Properties

Label 975.2.bc.k.751.1
Level $975$
Weight $2$
Character 975.751
Analytic conductor $7.785$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(751,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.751"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-6,8,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 150x^{8} + 520x^{6} + 825x^{4} + 512x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 751.1
Root \(2.36051i\) of defining polynomial
Character \(\chi\) \(=\) 975.751
Dual form 975.2.bc.k.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.04426 + 1.18025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(1.78599 - 3.09343i) q^{4} +(2.04426 + 1.18025i) q^{6} +(3.93440 + 2.27152i) q^{7} +3.71068i q^{8} +(-0.500000 + 0.866025i) q^{9} +(3.74607 - 2.16279i) q^{11} -3.57199 q^{12} +(-1.84085 + 3.10021i) q^{13} -10.7239 q^{14} +(-0.807554 - 1.39872i) q^{16} +(-2.76283 + 4.78536i) q^{17} -2.36051i q^{18} +(3.41535 + 1.97185i) q^{19} -4.54305i q^{21} +(-5.10528 + 8.84261i) q^{22} +(0.364011 + 0.630486i) q^{23} +(3.21354 - 1.85534i) q^{24} +(0.104146 - 8.51029i) q^{26} +1.00000 q^{27} +(14.0536 - 8.11385i) q^{28} +(-1.97844 - 3.42676i) q^{29} +0.599343i q^{31} +(-3.12539 - 1.80444i) q^{32} +(-3.74607 - 2.16279i) q^{33} -13.0434i q^{34} +(1.78599 + 3.09343i) q^{36} +(3.91499 - 2.26032i) q^{37} -9.30914 q^{38} +(3.60528 + 0.0441204i) q^{39} +(-8.97339 + 5.18079i) q^{41} +(5.36195 + 9.28716i) q^{42} +(5.45093 - 9.44128i) q^{43} -15.4509i q^{44} +(-1.48827 - 0.859250i) q^{46} -1.42486i q^{47} +(-0.807554 + 1.39872i) q^{48} +(6.81965 + 11.8120i) q^{49} +5.52566 q^{51} +(6.30252 + 11.2315i) q^{52} -0.805400 q^{53} +(-2.04426 + 1.18025i) q^{54} +(-8.42890 + 14.5993i) q^{56} -3.94371i q^{57} +(8.08888 + 4.67012i) q^{58} +(9.71559 + 5.60930i) q^{59} +(-6.20134 + 10.7410i) q^{61} +(-0.707376 - 1.22521i) q^{62} +(-3.93440 + 2.27152i) q^{63} +11.7490 q^{64} +10.2106 q^{66} +(-9.12013 + 5.26551i) q^{67} +(9.86879 + 17.0933i) q^{68} +(0.364011 - 0.630486i) q^{69} +(0.898903 + 0.518982i) q^{71} +(-3.21354 - 1.85534i) q^{72} +6.45306i q^{73} +(-5.33550 + 9.24135i) q^{74} +(12.1996 - 7.04343i) q^{76} +19.6513 q^{77} +(-7.42220 + 4.16495i) q^{78} +4.22063 q^{79} +(-0.500000 - 0.866025i) q^{81} +(12.2293 - 21.1817i) q^{82} -7.69642i q^{83} +(-14.0536 - 8.11385i) q^{84} +25.7339i q^{86} +(-1.97844 + 3.42676i) q^{87} +(8.02543 + 13.9004i) q^{88} +(-5.93532 + 3.42676i) q^{89} +(-14.2848 + 8.01590i) q^{91} +2.60048 q^{92} +(0.519046 - 0.299672i) q^{93} +(1.68170 + 2.91279i) q^{94} +3.60889i q^{96} +(-9.61107 - 5.54895i) q^{97} +(-27.8822 - 16.0978i) q^{98} +4.32558i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 8 q^{4} + 3 q^{7} - 6 q^{9} + 9 q^{11} - 16 q^{12} + 3 q^{13} + 10 q^{14} - 4 q^{16} - 9 q^{19} - 15 q^{22} - q^{23} - 5 q^{26} + 12 q^{27} + 39 q^{28} - 16 q^{29} - 30 q^{32} - 9 q^{33}+ \cdots - 105 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.04426 + 1.18025i −1.44551 + 0.834565i −0.998209 0.0598198i \(-0.980947\pi\)
