Properties

Label 975.2.bc.n.751.4
Level $975$
Weight $2$
Character 975.751
Analytic conductor $7.785$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(751,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.751"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,8,10,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 26x^{14} + 269x^{12} + 1420x^{10} + 4080x^{8} + 6272x^{6} + 4672x^{4} + 1308x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 751.4
Root \(-0.592086i\) of defining polynomial
Character \(\chi\) \(=\) 975.751
Dual form 975.2.bc.n.901.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.512762 + 0.296043i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.824717 + 1.42845i) q^{4} +(-0.512762 - 0.296043i) q^{6} +(1.43536 + 0.828705i) q^{7} -2.16078i q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.22336 + 0.706307i) q^{11} -1.64943 q^{12} +(-3.60552 - 0.0145731i) q^{13} -0.981329 q^{14} +(-1.00975 - 1.74894i) q^{16} +(-1.63925 + 2.83926i) q^{17} -0.592086i q^{18} +(-7.29219 - 4.21015i) q^{19} +1.65741i q^{21} +(0.418195 - 0.724334i) q^{22} +(3.29099 + 5.70016i) q^{23} +(1.87129 - 1.08039i) q^{24} +(1.85309 - 1.05992i) q^{26} -1.00000 q^{27} +(-2.36753 + 1.36689i) q^{28} +(-0.252903 - 0.438041i) q^{29} -0.791382i q^{31} +(4.77810 + 2.75864i) q^{32} +(-1.22336 - 0.706307i) q^{33} -1.94115i q^{34} +(-0.824717 - 1.42845i) q^{36} +(4.12017 - 2.37878i) q^{37} +4.98554 q^{38} +(-1.79014 - 3.12976i) q^{39} +(-7.67224 + 4.42957i) q^{41} +(-0.490665 - 0.849856i) q^{42} +(-1.11596 + 1.93289i) q^{43} -2.33001i q^{44} +(-3.37499 - 1.94855i) q^{46} +3.43727i q^{47} +(1.00975 - 1.74894i) q^{48} +(-2.12650 - 3.68320i) q^{49} -3.27850 q^{51} +(2.99435 - 5.13830i) q^{52} +0.422128 q^{53} +(0.512762 - 0.296043i) q^{54} +(1.79065 - 3.10149i) q^{56} -8.42030i q^{57} +(0.259358 + 0.149740i) q^{58} +(-11.3443 - 6.54963i) q^{59} +(-0.463750 + 0.803239i) q^{61} +(0.234283 + 0.405790i) q^{62} +(-1.43536 + 0.828705i) q^{63} +0.772299 q^{64} +0.836389 q^{66} +(-10.7587 + 6.21154i) q^{67} +(-2.70384 - 4.68318i) q^{68} +(-3.29099 + 5.70016i) q^{69} +(0.947838 + 0.547235i) q^{71} +(1.87129 + 1.08039i) q^{72} -11.2130i q^{73} +(-1.40844 + 2.43950i) q^{74} +(12.0280 - 6.94436i) q^{76} -2.34128 q^{77} +(1.84446 + 1.07486i) q^{78} +9.25299 q^{79} +(-0.500000 - 0.866025i) q^{81} +(2.62269 - 4.54263i) q^{82} -4.02601i q^{83} +(-2.36753 - 1.36689i) q^{84} -1.32149i q^{86} +(0.252903 - 0.438041i) q^{87} +(1.52617 + 2.64341i) q^{88} +(0.517890 - 0.299004i) q^{89} +(-5.16314 - 3.00883i) q^{91} -10.8565 q^{92} +(0.685357 - 0.395691i) q^{93} +(-1.01758 - 1.76250i) q^{94} +5.51728i q^{96} +(-2.73609 - 1.57968i) q^{97} +(2.18077 + 1.25907i) q^{98} -1.41261i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{3} + 10 q^{4} + 6 q^{7} - 8 q^{9} - 6 q^{11} + 20 q^{12} - 4 q^{14} - 14 q^{16} - 10 q^{17} + 2 q^{22} - 12 q^{23} + 26 q^{26} - 16 q^{27} + 24 q^{28} + 12 q^{29} + 30 q^{32} - 6 q^{33} + 10 q^{36}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.512762 + 0.296043i −0.362577 + 0.209334i −0.670211 0.742171i \(-0.733796\pi\)
0.307633 + 0.951505i \(0.400463\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −0.824717 + 1.42845i −0.412359 + 0.714226i
\(5\) 0 0
\(6\) −0.512762 0.296043i −0.209334 0.120859i
\(7\) 1.43536 + 0.828705i 0.542515 + 0.313221i 0.746097 0.665837i \(-0.231925\pi\)
−0.203583 + 0.979058i \(0.565259\pi\)
\(8\) 2.16078i 0.763951i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.22336 + 0.706307i −0.368857 + 0.212960i −0.672959 0.739680i \(-0.734977\pi\)
0.304102 + 0.952639i \(0.401644\pi\)
\(12\) −1.64943 −0.476151
\(13\) −3.60552 0.0145731i −0.999992 0.00404184i
\(14\) −0.981329 −0.262271
\(15\) 0 0
\(16\) −1.00975 1.74894i −0.252438 0.437235i
\(17\) −1.63925 + 2.83926i −0.397577 + 0.688623i −0.993426 0.114473i \(-0.963482\pi\)
0.595850 + 0.803096i \(0.296815\pi\)
\(18\) 0.592086i 0.139556i
\(19\) −7.29219 4.21015i −1.67294 0.965875i −0.965977 0.258628i \(-0.916730\pi\)
−0.706967 0.707247i \(-0.749937\pi\)
\(20\) 0 0
\(21\) 1.65741i 0.361676i
\(22\) 0.418195 0.724334i 0.0891594 0.154429i
\(23\) 3.29099 + 5.70016i 0.686219 + 1.18857i 0.973052 + 0.230585i \(0.0740640\pi\)
−0.286834 + 0.957980i \(0.592603\pi\)
\(24\) 1.87129 1.08039i 0.381975 0.220534i
\(25\) 0 0
\(26\) 1.85309 1.05992i 0.363420 0.207867i
\(27\) −1.00000 −0.192450
\(28\) −2.36753 + 1.36689i −0.447421 + 0.258319i
\(29\) −0.252903 0.438041i −0.0469629 0.0813422i 0.841588 0.540119i \(-0.181621\pi\)
−0.888551 + 0.458777i \(0.848288\pi\)
\(30\) 0 0
\(31\) 0.791382i 0.142136i −0.997471 0.0710682i \(-0.977359\pi\)
0.997471 0.0710682i \(-0.0226408\pi\)
\(32\) 4.77810 + 2.75864i 0.844657 + 0.487663i
\(33\) −1.22336 0.706307i −0.212960 0.122952i
\(34\) 1.94115i 0.332905i
\(35\) 0 0
\(36\) −0.824717 1.42845i −0.137453 0.238075i
\(37\) 4.12017 2.37878i 0.677352 0.391069i −0.121504 0.992591i \(-0.538772\pi\)
0.798857 + 0.601521i \(0.205439\pi\)
\(38\) 4.98554 0.808762
\(39\) −1.79014 3.12976i −0.286652 0.501163i
\(40\) 0 0
\(41\) −7.67224 + 4.42957i −1.19820 + 0.691782i −0.960154 0.279471i \(-0.909841\pi\)
−0.238048 + 0.971253i \(0.576508\pi\)
\(42\) −0.490665 0.849856i −0.0757112 0.131136i
\(43\) −1.11596 + 1.93289i −0.170182 + 0.294764i −0.938483 0.345325i \(-0.887769\pi\)
0.768301 + 0.640088i \(0.221102\pi\)
\(44\) 2.33001i 0.351263i
\(45\) 0 0
\(46\) −3.37499 1.94855i −0.497614 0.287298i
\(47\) 3.43727i 0.501377i 0.968068 + 0.250688i \(0.0806570\pi\)
−0.968068 + 0.250688i \(0.919343\pi\)
\(48\) 1.00975 1.74894i 0.145745 0.252438i
\(49\) −2.12650 3.68320i −0.303785 0.526172i
\(50\) 0 0
\(51\) −3.27850 −0.459082
\(52\) 2.99435 5.13830i 0.415242 0.712553i
\(53\) 0.422128 0.0579838 0.0289919 0.999580i \(-0.490770\pi\)
0.0289919 + 0.999580i \(0.490770\pi\)
\(54\) 0.512762 0.296043i 0.0697780 0.0402864i
\(55\) 0 0
\(56\) 1.79065 3.10149i 0.239285 0.414454i
\(57\) 8.42030i 1.11530i
\(58\) 0.259358 + 0.149740i 0.0340554 + 0.0196619i
\(59\) −11.3443 6.54963i −1.47690 0.852689i −0.477241 0.878772i \(-0.658363\pi\)
−0.999660 + 0.0260834i \(0.991696\pi\)
\(60\) 0 0
\(61\) −0.463750 + 0.803239i −0.0593771 + 0.102844i −0.894186 0.447696i \(-0.852245\pi\)
0.834809 + 0.550540i \(0.185578\pi\)
\(62\) 0.234283 + 0.405790i 0.0297540 + 0.0515354i
\(63\) −1.43536 + 0.828705i −0.180838 + 0.104407i
\(64\) 0.772299 0.0965374
\(65\) 0 0
\(66\) 0.836389 0.102952
\(67\) −10.7587 + 6.21154i −1.31439 + 0.758861i −0.982819 0.184571i \(-0.940910\pi\)
