Properties

 Label 975.2.bp.d Level $975$ Weight $2$ Character orbit 975.bp Analytic conductor $7.785$ Analytic rank $0$ Dimension $4$ CM discriminant -3 Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$975 = 3 \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 975.bp (of order $$12$$, degree $$4$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$7.78541419707$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 39) Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 2 - \zeta_{12}^{2} ) q^{3} -2 \zeta_{12} q^{4} + ( 1 - \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{7} + ( 3 - 3 \zeta_{12}^{2} ) q^{9} +O(q^{10})$$ $$q + ( 2 - \zeta_{12}^{2} ) q^{3} -2 \zeta_{12} q^{4} + ( 1 - \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{7} + ( 3 - 3 \zeta_{12}^{2} ) q^{9} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{12} + ( 1 + 3 \zeta_{12}^{2} ) q^{13} + 4 \zeta_{12}^{2} q^{16} + ( -5 + 5 \zeta_{12} + 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{19} + ( 4 + \zeta_{12} + \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{21} + ( 3 - 6 \zeta_{12}^{2} ) q^{27} + ( 6 - 2 \zeta_{12} - 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{28} + ( -1 + 5 \zeta_{12} - 5 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{31} + ( -6 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{36} + ( 4 + 7 \zeta_{12} + 3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{37} + ( 5 + 2 \zeta_{12}^{2} ) q^{39} + ( \zeta_{12} - 2 \zeta_{12}^{3} ) q^{43} + ( 4 + 4 \zeta_{12}^{2} ) q^{48} + ( -6 - 7 \zeta_{12} + 3 \zeta_{12}^{2} + 7 \zeta_{12}^{3} ) q^{49} + ( -2 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{52} + ( -7 + 8 \zeta_{12} + 8 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{57} + ( -5 \zeta_{12} + 10 \zeta_{12}^{3} ) q^{61} + ( 9 + 6 \zeta_{12} - 3 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{63} -8 \zeta_{12}^{3} q^{64} + ( 7 + 2 \zeta_{12} - 9 \zeta_{12}^{2} - 9 \zeta_{12}^{3} ) q^{67} + ( 8 - \zeta_{12} + \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{73} + ( -4 + 10 \zeta_{12} - 6 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{76} + ( 14 \zeta_{12} - 7 \zeta_{12}^{3} ) q^{79} -9 \zeta_{12}^{2} q^{81} + ( 8 - 8 \zeta_{12} - 10 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{84} + ( -5 - 10 \zeta_{12} + 11 \zeta_{12}^{2} + 9 \zeta_{12}^{3} ) q^{91} + ( -7 + 11 \zeta_{12} - 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{93} + ( -3 - 3 \zeta_{12} - 8 \zeta_{12}^{2} + 11 \zeta_{12}^{3} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 6q^{3} + 8q^{7} + 6q^{9} + O(q^{10})$$ $$4q + 6q^{3} + 8q^{7} + 6q^{9} + 10q^{13} + 8q^{16} - 14q^{19} + 18q^{21} + 16q^{28} - 14q^{31} + 22q^{37} + 24q^{39} + 24q^{48} - 18q^{49} - 12q^{57} + 30q^{63} + 10q^{67} + 34q^{73} - 28q^{76} - 18q^{81} + 12q^{84} + 2q^{91} - 36q^{93} - 28q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/975\mathbb{Z}\right)^\times$$.

