 4 1
975.2.c.g 2 1.a even 1 1 trivial
975.2.c.g 2 5.b even 2 1 inner
2925.2.a.b 1 15.e even 4 1
2925.2.a.o 1 15.e even 4 1
2925.2.c.i 2 3.b odd 2 1
2925.2.c.i 2 15.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(975, [\chi])$$:

 $$T_{2}^{2} + 1$$ T2^2 + 1 $$T_{7}^{2} + 9$$ T7^2 + 9 $$T_{11} + 1$$ T11 + 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 9$$
$11$ $$(T + 1)^{2}$$
$13$ $$T^{2} + 1$$
$17$ $$T^{2} + 25$$
$19$ $$(T - 8)^{2}$$
$23$ $$T^{2}$$
$29$ $$(T + 1)^{2}$$
$31$ $$(T - 3)^{2}$$
$37$ $$T^{2} + 64$$
$41$ $$(T + 2)^{2}$$
$43$ $$T^{2} + 64$$
$47$ $$T^{2} + 121$$
$53$ $$T^{2} + 121$$
$59$ $$(T + 5)^{2}$$
$61$ $$(T - 1)^{2}$$
$67$ $$T^{2} + 9$$
$71$ $$(T - 16)^{2}$$
$73$ $$T^{2} + 16$$
$79$ $$(T + 12)^{2}$$
$83$ $$T^{2} + 9$$
$89$ $$T^{2}$$
$97$ $$T^{2} + 4$$