−0.331567 + 0.943432i \(0.607577\pi\)
\(68\) −2.70384 4.68318i −0.327888 0.567919i
\(69\) −3.29099 + 5.70016i −0.396188 + 0.686219i
\(70\) 0 0
\(71\) 0.947838 + 0.547235i 0.112488 + 0.0649448i 0.555188 0.831725i \(-0.312646\pi\)
−0.442701 + 0.896670i \(0.645980\pi\)
\(72\) 1.87129 + 1.08039i 0.220534 + 0.127325i
\(73\) 11.2130i 1.31239i −0.754593 0.656193i \(-0.772166\pi\)
0.754593 0.656193i \(-0.227834\pi\)
\(74\) −1.40844 + 2.43950i −0.163728 + 0.283586i
\(75\) 0 0
\(76\) 12.0280 6.94436i 1.37971 0.796573i
\(77\) −2.34128 −0.266814
\(78\) 1.84446 + 1.07486i 0.208844 + 0.121704i
\(79\) 9.25299 1.04104 0.520522 0.853849i \(-0.325738\pi\)
0.520522 + 0.853849i \(0.325738\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.62269 4.54263i 0.289627 0.501649i
\(83\) 4.02601i 0.441912i −0.975284 0.220956i \(-0.929082\pi\)
0.975284 0.220956i \(-0.0709178\pi\)
\(84\) −2.36753 1.36689i −0.258319 0.149140i
\(85\) 0 0
\(86\) 1.32149i 0.142499i
\(87\) 0.252903 0.438041i 0.0271141 0.0469629i
\(88\) 1.52617 + 2.64341i 0.162691 + 0.281789i
\(89\) 0.517890 0.299004i 0.0548962 0.0316943i −0.472301 0.881437i \(-0.656576\pi\)
0.527197 + 0.849743i \(0.323243\pi\)
\(90\) 0 0
\(91\) −5.16314 3.00883i −0.541244 0.315411i
\(92\) −10.8565 −1.13187
\(93\) 0.685357 0.395691i 0.0710682 0.0410312i
\(94\) −1.01758 1.76250i −0.104955 0.181788i
\(95\) 0 0
\(96\) 5.51728i 0.563105i
\(97\) −2.73609 1.57968i −0.277808 0.160392i 0.354623 0.935009i \(-0.384609\pi\)
−0.632431 + 0.774617i \(0.717943\pi\)
\(98\) 2.18077 + 1.25907i 0.220291 + 0.127185i
\(99\) 1.41261i 0.141973i
\(100\) 0 0
\(101\) −4.47142 7.74473i −0.444923 0.770629i 0.553124 0.833099i \(-0.313436\pi\)
−0.998047 + 0.0624697i \(0.980102\pi\)
\(102\) 1.68109 0.970577i 0.166453 0.0961015i
\(103\) 15.0296 1.48091 0.740457 0.672103i \(-0.234609\pi\)
0.740457 + 0.672103i \(0.234609\pi\)
\(104\) −0.0314892 + 7.79074i −0.00308777 + 0.763945i
\(105\) 0 0
\(106\) −0.216451 + 0.124968i −0.0210236 + 0.0121380i
\(107\) 9.44308 + 16.3559i 0.912897 + 1.58118i 0.809951 + 0.586498i \(0.199494\pi\)
0.102946 + 0.994687i \(0.467173\pi\)
\(108\) 0.824717 1.42845i 0.0793584 0.137453i
\(109\) 6.71317i 0.643005i 0.946909 + 0.321502i \(0.104188\pi\)
−0.946909 + 0.321502i \(0.895812\pi\)
\(110\) 0 0
\(111\) 4.12017 + 2.37878i 0.391069 + 0.225784i
\(112\) 3.34714i 0.316275i
\(113\) −9.80892 + 16.9895i −0.922745 + 1.59824i −0.127598 + 0.991826i \(0.540727\pi\)
−0.795148 + 0.606416i \(0.792607\pi\)
\(114\) 2.49277 + 4.31761i 0.233469 + 0.404381i
\(115\) 0 0
\(116\) 0.834294 0.0774623
\(117\) 1.81538 3.11519i 0.167832 0.287999i
\(118\) 7.75589 0.713987
\(119\) −4.70582 + 2.71691i −0.431382 + 0.249059i
\(120\) 0 0
\(121\) −4.50226 + 7.79814i −0.409296 + 0.708922i
\(122\) 0.549160i 0.0497186i
\(123\) −7.67224 4.42957i −0.691782 0.399401i
\(124\) 1.13045 + 0.652666i 0.101518 + 0.0586112i
\(125\) 0 0
\(126\) 0.490665 0.849856i 0.0437119 0.0757112i
\(127\) −8.22136 14.2398i −0.729527 1.26358i −0.957083 0.289813i \(-0.906407\pi\)
0.227556 0.973765i \(-0.426927\pi\)
\(128\) −9.95221 + 5.74591i −0.879659 + 0.507872i
\(129\) −2.23191 −0.196509
\(130\) 0 0
\(131\) 6.11561 0.534323 0.267162 0.963652i \(-0.413914\pi\)
0.267162 + 0.963652i \(0.413914\pi\)
\(132\) 2.01785 1.16501i 0.175631 0.101401i
\(133\) −6.97794 12.0861i −0.605064 1.04800i
\(134\) 3.67777 6.37008i 0.317711 0.550291i
\(135\) 0 0
\(136\) 6.13502 + 3.54206i 0.526074 + 0.303729i
\(137\) 11.2142 + 6.47453i 0.958095 + 0.553156i 0.895586 0.444888i \(-0.146757\pi\)
0.0625088 + 0.998044i \(0.480090\pi\)
\(138\) 3.89710i 0.331743i
\(139\) −5.62458 + 9.74205i −0.477070 + 0.826310i −0.999655 0.0262776i \(-0.991635\pi\)
0.522584 + 0.852588i \(0.324968\pi\)
\(140\) 0 0
\(141\) −2.97676 + 1.71863i −0.250688 + 0.144735i
\(142\) −0.648020 −0.0543806
\(143\) 4.42114 2.52878i 0.369715 0.211467i
\(144\) 2.01950 0.168292
\(145\) 0 0
\(146\) 3.31954 + 5.74961i 0.274727 + 0.475841i
\(147\) 2.12650 3.68320i 0.175391 0.303785i
\(148\) 7.84729i 0.645043i
\(149\) 17.0840 + 9.86345i 1.39958 + 0.808045i 0.994348 0.106171i \(-0.0338590\pi\)
0.405228 + 0.914216i \(0.367192\pi\)
\(150\) 0 0
\(151\) 3.42805i 0.278971i 0.990224 + 0.139485i \(0.0445448\pi\)
−0.990224 + 0.139485i \(0.955455\pi\)
\(152\) −9.09720 + 15.7568i −0.737881 + 1.27805i
\(153\) −1.63925 2.83926i −0.132526 0.229541i
\(154\) 1.20052 0.693120i 0.0967405 0.0558532i
\(155\) 0 0
\(156\) 5.94707 + 0.0240373i 0.476147 + 0.00192453i
\(157\) −3.96627 −0.316543 −0.158271 0.987396i \(-0.550592\pi\)
−0.158271 + 0.987396i \(0.550592\pi\)
\(158\) −4.74458 + 2.73928i −0.377459 + 0.217926i
\(159\) 0.211064 + 0.365574i 0.0167385 + 0.0289919i
\(160\) 0 0
\(161\) 10.9090i 0.859752i
\(162\) 0.512762 + 0.296043i 0.0402864 + 0.0232593i
\(163\) −1.72740 0.997316i −0.135301 0.0781158i 0.430822 0.902437i \(-0.358224\pi\)
−0.566122 + 0.824321i \(0.691557\pi\)
\(164\) 14.6126i 1.14105i
\(165\) 0 0
\(166\) 1.19187 + 2.06439i 0.0925073 + 0.160227i
\(167\) 9.94672 5.74274i 0.769701 0.444387i −0.0630672 0.998009i \(-0.520088\pi\)
0.832768 + 0.553622i \(0.186755\pi\)
\(168\) 3.58130 0.276303
\(169\) 12.9996 + 0.105087i 0.999967 + 0.00808362i
\(170\) 0 0
\(171\) 7.29219 4.21015i 0.557648 0.321958i
\(172\) −1.84070 3.18818i −0.140352 0.243097i
\(173\) −6.33521 + 10.9729i −0.481657 + 0.834254i −0.999778 0.0210530i \(-0.993298\pi\)
0.518122 + 0.855307i \(0.326631\pi\)
\(174\) 0.299481i 0.0227036i
\(175\) 0 0
\(176\) 2.47058 + 1.42639i 0.186227 + 0.107518i
\(177\) 13.0993i 0.984601i
\(178\) −0.177036 + 0.306635i −0.0132694 + 0.0229833i
\(179\) 4.28745 + 7.42609i 0.320459 + 0.555052i 0.980583 0.196105i \(-0.0628294\pi\)
−0.660124 + 0.751157i \(0.729496\pi\)
\(180\) 0 0
\(181\) −22.9517 −1.70599 −0.852994 0.521921i \(-0.825215\pi\)
−0.852994 + 0.521921i \(0.825215\pi\)
\(182\) 3.53820 + 0.0143010i 0.262269 + 0.00106006i
\(183\) −0.927500 −0.0685628
\(184\) 12.3168 7.11110i 0.908005 0.524237i
\(185\) 0 0
\(186\) −0.234283 + 0.405790i −0.0171785 + 0.0297540i
\(187\) 4.63126i 0.338671i
\(188\) −4.90997 2.83477i −0.358096 0.206747i
\(189\) −1.43536 0.828705i −0.104407 0.0602794i
\(190\) 0 0
\(191\) −2.14865 + 3.72158i −0.155471 + 0.269284i −0.933230 0.359278i \(-0.883023\pi\)
0.777759 + 0.628562i \(0.216356\pi\)
\(192\) 0.386149 + 0.668830i 0.0278679 + 0.0482687i
\(193\) 5.48344 3.16587i 0.394707 0.227884i −0.289491 0.957181i \(-0.593486\pi\)
0.684198 + 0.729297i \(0.260153\pi\)
\(194\) 1.87062 0.134302
\(195\) 0 0
\(196\) 7.01503 0.501074