 $$n$$ $$301$$ $$326$$ $$352$$ $$\chi(n)$$ $$\zeta_{12}$$ $$-1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
149.1
 −0.866025 + 0.500000i 0.866025 − 0.500000i −0.866025 − 0.500000i 0.866025 + 0.500000i
0 1.50000 + 0.866025i 1.73205 1.00000i 0 0 2.86603 + 0.767949i 0 1.50000 + 2.59808i 0
449.1 0 1.50000 + 0.866025i −1.73205 + 1.00000i 0 0 1.13397 4.23205i 0 1.50000 + 2.59808i 0
674.1 0 1.50000 0.866025i 1.73205 + 1.00000i 0 0 2.86603 0.767949i 0 1.50000 2.59808i 0
899.1 0 1.50000 0.866025i −1.73205 1.00000i 0 0 1.13397 + 4.23205i 0 1.50000 2.59808i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
65.s odd 12 1 inner
195.bh even 12 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 975.2.bp.d 4
3.b odd 2 1 CM 975.2.bp.d 4
5.b even 2 1 975.2.bp.a 4
5.c odd 4 1 39.2.k.a 4
5.c odd 4 1 975.2.bo.c 4
13.f odd 12 1 975.2.bp.a 4
15.d odd 2 1 975.2.bp.a 4
15.e even 4 1 39.2.k.a 4
15.e even 4 1 975.2.bo.c 4
20.e even 4 1 624.2.cn.b 4
39.k even 12 1 975.2.bp.a 4
60.l odd 4 1 624.2.cn.b 4
65.f even 4 1 507.2.k.b 4
65.h odd 4 1 507.2.k.c 4
65.k even 4 1 507.2.k.a 4
65.o even 12 1 507.2.f.b 4
65.o even 12 1 507.2.k.c 4
65.o even 12 1 975.2.bo.c 4
65.q odd 12 1 507.2.f.c 4
65.q odd 12 1 507.2.k.b 4
65.r odd 12 1 507.2.f.b 4
65.r odd 12 1 507.2.k.a 4
65.s odd 12 1 inner 975.2.bp.d 4
65.t even 12 1 39.2.k.a 4
65.t even 12 1 507.2.f.c 4
195.j odd 4 1 507.2.k.a 4
195.s even 4 1 507.2.k.c 4
195.u odd 4 1 507.2.k.b 4
195.bc odd 12 1 39.2.k.a 4
195.bc odd 12 1 507.2.f.c 4
195.bf even 12 1 507.2.f.b 4
195.bf even 12 1 507.2.k.a 4
195.bh even 12 1 inner 975.2.bp.d 4
195.bl even 12 1 507.2.f.c 4
195.bl even 12 1 507.2.k.b 4
195.bn odd 12 1 507.2.f.b 4
195.bn odd 12 1 507.2.k.c 4
195.bn odd 12 1 975.2.bo.c 4
260.bl odd 12 1 624.2.cn.b 4
780.cy even 12 1 624.2.cn.b 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.k.a 4 5.c odd 4 1
39.2.k.a 4 15.e even 4 1
39.2.k.a 4 65.t even 12 1
39.2.k.a 4 195.bc odd 12 1
507.2.f.b 4 65.o even 12 1
507.2.f.b 4 65.r odd 12 1
507.2.f.b 4 195.bf even 12 1
507.2.f.b 4 195.bn odd 12 1
507.2.f.c 4 65.q odd 12 1
507.2.f.c 4 65.t even 12 1
507.2.f.c 4 195.bc odd 12 1
507.2.f.c 4 195.bl even 12 1
507.2.k.a 4 65.k even 4 1
507.2.k.a 4 65.r odd 12 1
507.2.k.a 4 195.j odd 4 1
507.2.k.a 4 195.bf even 12 1
507.2.k.b 4 65.f even 4 1
507.2.k.b 4 65.q odd 12 1
507.2.k.b 4 195.u odd 4 1
507.2.k.b 4 195.bl even 12 1
507.2.k.c 4 65.h odd 4 1
507.2.k.c 4 65.o even 12 1
507.2.k.c 4 195.s even 4 1
507.2.k.c 4 195.bn odd 12 1
624.2.cn.b 4 20.e even 4 1
624.2.cn.b 4 60.l odd 4 1
624.2.cn.b 4 260.bl odd 12 1
624.2.cn.b 4 780.cy even 12 1
975.2.bo.c 4 5.c odd 4 1
975.2.bo.c 4 15.e even 4 1
975.2.bo.c 4 65.o even 12 1
975.2.bo.c 4 195.bn odd 12 1
975.2.bp.a 4 5.b even 2 1
975.2.bp.a 4 13.f odd 12 1
975.2.bp.a 4 15.d odd 2 1
975.2.bp.a 4 39.k even 12 1
975.2.bp.d 4 1.a even 1 1 trivial
975.2.bp.d 4 3.b odd 2 1 CM
975.2.bp.d 4 65.s odd 12 1 inner
975.2.bp.d 4 195.bh even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(975, [\chi])$$:

 $$T_{2}$$ $$T_{7}^{4} - 8 T_{7}^{3} + 41 T_{7}^{2} - 130 T_{7} + 169$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$( 3 - 3 T + T^{2} )^{2}$$
$5$ $$T^{4}$$
$7$ $$169 - 130 T + 41 T^{2} - 8 T^{3} + T^{4}$$
$11$ $$T^{4}$$
$13$ $$( 13 - 5 T + T^{2} )^{2}$$
$17$ $$T^{4}$$
$19$ $$676 + 52 T + 50 T^{2} + 14 T^{3} + T^{4}$$
$23$ $$T^{4}$$
$29$ $$T^{4}$$
$31$ $$169 - 182 T + 98 T^{2} + 14 T^{3} + T^{4}$$
$37$ $$676 + 52 T + 122 T^{2} - 22 T^{3} + T^{4}$$
$41$ $$T^{4}$$
$43$ $$9 + 3 T^{2} + T^{4}$$
$47$ $$T^{4}$$
$53$ $$T^{4}$$
$59$ $$T^{4}$$
$61$ $$5625 + 75 T^{2} + T^{4}$$
$67$ $$169 - 416 T + 281 T^{2} - 10 T^{3} + T^{4}$$
$71$ $$T^{4}$$
$73$ $$20449 - 4862 T + 578 T^{2} - 34 T^{3} + T^{4}$$
$79$ $$( -147 + T^{2} )^{2}$$
$83$ $$T^{4}$$
$89$ $$T^{4}$$
$97$ $$28561 + 6422 T + 557 T^{2} + 28 T^{3} + T^{4}$$