\(197\) −19.2617 + 11.1207i −1.37234 + 0.792320i −0.991222 0.132207i \(-0.957793\pi\)
−0.381116 + 0.924527i \(0.624460\pi\)
\(198\) 0.418195 + 0.724334i 0.0297198 + 0.0514762i
\(199\) 2.19713 3.80554i 0.155750 0.269768i −0.777582 0.628782i \(-0.783554\pi\)
0.933332 + 0.359014i \(0.116887\pi\)
\(200\) 0 0
\(201\) −10.7587 6.21154i −0.758861 0.438129i
\(202\) 4.58555 + 2.64747i 0.322638 + 0.186275i
\(203\) 0.838328i 0.0588391i
\(204\) 2.70384 4.68318i 0.189306 0.327888i
\(205\) 0 0
\(206\) −7.70662 + 4.44942i −0.536946 + 0.310006i
\(207\) −6.58198 −0.457479
\(208\) 3.61519 + 6.32055i 0.250668 + 0.438251i
\(209\) 11.8946 0.822769
\(210\) 0 0
\(211\) 3.35237 + 5.80648i 0.230787 + 0.399734i 0.958040 0.286635i \(-0.0925367\pi\)
−0.727253 + 0.686369i \(0.759203\pi\)
\(212\) −0.348136 + 0.602990i −0.0239101 + 0.0414135i
\(213\) 1.09447i 0.0749918i
\(214\) −9.68410 5.59112i −0.661991 0.382201i
\(215\) 0 0
\(216\) 2.16078i 0.147022i
\(217\) 0.655822 1.13592i 0.0445201 0.0771111i
\(218\) −1.98739 3.44225i −0.134603 0.233139i
\(219\) 9.71077 5.60652i 0.656193 0.378853i
\(220\) 0 0
\(221\) 5.95173 10.2131i 0.400357 0.687010i
\(222\) −2.81689 −0.189057
\(223\) −11.7532 + 6.78573i −0.787055 + 0.454406i −0.838925 0.544248i \(-0.816815\pi\)
0.0518698 + 0.998654i \(0.483482\pi\)
\(224\) 4.57219 + 7.91927i 0.305493 + 0.529129i
\(225\) 0 0
\(226\) 11.6154i 0.772648i
\(227\) 0.257216 + 0.148503i 0.0170720 + 0.00985652i 0.508512 0.861055i \(-0.330196\pi\)
−0.491440 + 0.870912i \(0.663529\pi\)
\(228\) 12.0280 + 6.94436i 0.796573 + 0.459902i
\(229\) 14.3158i 0.946014i 0.881059 + 0.473007i \(0.156832\pi\)
−0.881059 + 0.473007i \(0.843168\pi\)
\(230\) 0 0
\(231\) −1.17064 2.02761i −0.0770225 0.133407i
\(232\) −0.946510 + 0.546468i −0.0621414 + 0.0358774i
\(233\) 12.9800 0.850345 0.425173 0.905112i \(-0.360213\pi\)
0.425173 + 0.905112i \(0.360213\pi\)
\(234\) −0.00862852 + 2.13478i −0.000564064 + 0.139555i
\(235\) 0 0
\(236\) 18.7117 10.8032i 1.21803 0.703227i
\(237\) 4.62650 + 8.01333i 0.300523 + 0.520522i
\(238\) 1.60864 2.78625i 0.104273 0.180606i
\(239\) 13.6665i 0.884015i 0.897011 + 0.442007i \(0.145734\pi\)
−0.897011 + 0.442007i \(0.854266\pi\)
\(240\) 0 0
\(241\) 10.5045 + 6.06478i 0.676655 + 0.390667i 0.798594 0.601871i \(-0.205578\pi\)
−0.121939 + 0.992538i \(0.538911\pi\)
\(242\) 5.33145i 0.342719i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −0.764925 1.32489i −0.0489693 0.0848173i
\(245\) 0 0
\(246\) 5.24537 0.334433
\(247\) 26.2308 + 15.2861i 1.66903 + 0.972628i
\(248\) −1.71000 −0.108585
\(249\) 3.48663 2.01301i 0.220956 0.127569i
\(250\) 0 0
\(251\) −6.88951 + 11.9330i −0.434862 + 0.753203i −0.997284 0.0736468i \(-0.976536\pi\)
0.562422 + 0.826850i \(0.309870\pi\)
\(252\) 2.73379i 0.172212i
\(253\) −8.05213 4.64890i −0.506233 0.292274i
\(254\) 8.43119 + 4.86775i 0.529020 + 0.305430i
\(255\) 0 0
\(256\) 2.62977 4.55490i 0.164361 0.284681i
\(257\) 2.80002 + 4.84978i 0.174661 + 0.302521i 0.940044 0.341054i \(-0.110784\pi\)
−0.765383 + 0.643575i \(0.777450\pi\)
\(258\) 1.14444 0.660743i 0.0712497 0.0411360i
\(259\) 7.88523 0.489965
\(260\) 0 0
\(261\) 0.505806 0.0313086
\(262\) −3.13585 + 1.81048i −0.193733 + 0.111852i
\(263\) 4.49001 + 7.77693i 0.276866 + 0.479546i 0.970604 0.240681i \(-0.0773709\pi\)
−0.693738 + 0.720227i \(0.744038\pi\)
\(264\) −1.52617 + 2.64341i −0.0939295 + 0.162691i
\(265\) 0 0
\(266\) 7.15604 + 4.13154i 0.438765 + 0.253321i
\(267\) 0.517890 + 0.299004i 0.0316943 + 0.0182987i
\(268\) 20.4911i 1.25169i
\(269\) −2.03862 + 3.53099i −0.124297 + 0.215288i −0.921458 0.388478i \(-0.873001\pi\)
0.797161 + 0.603767i \(0.206334\pi\)
\(270\) 0 0
\(271\) 17.1435 9.89780i 1.04139 0.601249i 0.121166 0.992632i \(-0.461337\pi\)
0.920228 + 0.391384i \(0.128003\pi\)
\(272\) 6.62093 0.401453
\(273\) 0.0241536 5.97583i 0.00146184 0.361673i
\(274\) −7.66696 −0.463178
\(275\) 0 0
\(276\) −5.42827 9.40204i −0.326743 0.565936i
\(277\) −7.26380 + 12.5813i −0.436439 + 0.755935i −0.997412 0.0718991i \(-0.977094\pi\)
0.560972 + 0.827834i \(0.310427\pi\)
\(278\) 6.66047i 0.399468i
\(279\) 0.685357 + 0.395691i 0.0410312 + 0.0236894i
\(280\) 0 0
\(281\) 11.7874i 0.703176i −0.936155 0.351588i \(-0.885642\pi\)
0.936155 0.351588i \(-0.114358\pi\)
\(282\) 1.01758 1.76250i 0.0605959 0.104955i
\(283\) 11.5509 + 20.0067i 0.686630 + 1.18928i 0.972922 + 0.231135i \(0.0742440\pi\)
−0.286292 + 0.958142i \(0.592423\pi\)
\(284\) −1.56340 + 0.902628i −0.0927705 + 0.0535611i
\(285\) 0 0
\(286\) −1.51837 + 2.60551i −0.0897828 + 0.154067i
\(287\) −14.6832 −0.866723
\(288\) −4.77810 + 2.75864i −0.281552 + 0.162554i
\(289\) 3.12572 + 5.41390i 0.183866 + 0.318465i
\(290\) 0 0
\(291\) 3.15936i 0.185205i
\(292\) 16.0173 + 9.24758i 0.937340 + 0.541174i
\(293\) 8.30075 + 4.79244i 0.484935 + 0.279977i 0.722471 0.691401i \(-0.243006\pi\)
−0.237536 + 0.971379i \(0.576340\pi\)
\(294\) 2.51814i 0.146861i
\(295\) 0 0
\(296\) −5.14002 8.90278i −0.298758 0.517464i
\(297\) 1.22336 0.706307i 0.0709865 0.0409841i
\(298\) −11.6800 −0.676606
\(299\) −11.7827 20.6000i −0.681409 1.19133i
\(300\) 0 0
\(301\) −3.20360 + 1.84960i −0.184652 + 0.106609i
\(302\) −1.01485 1.75777i −0.0583980 0.101148i
\(303\) 4.47142 7.74473i 0.256876 0.444923i
\(304\) 17.0048i 0.975292i
\(305\) 0 0
\(306\) 1.68109 + 0.970577i 0.0961015 + 0.0554842i
\(307\) 25.2144i 1.43906i −0.694461 0.719530i \(-0.744357\pi\)
0.694461 0.719530i \(-0.255643\pi\)
\(308\) 1.93089 3.34441i 0.110023 0.190565i
\(309\) 7.51482 + 13.0161i 0.427503 + 0.740457i
\(310\) 0 0
\(311\) 1.70269 0.0965509 0.0482755 0.998834i \(-0.484627\pi\)
0.0482755 + 0.998834i \(0.484627\pi\)
\(312\) −6.76272 + 3.86810i −0.382864 + 0.218988i
\(313\) −25.1073 −1.41915 −0.709573 0.704632i \(-0.751112\pi\)
−0.709573 + 0.704632i \(0.751112\pi\)
\(314\) 2.03375 1.17419i 0.114771 0.0662632i
\(315\) 0 0
\(316\) −7.63110 + 13.2175i −0.429283 + 0.743540i
\(317\) 1.89871i 0.106642i 0.998577 + 0.0533210i \(0.0169807\pi\)
−0.998577 + 0.0533210i \(0.983019\pi\)
\(318\) −0.216451 0.124968i −0.0121380 0.00700787i
\(319\) 0.618783 + 0.357255i 0.0346452 + 0.0200024i
\(320\) 0 0
\(321\) −9.44308 + 16.3559i −0.527061 + 0.912897i
\(322\) −3.22954 5.59373i −0.179975 0.311727i
\(323\) 23.9075 13.8030i 1.33025 0.768018i
\(324\) 1.64943 0.0916352
\(325\) 0 0
\(326\) 1.18099 0.0654092
\(327\) −5.81377 + 3.35658i −0.321502 + 0.185620i
\(328\) 9.57132 + 16.5780i 0.528488 + 0.915368i
\(329\) −2.84848 + 4.93371i −0.157042 + 0.272004i
\(330\) 0 0
\(331\) −17.5641 10.1406i −0.965410 0.557380i −0.0675763 0.997714i \(-0.521527\pi\)
−0.897834 + 0.440334i \(0.854860\pi\)
\(332\) 5.75097 + 3.32032i 0.315625 + 0.182226i
\(333\) 4.75757i 0.260713i
\(334\) −3.40020 + 5.88932i −0.186051 + 0.322249i
\(335\) 0 0
\(336\) 2.89871 1.67357i 0.158137 0.0913007i
\(337\) 16.8233 0.916421 0.458211 0.888844i \(-0.348491\pi\)
0.458211 + 0.888844i \(0.348491\pi\)
\(338\) −6.69679 + 3.79455i −0.364258 + 0.206396i
\(339\) −19.6178 −1.06549
\(340\) 0 0
\(341\) 0.558959 + 0.968145i 0.0302693 + 0.0524280i
\(342\) −2.49277 + 4.31761i −0.134794 + 0.233469i
\(343\) 18.6508i 1.00705i
\(344\) 4.17656 + 2.41134i 0.225185 + 0.130011i
\(345\) 0 0
\(346\) 7.50197i 0.403309i
\(347\) 4.07853 7.06423i 0.218947 0.379228i −0.735539 0.677482i \(-0.763071\pi\)
0.954486 + 0.298255i \(0.0964045\pi\)
\(348\) 0.417147 + 0.722520i 0.0223614 + 0.0387311i
\(349\) −12.7740 + 7.37508i −0.683777 + 0.394779i −0.801277 0.598294i \(-0.795845\pi\)
0.117500 + 0.993073i \(0.462512\pi\)
\(350\) 0 0
\(351\) 3.60552 + 0.0145731i 0.192449 + 0.000777853i
\(352\) −7.79378 −0.415410
\(353\) 13.5328 7.81315i 0.720277 0.415852i −0.0945779 0.995517i \(-0.530150\pi\)
0.814854 + 0.579666i \(0.196817\pi\)
\(354\) 3.87794 + 6.71680i 0.206110 + 0.356994i
\(355\) 0 0
\(356\) 0.986374i 0.0522777i
\(357\) −4.70582 2.71691i −0.249059 0.143794i
\(358\) −4.39688 2.53854i −0.232382 0.134166i
\(359\) 23.5802i 1.24452i −0.782812 0.622258i \(-0.786215\pi\)
0.782812 0.622258i \(-0.213785\pi\)
\(360\) 0 0
\(361\) 25.9507 + 44.9480i 1.36583 + 2.36568i
\(362\) 11.7688 6.79469i 0.618552 0.357121i
\(363\) −9.00452 −0.472615
\(364\) 8.55610 4.89386i 0.448461 0.256508i
\(365\) 0 0
\(366\) 0.475586 0.274580i 0.0248593 0.0143525i
\(367\) −7.20758 12.4839i −0.376233 0.651654i 0.614278 0.789090i \(-0.289447\pi\)
−0.990511 + 0.137435i \(0.956114\pi\)
\(368\) 6.64615 11.5115i 0.346455 0.600077i
\(369\) 8.85914i 0.461188i
\(370\) 0 0
\(371\) 0.605906 + 0.349820i 0.0314571 + 0.0181617i
\(372\) 1.30533i 0.0676783i
\(373\) 5.19893 9.00480i 0.269190 0.466251i −0.699463 0.714669i \(-0.746577\pi\)
0.968653 + 0.248418i \(0.0799106\pi\)
\(374\) 1.37105 + 2.37473i 0.0708954 + 0.122794i
\(375\) 0 0
\(376\) 7.42717 0.383027
\(377\) 0.905464 + 1.58305i 0.0466338 + 0.0815313i
\(378\) 0.981329 0.0504741
\(379\) 3.38172 1.95244i 0.173708 0.100290i −0.410625 0.911804i \(-0.634690\pi\)
0.584333 + 0.811514i \(0.301356\pi\)
\(380\) 0 0
\(381\) 8.22136 14.2398i 0.421193 0.729527i
\(382\) 2.54437i 0.130182i
\(383\) 28.1639 + 16.2604i 1.43911 + 0.830869i 0.997788 0.0664805i \(-0.0211770\pi\)
0.441320 + 0.897350i \(0.354510\pi\)
\(384\) −9.95221 5.74591i −0.507872 0.293220i
\(385\) 0 0
\(386\) −1.87447 + 3.24667i −0.0954078 + 0.165251i
\(387\) −1.11596 1.93289i −0.0567273 0.0982545i
\(388\) 4.51300 2.60558i 0.229113 0.132278i
\(389\) −36.5188 −1.85158 −0.925789 0.378042i \(-0.876598\pi\)
−0.925789 + 0.378042i \(0.876598\pi\)
\(390\) 0 0
\(391\) −21.5790 −1.09130
\(392\) −7.95858 + 4.59489i −0.401969 + 0.232077i
\(393\) 3.05780 + 5.29627i 0.154246 + 0.267162i
\(394\) 6.58443 11.4046i 0.331719 0.574554i
\(395\) 0 0
\(396\) 2.01785 + 1.16501i 0.101401 + 0.0585438i
\(397\) 8.93103 + 5.15633i 0.448235 + 0.258789i 0.707085 0.707129i \(-0.250010\pi\)
−0.258849 + 0.965918i \(0.583343\pi\)
\(398\) 2.60178i 0.130415i
\(399\) 6.97794 12.0861i 0.349334 0.605064i
\(400\) 0 0
\(401\) −18.0710 + 10.4333i −0.902421 + 0.521013i −0.877985 0.478689i \(-0.841112\pi\)
−0.0244360 + 0.999701i \(0.507779\pi\)
\(402\) 7.35554 0.366861
\(403\) −0.0115329 + 2.85335i −0.000574493 + 0.142135i
\(404\) 14.7506 0.733871
\(405\) 0 0
\(406\) 0.248181 + 0.429862i 0.0123170 + 0.0213337i
\(407\) −3.36030 + 5.82021i −0.166564 + 0.288497i
\(408\) 7.08412i 0.350716i
\(409\) −3.35024 1.93426i −0.165659 0.0956432i 0.414878 0.909877i \(-0.363824\pi\)
−0.580537 + 0.814234i \(0.697157\pi\)
\(410\) 0 0
\(411\) 12.9491i 0.638730i
\(412\) −12.3952 + 21.4691i −0.610668 + 1.05771i
\(413\) −10.8554 18.8021i −0.534160 0.925192i
\(414\) 3.37499 1.94855i 0.165871 0.0957659i
\(415\) 0 0
\(416\) −17.1873 10.0160i −0.842679 0.491073i
\(417\) −11.2492 −0.550873
\(418\) −6.09911 + 3.52132i −0.298317 + 0.172234i
\(419\) −10.8008 18.7076i −0.527656 0.913926i −0.999480 0.0322339i \(-0.989738\pi\)
0.471825 0.881692i \(-0.343595\pi\)
\(420\) 0 0
\(421\) 11.8818i 0.579085i 0.957165 + 0.289542i \(0.0935031\pi\)
−0.957165 + 0.289542i \(0.906497\pi\)
\(422\) −3.43793 1.98489i −0.167356 0.0966230i
\(423\) −2.97676 1.71863i −0.144735 0.0835628i
\(424\) 0.912126i 0.0442968i
\(425\) 0 0
\(426\) −0.324010 0.561202i −0.0156983 0.0271903i
\(427\) −1.33130 + 0.768624i −0.0644259 + 0.0371963i
\(428\) −31.1515 −1.50576
\(429\) 4.40056 + 2.56443i 0.212461 + 0.123812i
\(430\) 0 0
\(431\) −9.43023 + 5.44454i −0.454238 + 0.262254i −0.709618 0.704586i \(-0.751133\pi\)
0.255380 + 0.966841i \(0.417799\pi\)
\(432\) 1.00975 + 1.74894i 0.0485816 + 0.0841459i
\(433\) −16.0280 + 27.7614i −0.770258 + 1.33413i 0.167163 + 0.985929i \(0.446539\pi\)
−0.937421 + 0.348197i \(0.886794\pi\)
\(434\) 0.776606i 0.0372783i
\(435\) 0 0
\(436\) −9.58944 5.53646i −0.459251 0.265149i
\(437\) 55.4222i 2.65120i
\(438\) −3.31954 + 5.74961i −0.158614 + 0.274727i
\(439\) −12.5421 21.7235i −0.598600 1.03681i −0.993028 0.117879i \(-0.962390\pi\)
0.394427 0.918927i \(-0.370943\pi\)
\(440\) 0 0
\(441\) 4.25299 0.202524
\(442\) −0.0282886 + 6.99888i −0.00134555 + 0.332903i
\(443\) −32.0707 −1.52373 −0.761863 0.647738i \(-0.775715\pi\)
−0.761863 + 0.647738i \(0.775715\pi\)
\(444\) −6.79595 + 3.92365i −0.322522 + 0.186208i
\(445\) 0 0
\(446\) 4.01774 6.95893i 0.190245 0.329515i
\(447\) 19.7269i 0.933050i
\(448\) 1.10853 + 0.640008i 0.0523729 + 0.0302375i
\(449\) 20.8143 + 12.0171i 0.982286 + 0.567123i 0.902960 0.429725i \(-0.141390\pi\)
0.0793266 + 0.996849i \(0.474723\pi\)
\(450\) 0 0
\(451\) 6.25727 10.8379i 0.294643 0.510337i
\(452\) −16.1792 28.0231i −0.761004 1.31810i
\(453\) −2.96878 + 1.71402i −0.139485 + 0.0805319i
\(454\) −0.175854 −0.00825322
\(455\) 0 0
\(456\) −18.1944 −0.852031
\(457\) 3.73789 2.15807i 0.174851 0.100950i −0.410020 0.912077i \(-0.634478\pi\)
0.584871 + 0.811126i \(0.301145\pi\)
\(458\) −4.23809 7.34059i −0.198033 0.343003i
\(459\) 1.63925 2.83926i 0.0765137 0.132526i
\(460\) 0 0
\(461\) −0.533988 0.308298i −0.0248703 0.0143589i 0.487513 0.873116i \(-0.337904\pi\)
−0.512384 + 0.858757i \(0.671237\pi\)
\(462\) 1.20052 + 0.693120i 0.0558532 + 0.0322468i
\(463\) 13.3637i 0.621062i 0.950563 + 0.310531i \(0.100507\pi\)
−0.950563 + 0.310531i \(0.899493\pi\)
\(464\) −0.510738 + 0.884624i −0.0237104 + 0.0410676i
\(465\) 0 0
\(466\) −6.65562 + 3.84263i −0.308316 + 0.178006i
\(467\) 26.1210 1.20873 0.604367 0.796706i \(-0.293426\pi\)
0.604367 + 0.796706i \(0.293426\pi\)
\(468\) 2.95272 + 5.16233i 0.136489 + 0.238629i
\(469\) −20.5901 −0.950765
\(470\) 0 0
\(471\) −1.98314 3.43489i −0.0913781 0.158271i
\(472\) −14.1523 + 24.5125i −0.651412 + 1.12828i
\(473\) 3.15283i 0.144967i
\(474\) −4.74458 2.73928i −0.217926 0.125820i
\(475\) 0 0
\(476\) 8.96272i 0.410806i
\(477\) −0.211064 + 0.365574i −0.00966397 + 0.0167385i
\(478\) −4.04588 7.00768i −0.185054 0.320524i
\(479\) 7.51515 4.33887i 0.343376 0.198248i −0.318388 0.947960i \(-0.603141\pi\)
0.661764 + 0.749712i \(0.269808\pi\)
\(480\) 0 0
\(481\) −14.8900 + 8.51671i −0.678927 + 0.388329i
\(482\) −7.18175 −0.327120
\(483\) −9.44750 + 5.45452i −0.429876 + 0.248189i
\(484\) −7.42618 12.8625i −0.337554 0.584660i
\(485\) 0 0
\(486\) 0.592086i 0.0268576i
\(487\) −24.6955 14.2580i −1.11906 0.646090i −0.177899 0.984049i \(-0.556930\pi\)
−0.941161 + 0.337959i \(0.890263\pi\)
\(488\) 1.73562 + 1.00206i 0.0785679 + 0.0453612i
\(489\) 1.99463i 0.0902004i
\(490\) 0 0
\(491\) −16.2907 28.2163i −0.735189 1.27338i −0.954641 0.297761i \(-0.903760\pi\)
0.219452 0.975623i \(-0.429573\pi\)
\(492\) 12.6548 7.30628i 0.570525 0.329393i
\(493\) 1.65829 0.0746854
\(494\) −17.9755 0.0726547i −0.808755 0.00326889i
\(495\) 0 0
\(496\) −1.38408 + 0.799098i −0.0621470 + 0.0358806i
\(497\) 0.906992 + 1.57096i 0.0406842 + 0.0704670i
\(498\) −1.19187 + 2.06439i −0.0534091 + 0.0925073i
\(499\) 28.2348i 1.26396i −0.774983 0.631982i \(-0.782242\pi\)
0.774983 0.631982i \(-0.217758\pi\)
\(500\) 0 0
\(501\) 9.94672 + 5.74274i 0.444387 + 0.256567i
\(502\) 8.15837i 0.364126i
\(503\) −2.50973 + 4.34699i −0.111903 + 0.193823i −0.916538 0.399948i \(-0.869028\pi\)
0.804634 + 0.593771i \(0.202361\pi\)
\(504\) 1.79065 + 3.10149i 0.0797618 + 0.138151i
\(505\) 0 0
\(506\) 5.50510 0.244731
\(507\) 6.40878 + 11.3105i 0.284624 + 0.502317i
\(508\) 27.1212 1.20331
\(509\) −19.8608 + 11.4666i −0.880313 + 0.508249i −0.870762 0.491705i \(-0.836374\pi\)
−0.00955142 + 0.999954i \(0.503040\pi\)
\(510\) 0 0
\(511\) 9.29229 16.0947i 0.411067 0.711989i
\(512\) 19.8695i 0.878118i
\(513\) 7.29219 + 4.21015i 0.321958 + 0.185883i
\(514\) −2.87149 1.65786i −0.126656 0.0731249i
\(515\) 0 0
\(516\) 1.84070 3.18818i 0.0810322 0.140352i
\(517\) −2.42777 4.20501i −0.106773 0.184936i
\(518\) −4.04325 + 2.33437i −0.177650 + 0.102566i
\(519\) −12.6704 −0.556169
\(520\) 0 0
\(521\) 42.3619 1.85591 0.927955 0.372692i \(-0.121565\pi\)
0.927955 + 0.372692i \(0.121565\pi\)
\(522\) −0.259358 + 0.149740i −0.0113518 + 0.00655396i
\(523\) −0.760610 1.31741i −0.0332591 0.0576065i 0.848917 0.528527i \(-0.177255\pi\)
−0.882176 + 0.470920i \(0.843922\pi\)
\(524\) −5.04365 + 8.73585i −0.220333 + 0.381627i
\(525\) 0 0
\(526\) −4.60461 2.65847i −0.200771 0.115915i
\(527\) 2.24694 + 1.29727i 0.0978784 + 0.0565101i
\(528\) 2.85278i 0.124151i
\(529\) −10.1612 + 17.5997i −0.441792 + 0.765206i
\(530\) 0 0
\(531\) 11.3443 6.54963i 0.492300 0.284230i
\(532\) 23.0193 0.998014
\(533\) 27.7270 15.8591i 1.20099 0.686934i
\(534\) −0.354072 −0.0153222
\(535\) 0 0
\(536\) 13.4218 + 23.2472i 0.579732 + 1.00413i
\(537\) −4.28745 + 7.42609i −0.185017 + 0.320459i
\(538\) 2.41408i 0.104078i
\(539\) 5.20294 + 3.00392i 0.224107 + 0.129388i
\(540\) 0 0
\(541\) 38.8503i 1.67030i −0.550019 0.835152i \(-0.685380\pi\)
0.550019 0.835152i \(-0.314620\pi\)
\(542\) −5.86035 + 10.1504i −0.251724 + 0.435998i
\(543\) −11.4759 19.8768i −0.492476 0.852994i
\(544\) −15.6650 + 9.04420i −0.671632 + 0.387767i
\(545\) 0 0
\(546\) 1.75672 + 3.07132i 0.0751805 + 0.131441i
\(547\) −25.8936 −1.10713 −0.553565 0.832806i \(-0.686733\pi\)
−0.553565 + 0.832806i \(0.686733\pi\)
\(548\) −18.4971 + 10.6793i −0.790157 + 0.456198i
\(549\) −0.463750 0.803239i −0.0197924 0.0342814i
\(550\) 0 0
\(551\) 4.25904i 0.181441i
\(552\) 12.3168 + 7.11110i 0.524237 + 0.302668i
\(553\) 13.2814 + 7.66800i 0.564781 + 0.326077i
\(554\) 8.60159i 0.365447i
\(555\) 0 0
\(556\) −9.27737 16.0689i −0.393448 0.681472i
\(557\) −1.12489 + 0.649455i −0.0476631 + 0.0275183i −0.523642 0.851938i \(-0.675427\pi\)
0.475979 + 0.879457i \(0.342094\pi\)
\(558\) −0.468566 −0.0198360
\(559\) 4.05178 6.95283i 0.171372 0.294073i
\(560\) 0 0
\(561\) 4.01079 2.31563i 0.169336 0.0977659i
\(562\) 3.48957 + 6.04411i 0.147199 + 0.254955i
\(563\) 11.0683 19.1708i 0.466473 0.807955i −0.532794 0.846245i \(-0.678858\pi\)
0.999267 + 0.0382903i \(0.0121912\pi\)
\(564\) 5.66955i 0.238731i
\(565\) 0 0
\(566\) −11.8457 6.83913i −0.497913 0.287470i
\(567\) 1.65741i 0.0696047i
\(568\) 1.18245 2.04807i 0.0496146 0.0859351i
\(569\) −18.6123 32.2374i −0.780267 1.35146i −0.931786 0.363008i \(-0.881750\pi\)
0.151519 0.988454i \(-0.451584\pi\)
\(570\) 0 0
\(571\) −2.36985 −0.0991752 −0.0495876 0.998770i \(-0.515791\pi\)
−0.0495876 + 0.998770i \(0.515791\pi\)
\(572\) −0.0339555 + 8.40092i −0.00141975 + 0.351260i
\(573\) −4.29731 −0.179523
\(574\) 7.52899 4.34686i 0.314254 0.181435i
\(575\) 0 0
\(576\) −0.386149 + 0.668830i −0.0160896 + 0.0278679i
\(577\) 18.2135i 0.758238i 0.925348 + 0.379119i \(0.123773\pi\)
−0.925348 + 0.379119i \(0.876227\pi\)
\(578\) −3.20550 1.85069i −0.133331 0.0769787i
\(579\) 5.48344 + 3.16587i 0.227884 + 0.131569i
\(580\) 0 0
\(581\) 3.33638 5.77877i 0.138416 0.239744i
\(582\) 0.935308 + 1.62000i 0.0387698 + 0.0671512i
\(583\) −0.516415 + 0.298152i −0.0213877 + 0.0123482i
\(584\) −24.2289 −1.00260
\(585\) 0 0
\(586\) −5.67508 −0.234435
\(587\) 22.6115 13.0547i 0.933275 0.538827i 0.0454293 0.998968i \(-0.485534\pi\)
0.887846 + 0.460141i \(0.152201\pi\)
\(588\) 3.50752 + 6.07520i 0.144648 + 0.250537i
\(589\) −3.33184 + 5.77091i −0.137286 + 0.237786i
\(590\) 0 0
\(591\) −19.2617 11.1207i −0.792320 0.457446i
\(592\) −8.32069 4.80395i −0.341978 0.197441i
\(593\) 24.8984i 1.02245i 0.859446 + 0.511226i \(0.170809\pi\)
−0.859446 + 0.511226i \(0.829191\pi\)
\(594\) −0.418195 + 0.724334i −0.0171587 + 0.0297198i
\(595\) 0 0
\(596\) −28.1789 + 16.2691i −1.15425 + 0.666409i
\(597\) 4.39426 0.179845
\(598\) 12.1402 + 7.07472i 0.496449 + 0.289307i
\(599\) 6.57002 0.268444 0.134222 0.990951i \(-0.457147\pi\)
0.134222 + 0.990951i \(0.457147\pi\)
\(600\) 0 0
\(601\) −12.8209 22.2064i −0.522975 0.905819i −0.999643 0.0267356i \(-0.991489\pi\)
0.476668 0.879084i \(-0.341845\pi\)
\(602\) 1.09512 1.89681i 0.0446338 0.0773080i
\(603\) 12.4231i 0.505907i
\(604\) −4.89680 2.82717i −0.199248 0.115036i
\(605\) 0 0
\(606\) 5.29493i 0.215092i
\(607\) −19.9118 + 34.4882i −0.808195 + 1.39983i 0.105918 + 0.994375i \(0.466222\pi\)
−0.914113 + 0.405460i \(0.867111\pi\)
\(608\) −23.2286 40.2330i −0.942043 1.63167i
\(609\) 0.726013 0.419164i 0.0294195 0.0169854i
\(610\) 0 0
\(611\) 0.0500916 12.3931i 0.00202649 0.501373i
\(612\) 5.40767 0.218592
\(613\) 30.7228 17.7378i 1.24088 0.716423i 0.271608 0.962408i \(-0.412445\pi\)
0.969274 + 0.245985i \(0.0791114\pi\)
\(614\) 7.46454 + 12.9290i 0.301244 + 0.521771i
\(615\) 0 0
\(616\) 5.05899i 0.203833i
\(617\) 9.67668 + 5.58683i 0.389568 + 0.224917i 0.681973 0.731377i \(-0.261122\pi\)
−0.292405 + 0.956295i \(0.594455\pi\)
\(618\) −7.70662 4.44942i −0.310006 0.178982i
\(619\) 35.2047i 1.41500i 0.706715 + 0.707498i \(0.250176\pi\)
−0.706715 + 0.707498i \(0.749824\pi\)
\(620\) 0 0
\(621\) −3.29099 5.70016i −0.132063 0.228740i
\(622\) −0.873076 + 0.504071i −0.0350072 + 0.0202114i
\(623\) 0.991143 0.0397093
\(624\) −3.66616 + 6.29112i −0.146764 + 0.251846i
\(625\) 0 0
\(626\) 12.8740 7.43283i 0.514550 0.297076i
\(627\) 5.94732 + 10.3011i 0.237513 + 0.411385i
\(628\) 3.27105 5.66563i 0.130529 0.226083i
\(629\) 15.5977i 0.621920i
\(630\) 0 0
\(631\) 4.83806 + 2.79326i 0.192600 + 0.111198i 0.593199 0.805056i \(-0.297865\pi\)
−0.400599 + 0.916253i \(0.631198\pi\)
\(632\) 19.9937i 0.795306i
\(633\) −3.35237 + 5.80648i −0.133245 + 0.230787i
\(634\) −0.562099 0.973584i −0.0223238 0.0386659i
\(635\) 0 0
\(636\) −0.696273 −0.0276090
\(637\) 7.61346 + 13.3109i 0.301656 + 0.527395i
\(638\) −0.423051 −0.0167487
\(639\) −0.947838 + 0.547235i −0.0374959 + 0.0216483i
\(640\) 0 0
\(641\) −10.8579 + 18.8064i −0.428861 + 0.742809i −0.996772 0.0802807i \(-0.974418\pi\)
0.567911 + 0.823090i \(0.307752\pi\)
\(642\) 11.1822i 0.441328i
\(643\) 13.8777 + 8.01232i 0.547285 + 0.315975i 0.748026 0.663669i \(-0.231002\pi\)
−0.200741 + 0.979644i \(0.564335\pi\)
\(644\) −15.5830 8.99686i −0.614057 0.354526i
\(645\) 0 0
\(646\) −8.17255 + 14.1553i −0.321545 + 0.556932i
\(647\) −5.53356 9.58441i −0.217547 0.376802i 0.736511 0.676426i \(-0.236472\pi\)
−0.954057 + 0.299624i \(0.903139\pi\)
\(648\) −1.87129 + 1.08039i −0.0735112 + 0.0424417i
\(649\) 18.5042 0.726353
\(650\) 0 0
\(651\) 1.31164 0.0514074
\(652\) 2.84924 1.64501i 0.111585 0.0644234i
\(653\) 14.2069 + 24.6070i 0.555957 + 0.962946i 0.997828 + 0.0658676i \(0.0209815\pi\)
−0.441871 + 0.897079i \(0.645685\pi\)
\(654\) 1.98739 3.44225i 0.0777130 0.134603i
\(655\) 0 0
\(656\) 15.4941 + 8.94552i 0.604943 + 0.349264i
\(657\) 9.71077 + 5.60652i 0.378853 + 0.218731i
\(658\) 3.37309i 0.131497i
\(659\) 13.1876 22.8416i 0.513717 0.889783i −0.486157 0.873872i \(-0.661602\pi\)
0.999873 0.0159116i \(-0.00506504\pi\)
\(660\) 0 0
\(661\) 25.3928 14.6606i 0.987667 0.570230i 0.0830907 0.996542i \(-0.473521\pi\)
0.904576 + 0.426312i \(0.140188\pi\)
\(662\) 12.0083 0.466714
\(663\) 11.8207 + 0.0477778i 0.459078 + 0.00185554i
\(664\) −8.69933 −0.337599
\(665\) 0 0
\(666\) −1.40844 2.43950i −0.0545761 0.0945286i
\(667\) 1.66460 2.88318i 0.0644537 0.111637i
\(668\) 18.9446i 0.732987i
\(669\) −11.7532 6.78573i −0.454406 0.262352i
\(670\) 0 0
\(671\) 1.31020i 0.0505797i
\(672\) −4.57219 + 7.91927i −0.176376 + 0.305493i
\(673\) −20.4358 35.3958i −0.787741 1.36441i −0.927348 0.374200i \(-0.877917\pi\)
0.139607 0.990207i \(-0.455416\pi\)
\(674\) −8.62632 + 4.98041i −0.332274 + 0.191838i
\(675\) 0 0
\(676\) −10.8711 + 18.4826i −0.418119 + 0.710869i
\(677\) −33.8996 −1.30287 −0.651435 0.758705i \(-0.725833\pi\)
−0.651435 + 0.758705i \(0.725833\pi\)
\(678\) 10.0593 5.80772i 0.386324 0.223044i
\(679\) −2.61818 4.53482i −0.100477 0.174030i
\(680\) 0 0
\(681\) 0.297007i 0.0113813i
\(682\) −0.573225 0.330952i −0.0219499 0.0126728i
\(683\) −9.15608 5.28626i −0.350347 0.202273i 0.314491 0.949261i \(-0.398166\pi\)
−0.664838 + 0.746987i \(0.731500\pi\)
\(684\) 13.8887i 0.531049i
\(685\) 0 0
\(686\) 5.52145 + 9.56342i 0.210810 + 0.365133i
\(687\) −12.3978 + 7.15790i −0.473007 + 0.273091i
\(688\) 4.50735 0.171841
\(689\) −1.52199 0.00615171i −0.0579833 0.000234361i
\(690\) 0 0
\(691\) 8.65326 4.99596i 0.329186 0.190055i −0.326294 0.945268i \(-0.605800\pi\)
0.655479 + 0.755213i \(0.272467\pi\)
\(692\) −10.4495 18.0991i −0.397231 0.688024i
\(693\) 1.17064 2.02761i 0.0444689 0.0770225i
\(694\) 4.82968i 0.183332i
\(695\) 0 0
\(696\) −0.946510 0.546468i −0.0358774 0.0207138i
\(697\) 29.0447i 1.10015i
\(698\) 4.36668 7.56331i 0.165281 0.286276i
\(699\) 6.48998 + 11.2410i 0.245473 + 0.425173i
\(700\) 0 0
\(701\) 30.4957 1.15181 0.575903 0.817518i \(-0.304651\pi\)
0.575903 + 0.817518i \(0.304651\pi\)
\(702\) −1.85309 + 1.05992i −0.0699403 + 0.0400040i
\(703\) −40.0601 −1.51090
\(704\) −0.944799 + 0.545480i −0.0356085 + 0.0205586i
\(705\) 0 0
\(706\) −4.62606 + 8.01256i −0.174104 + 0.301557i
\(707\) 14.8220i 0.557437i
\(708\) 18.7117 + 10.8032i 0.703227 + 0.406008i
\(709\) 9.17071 + 5.29471i 0.344413 + 0.198847i 0.662222 0.749308i \(-0.269614\pi\)
−0.317809 + 0.948155i \(0.602947\pi\)
\(710\) 0 0
\(711\) −4.62650 + 8.01333i −0.173507 + 0.300523i
\(712\) −0.646081 1.11905i −0.0242129 0.0419380i
\(713\) 4.51100 2.60443i 0.168938 0.0975366i
\(714\) 3.21729 0.120404
\(715\) 0 0
\(716\) −14.1437 −0.528576
\(717\) −11.8356 + 6.83327i −0.442007 + 0.255193i
\(718\) 6.98076 + 12.0910i 0.260520 + 0.451233i
\(719\) 3.68101 6.37570i 0.137279 0.237774i −0.789187 0.614153i \(-0.789498\pi\)
0.926466 + 0.376379i \(0.122831\pi\)
\(720\) 0 0
\(721\) 21.5729 + 12.4551i 0.803418 + 0.463854i
\(722\) −26.6131 15.3651i −0.990436 0.571828i
\(723\) 12.1296i 0.451103i
\(724\) 18.9287 32.7854i 0.703478 1.21846i
\(725\) 0 0
\(726\) 4.61717 2.66573i 0.171359 0.0989344i
\(727\) 30.8420 1.14387 0.571934 0.820300i \(-0.306193\pi\)
0.571934 + 0.820300i \(0.306193\pi\)
\(728\) −6.50142 + 11.1564i −0.240959 + 0.413484i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −3.65867 6.33700i −0.135321 0.234382i
\(732\) 0.764925 1.32489i 0.0282724 0.0489693i
\(733\) 30.7552i 1.13597i 0.823039 + 0.567985i \(0.192277\pi\)
−0.823039 + 0.567985i \(0.807723\pi\)
\(734\) 7.39154 + 4.26751i 0.272827 + 0.157517i
\(735\) 0 0
\(736\) 36.3146i 1.33857i
\(737\) 8.77452 15.1979i 0.323213 0.559822i
\(738\) 2.62269 + 4.54263i 0.0965424 + 0.167216i
\(739\) 31.3327 18.0899i 1.15259 0.665449i 0.203074 0.979163i \(-0.434907\pi\)
0.949517 + 0.313715i \(0.101574\pi\)
\(740\) 0 0
\(741\) −0.122710 + 30.3596i −0.00450785 + 1.11529i
\(742\) −0.414247 −0.0152075
\(743\) −12.5084 + 7.22170i −0.458887 + 0.264938i −0.711576 0.702609i \(-0.752018\pi\)
0.252689 + 0.967547i \(0.418685\pi\)
\(744\) −0.855001 1.48091i −0.0313459 0.0542926i
\(745\) 0 0
\(746\) 6.15642i 0.225403i
\(747\) 3.48663 + 2.01301i 0.127569 + 0.0736521i
\(748\) 6.61553 + 3.81948i 0.241888 + 0.139654i
\(749\) 31.3021i 1.14375i
\(750\) 0 0
\(751\) −0.691642 1.19796i −0.0252384 0.0437142i 0.853130 0.521698i \(-0.174701\pi\)
−0.878369 + 0.477984i \(0.841368\pi\)
\(752\) 6.01157 3.47078i 0.219219 0.126566i
\(753\) −13.7790 −0.502136
\(754\) −0.932939 0.543672i −0.0339756 0.0197994i
\(755\) 0 0
\(756\) 2.36753 1.36689i 0.0861062 0.0497134i
\(757\) 25.5168 + 44.1964i 0.927424 + 1.60635i 0.787616 + 0.616167i \(0.211315\pi\)
0.139808 + 0.990179i \(0.455351\pi\)
\(758\) −1.15601 + 2.00227i −0.0419883 + 0.0727258i
\(759\) 9.29780i 0.337489i
\(760\) 0 0
\(761\) −2.32993 1.34518i −0.0844598 0.0487629i 0.457175 0.889377i \(-0.348861\pi\)
−0.541635 + 0.840614i \(0.682195\pi\)
\(762\) 9.73550i 0.352680i
\(763\) −5.56323 + 9.63580i −0.201403 + 0.348840i
\(764\) −3.54406 6.13849i −0.128220 0.222083i
\(765\) 0 0
\(766\) −19.2552 −0.695717
\(767\) 40.8066 + 23.7802i 1.47344 + 0.858651i
\(768\) 5.25955 0.189788
\(769\) −8.85248 + 5.11098i −0.319228 + 0.184307i −0.651049 0.759036i \(-0.725671\pi\)
0.331820 + 0.943343i \(0.392337\pi\)
\(770\) 0 0
\(771\) −2.80002 + 4.84978i −0.100840 + 0.174661i
\(772\) 10.4438i 0.375880i
\(773\) −16.3925 9.46421i −0.589597 0.340404i 0.175341 0.984508i \(-0.443897\pi\)
−0.764938 + 0.644104i \(0.777230\pi\)
\(774\) 1.14444 + 0.660743i 0.0411360 + 0.0237499i
\(775\) 0 0
\(776\) −3.41334 + 5.91208i −0.122532 + 0.212231i
\(777\) 3.94262 + 6.82881i 0.141441 + 0.244982i
\(778\) 18.7254 10.8111i 0.671340 0.387598i
\(779\) 74.5966 2.67270
\(780\) 0 0
\(781\) −1.54606 −0.0553225
\(782\) 11.0649 6.38832i 0.395680 0.228446i
\(783\) 0.252903 + 0.438041i 0.00903802 + 0.0156543i
\(784\) −4.29446 + 7.43823i −0.153374 + 0.265651i
\(785\) 0 0
\(786\) −3.13585 1.81048i −0.111852 0.0645778i
\(787\) 18.9030 + 10.9136i 0.673818 + 0.389029i 0.797522 0.603290i \(-0.206144\pi\)
−0.123703 + 0.992319i \(0.539477\pi\)
\(788\) 36.6858i 1.30688i
\(789\) −4.49001 + 7.77693i −0.159849 + 0.276866i
\(790\) 0 0
\(791\) −28.1586 + 16.2574i −1.00121 + 0.578046i
\(792\) −3.05235 −0.108460
\(793\) 1.68377 2.88934i 0.0597923 0.102603i
\(794\) −6.10598 −0.216693
\(795\) 0 0
\(796\) 3.62402 + 6.27699i 0.128450 + 0.222482i
\(797\) −19.3519 + 33.5184i −0.685478 + 1.18728i 0.287809 + 0.957688i \(0.407073\pi\)
−0.973286 + 0.229594i \(0.926260\pi\)
\(798\) 8.26308i 0.292510i
\(799\) −9.75931 5.63454i −0.345260 0.199336i
\(800\) 0 0
\(801\) 0.598008i 0.0211296i
\(802\) 6.17740 10.6996i 0.218131 0.377815i
\(803\) 7.91985 + 13.7176i 0.279485 + 0.484083i
\(804\) 17.7458 10.2455i 0.625846 0.361332i
\(805\) 0 0
\(806\) −0.838799 1.46650i −0.0295454 0.0516553i
\(807\) −4.07724 −0.143526
\(808\) −16.7347 + 9.66175i −0.588723 + 0.339899i
\(809\) 21.3022 + 36.8965i 0.748946 + 1.29721i 0.948328 + 0.317291i \(0.102773\pi\)
−0.199383 + 0.979922i \(0.563894\pi\)
\(810\) 0 0
\(811\) 9.60428i 0.337252i −0.985680 0.168626i \(-0.946067\pi\)
0.985680 0.168626i \(-0.0539330\pi\)
\(812\) 1.19751 + 0.691383i 0.0420244 + 0.0242628i
\(813\) 17.1435 + 9.89780i 0.601249 + 0.347131i
\(814\) 3.97918i 0.139470i
\(815\) 0 0
\(816\) 3.31047 + 5.73390i 0.115890 + 0.200727i
\(817\) 16.2755 9.39669i 0.569409 0.328749i
\(818\) 2.29050 0.0800855
\(819\) 5.18729 2.96700i 0.181259 0.103675i
\(820\) 0 0
\(821\) −29.9683 + 17.3022i −1.04590 + 0.603851i −0.921499 0.388381i \(-0.873035\pi\)
−0.124402 + 0.992232i \(0.539701\pi\)
\(822\) −3.83348 6.63978i −0.133708 0.231589i
\(823\) −13.8808 + 24.0422i −0.483853 + 0.838057i −0.999828 0.0185460i \(-0.994096\pi\)
0.515975 + 0.856603i \(0.327430\pi\)
\(824\) 32.4757i 1.13135i
\(825\) 0 0
\(826\) 11.1325 + 6.42734i 0.387349 + 0.223636i
\(827\) 27.8932i 0.969943i −0.874530 0.484971i \(-0.838830\pi\)
0.874530 0.484971i \(-0.161170\pi\)
\(828\) 5.42827 9.40204i 0.188645 0.326743i
\(829\) 7.47706 + 12.9507i 0.259689 + 0.449795i 0.966159 0.257949i \(-0.0830466\pi\)
−0.706469 + 0.707744i \(0.749713\pi\)
\(830\) 0 0
\(831\) −14.5276 −0.503957
\(832\) −2.78454 0.0112548i −0.0965366 0.000390189i
\(833\) 13.9434 0.483112
\(834\) 5.76813 3.33023i 0.199734 0.115317i
\(835\) 0 0
\(836\) −9.80971 + 16.9909i −0.339276 + 0.587643i
\(837\) 0.791382i 0.0273542i
\(838\) 11.0765 + 6.39503i 0.382632 + 0.220913i
\(839\) −20.9723 12.1084i −0.724044 0.418027i 0.0921951 0.995741i \(-0.470612\pi\)
−0.816239 + 0.577714i \(0.803945\pi\)
\(840\) 0 0
\(841\) 14.3721 24.8932i 0.495589 0.858385i
\(842\) −3.51753 6.09254i −0.121222 0.209963i
\(843\) 10.2082 5.89369i 0.351588 0.202989i
\(844\) −11.0590 −0.380667
\(845\) 0 0
\(846\) 2.03516 0.0699702
\(847\) −12.9247 + 7.46209i −0.444099 + 0.256400i
\(848\) −0.426244 0.738277i −0.0146373 0.0253525i
\(849\) −11.5509 + 20.0067i −0.396426 + 0.686630i
\(850\) 0 0
\(851\) 27.1189 + 15.6571i 0.929623 + 0.536718i
\(852\) −1.56340 0.902628i −0.0535611 0.0309235i
\(853\) 25.6140i 0.877008i −0.898729 0.438504i \(-0.855508\pi\)
0.898729 0.438504i \(-0.144492\pi\)
\(854\) 0.455091 0.788242i 0.0155729 0.0269731i
\(855\) 0 0
\(856\) 35.3415 20.4044i 1.20795 0.697409i
\(857\) −38.9380 −1.33010 −0.665049 0.746800i \(-0.731589\pi\)
−0.665049 + 0.746800i \(0.731589\pi\)
\(858\) −3.01562 0.0121888i −0.102952 0.000416118i
\(859\) 32.9648 1.12474 0.562372 0.826885i \(-0.309889\pi\)
0.562372 + 0.826885i \(0.309889\pi\)
\(860\) 0 0
\(861\) −7.34161 12.7160i −0.250201 0.433361i
\(862\) 3.22364 5.58351i 0.109798 0.190175i
\(863\) 12.9022i 0.439197i −0.975590 0.219598i \(-0.929525\pi\)
0.975590 0.219598i \(-0.0704747\pi\)
\(864\) −4.77810 2.75864i −0.162554 0.0938508i
\(865\) 0 0
\(866\) 18.9799i 0.644965i
\(867\) −3.12572 + 5.41390i −0.106155 + 0.183866i
\(868\) 1.08174 + 1.87362i 0.0367165 + 0.0635948i
\(869\) −11.3197 + 6.53546i −0.383996 + 0.221700i
\(870\) 0 0
\(871\) 38.8813 22.2391i 1.31744 0.753542i
\(872\) 14.5057 0.491224
\(873\) 2.73609 1.57968i 0.0926026 0.0534641i
\(874\) 16.4074 + 28.4184i 0.554987 + 0.961266i
\(875\) 0 0
\(876\) 18.4952i 0.624894i
\(877\) 9.94043 + 5.73911i 0.335664 + 0.193796i 0.658353 0.752709i \(-0.271253\pi\)
−0.322689 + 0.946505i \(0.604587\pi\)
\(878\) 12.8622 + 7.42599i 0.434078 + 0.250615i
\(879\) 9.58488i 0.323290i
\(880\) 0 0
\(881\) 0.584497 + 1.01238i 0.0196922 + 0.0341079i 0.875704 0.482849i \(-0.160398\pi\)
−0.856011 + 0.516957i \(0.827065\pi\)
\(882\) −2.18077 + 1.25907i −0.0734304 + 0.0423951i
\(883\) 1.40478 0.0472746 0.0236373 0.999721i \(-0.492475\pi\)
0.0236373 + 0.999721i \(0.492475\pi\)
\(884\) 9.68049 + 16.9247i 0.325590 + 0.569240i
\(885\) 0 0
\(886\) 16.4446 9.49431i 0.552468 0.318968i
\(887\) −8.68394 15.0410i −0.291578 0.505028i 0.682605 0.730788i \(-0.260847\pi\)
−0.974183 + 0.225759i \(0.927514\pi\)
\(888\) 5.14002 8.90278i 0.172488 0.298758i
\(889\) 27.2523i 0.914013i
\(890\) 0 0
\(891\) 1.22336 + 0.706307i 0.0409841 + 0.0236622i
\(892\) 22.3852i 0.749513i
\(893\) 14.4714 25.0652i 0.484267 0.838775i
\(894\) −5.84001 10.1152i −0.195319 0.338303i
\(895\) 0 0
\(896\) −19.0467 −0.636304
\(897\) 11.9488 20.5041i 0.398959 0.684612i
\(898\) −14.2303 −0.474873
\(899\) −0.346658 + 0.200143i −0.0115617 + 0.00667514i
\(900\) 0 0
\(901\) −0.691974 + 1.19853i −0.0230530 + 0.0399290i
\(902\) 7.40969i 0.246716i
\(903\) −3.20360 1.84960i −0.106609 0.0615508i
\(904\) 36.7107 + 21.1949i 1.22098 + 0.704932i
\(905\) 0 0
\(906\) 1.01485 1.75777i 0.0337161 0.0583980i
\(907\) −4.58028 7.93327i −0.152086 0.263420i 0.779908 0.625894i \(-0.215266\pi\)
−0.931994 + 0.362474i \(0.881932\pi\)
\(908\) −0.424260 + 0.244947i −0.0140796 + 0.00812884i
\(909\) 8.94284 0.296615
\(910\) 0 0
\(911\) 46.2229 1.53143 0.765717 0.643177i \(-0.222384\pi\)
0.765717 + 0.643177i \(0.222384\pi\)
\(912\) −14.7266 + 8.50240i −0.487646 + 0.281543i
\(913\) 2.84360 + 4.92526i 0.0941095 + 0.163002i
\(914\) −1.27777 + 2.21316i −0.0422647 + 0.0732047i
\(915\) 0 0
\(916\) −20.4494 11.8065i −0.675668 0.390097i
\(917\) 8.77809 + 5.06803i 0.289878 + 0.167361i
\(918\) 1.94115i 0.0640676i
\(919\) 6.81590 11.8055i 0.224836 0.389427i −0.731434 0.681912i \(-0.761149\pi\)
0.956270 + 0.292485i \(0.0944820\pi\)
\(920\) 0 0
\(921\) 21.8363 12.6072i 0.719530 0.415421i
\(922\) 0.365078 0.0120232
\(923\) −3.40948 1.98688i −0.112224 0.0653989i
\(924\) 3.86179 0.127043
\(925\) 0 0
\(926\) −3.95622 6.85238i −0.130010 0.225183i
\(927\) −7.51482 + 13.0161i −0.246819 + 0.427503i
\(928\) 2.79067i 0.0916083i
\(929\) 37.6193 + 21.7195i 1.23425 + 0.712594i 0.967913 0.251286i \(-0.0808534\pi\)
0.266336 + 0.963880i \(0.414187\pi\)
\(930\) 0 0
\(931\) 35.8115i 1.17367i
\(932\) −10.7048 + 18.5412i −0.350647 + 0.607338i
\(933\) 0.851347 + 1.47458i 0.0278719 + 0.0482755i
\(934\) −13.3938 + 7.73293i −0.438260 + 0.253029i
\(935\) 0 0
\(936\) −6.73123 3.92264i −0.220017 0.128215i
\(937\) −30.4186 −0.993731 −0.496865 0.867828i \(-0.665516\pi\)
−0.496865 + 0.867828i \(0.665516\pi\)
\(938\) 10.5578 6.09557i 0.344726 0.199027i
\(939\) −12.5536 21.7435i −0.409672 0.709573i
\(940\) 0 0
\(941\) 55.9477i 1.82384i −0.410363 0.911922i \(-0.634598\pi\)
0.410363 0.911922i \(-0.365402\pi\)
\(942\) 2.03375 + 1.17419i 0.0662632 + 0.0382571i
\(943\) −50.4985 29.1553i −1.64446 0.949428i
\(944\) 26.4540i 0.861003i
\(945\) 0 0
\(946\) 0.933375 + 1.61665i 0.0303466 + 0.0525619i
\(947\) 20.9804 12.1131i 0.681773 0.393622i −0.118750 0.992924i \(-0.537889\pi\)
0.800523 + 0.599303i \(0.204555\pi\)
\(948\) −15.2622 −0.495693
\(949\) −0.163408 + 40.4288i −0.00530446 + 1.31238i
\(950\) 0 0
\(951\) −1.64433 + 0.949353i −0.0533210 + 0.0307849i
\(952\) 5.87064 + 10.1682i 0.190269 + 0.329555i
\(953\) −19.1935 + 33.2441i −0.621739 + 1.07688i 0.367423 + 0.930054i \(0.380240\pi\)
−0.989162 + 0.146830i \(0.953093\pi\)
\(954\) 0.249936i 0.00809199i
\(955\) 0 0
\(956\) −19.5220 11.2710i −0.631386 0.364531i
\(957\) 0.714509i 0.0230968i
\(958\) −2.56899 + 4.44961i −0.0830002 + 0.143760i
\(959\) 10.7309 + 18.5865i 0.346520 + 0.600191i
\(960\) 0 0
\(961\) 30.3737 0.979797
\(962\) 5.11373 8.77513i 0.164873 0.282922i
\(963\) −18.8862 −0.608598
\(964\) −17.3265 + 10.0035i −0.558049 + 0.322190i
\(965\) 0 0
\(966\) 3.22954 5.59373i 0.103909 0.179975i
\(967\) 2.66874i 0.0858209i −0.999079 0.0429104i \(-0.986337\pi\)
0.999079 0.0429104i \(-0.0136630\pi\)
\(968\) 16.8501 + 9.72839i 0.541582 + 0.312682i
\(969\) 23.9075 + 13.8030i 0.768018 + 0.443416i
\(970\) 0 0
\(971\) 20.4823 35.4763i 0.657307 1.13849i −0.324003 0.946056i \(-0.605029\pi\)
0.981310 0.192433i \(-0.0616380\pi\)
\(972\) 0.824717 + 1.42845i 0.0264528 + 0.0458176i
\(973\) −16.1466 + 9.32222i −0.517635 + 0.298857i
\(974\) 16.8839 0.540994
\(975\) 0 0
\(976\) 1.87309 0.0599561
\(977\) −37.6377 + 21.7302i −1.20414 + 0.695209i −0.961473 0.274901i \(-0.911355\pi\)
−0.242665 + 0.970110i \(0.578022\pi\)
\(978\) 0.590497 + 1.02277i 0.0188820 + 0.0327046i
\(979\) −0.422377 + 0.731578i −0.0134992 + 0.0233813i
\(980\) 0 0
\(981\) −5.81377 3.35658i −0.185620 0.107167i
\(982\) 16.7065 + 9.64549i 0.533125 + 0.307800i
\(983\) 22.1143i 0.705337i −0.935748 0.352669i \(-0.885274\pi\)
0.935748 0.352669i \(-0.114726\pi\)
\(984\) −9.57132 + 16.5780i −0.305123 + 0.528488i
\(985\) 0 0
\(986\) −0.850305 + 0.490924i −0.0270792 + 0.0156342i
\(987\) −5.69696 −0.181336
\(988\) −43.4684 + 24.8628i −1.38291 + 0.790990i
\(989\) −14.6904 −0.467128
\(990\) 0 0
\(991\) −21.4294 37.1168i −0.680727 1.17905i −0.974759 0.223258i \(-0.928331\pi\)
0.294033 0.955795i \(-0.405003\pi\)
\(992\) 2.18314 3.78130i 0.0693147 0.120057i
\(993\) 20.2813i 0.643607i
\(994\) −0.930141 0.537017i −0.0295023 0.0170332i
\(995\) 0 0
\(996\) 6.64065i 0.210417i
\(997\) 13.0699 22.6378i 0.413929 0.716946i −0.581387 0.813627i \(-0.697490\pi\)
0.995315 + 0.0966819i \(0.0308229\pi\)
\(998\) 8.35872 + 14.4777i 0.264591 + 0.458285i
\(999\) −4.12017 + 2.37878i −0.130356 + 0.0752614i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bc.n.751.4 16
5.2 odd 4 195.2.v.a.49.7 yes 32
5.3 odd 4 195.2.v.a.49.10 yes 32
5.4 even 2 975.2.bc.m.751.5 16
13.4 even 6 inner 975.2.bc.n.901.4 16
15.2 even 4 585.2.bf.c.244.10 32
15.8 even 4 585.2.bf.c.244.7 32
65.4 even 6 975.2.bc.m.901.5 16
65.17 odd 12 195.2.v.a.4.10 yes 32
65.43 odd 12 195.2.v.a.4.7 32
195.17 even 12 585.2.bf.c.199.7 32
195.173 even 12 585.2.bf.c.199.10 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.v.a.4.7 32 65.43 odd 12
195.2.v.a.4.10 yes 32 65.17 odd 12
195.2.v.a.49.7 yes 32 5.2 odd 4
195.2.v.a.49.10 yes 32 5.3 odd 4
585.2.bf.c.199.7 32 195.17 even 12
585.2.bf.c.199.10 32 195.173 even 12
585.2.bf.c.244.7 32 15.8 even 4
585.2.bf.c.244.10 32 15.2 even 4
975.2.bc.m.751.5 16 5.4 even 2
975.2.bc.m.901.5 16 65.4 even 6
975.2.bc.n.751.4 16 1.1 even 1 trivial
975.2.bc.n.901.4 16 13.4 even 6 inner