−0.447299 + 0.894384i \(0.647614\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.78599 3.09343i 0.892996 1.54671i
\(5\) 0 0
\(6\) 2.04426 + 1.18025i 0.834565 + 0.481836i
\(7\) 3.93440 + 2.27152i 1.48706 + 0.858556i 0.999891 0.0147510i \(-0.00469555\pi\)
0.487171 + 0.873307i \(0.338029\pi\)
\(8\) 3.71068i 1.31192i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 3.74607 2.16279i 1.12948 0.652106i 0.185677 0.982611i \(-0.440552\pi\)
0.943804 + 0.330505i \(0.107219\pi\)
\(12\) −3.57199 −1.03114
\(13\) −1.84085 + 3.10021i −0.510560 + 0.859842i
\(14\) −10.7239 −2.86608
\(15\) 0 0
\(16\) −0.807554 1.39872i −0.201888 0.349681i
\(17\) −2.76283 + 4.78536i −0.670085 + 1.16062i 0.307795 + 0.951453i \(0.400409\pi\)
−0.977880 + 0.209169i \(0.932924\pi\)
\(18\) 2.36051i 0.556376i
\(19\) 3.41535 + 1.97185i 0.783535 + 0.452374i 0.837682 0.546159i \(-0.183910\pi\)
−0.0541466 + 0.998533i \(0.517244\pi\)
\(20\) 0 0
\(21\) 4.54305i 0.991375i
\(22\) −5.10528 + 8.84261i −1.08845 + 1.88525i
\(23\) 0.364011 + 0.630486i 0.0759016 + 0.131465i 0.901478 0.432825i \(-0.142483\pi\)
−0.825576 + 0.564290i \(0.809150\pi\)
\(24\) 3.21354 1.85534i 0.655962 0.378720i
\(25\) 0 0
\(26\) 0.104146 8.51029i 0.0204248 1.66900i
\(27\) 1.00000 0.192450
\(28\) 14.0536 8.11385i 2.65588 1.53337i
\(29\) −1.97844 3.42676i −0.367387 0.636333i 0.621769 0.783200i \(-0.286414\pi\)
−0.989156 + 0.146868i \(0.953081\pi\)
\(30\) 0 0
\(31\) 0.599343i 0.107645i 0.998551 + 0.0538226i \(0.0171405\pi\)
−0.998551 + 0.0538226i \(0.982859\pi\)
\(32\) −3.12539 1.80444i −0.552496 0.318984i
\(33\) −3.74607 2.16279i −0.652106 0.376494i
\(34\) 13.0434i 2.23692i
\(35\) 0 0
\(36\) 1.78599 + 3.09343i 0.297665 + 0.515572i
\(37\) 3.91499 2.26032i 0.643620 0.371594i −0.142388 0.989811i \(-0.545478\pi\)
0.786008 + 0.618217i \(0.212145\pi\)
\(38\) −9.30914 −1.51014
\(39\) 3.60528 + 0.0441204i 0.577307 + 0.00706491i
\(40\) 0 0
\(41\) −8.97339 + 5.18079i −1.40141 + 0.809104i −0.994537 0.104382i \(-0.966714\pi\)
−0.406871 + 0.913485i \(0.633380\pi\)
\(42\) 5.36195 + 9.28716i 0.827366 + 1.43304i
\(43\) 5.45093 9.44128i 0.831258 1.43978i −0.0657822 0.997834i \(-0.520954\pi\)
0.897041 0.441948i \(-0.145712\pi\)
\(44\) 15.4509i 2.32931i
\(45\) 0 0
\(46\) −1.48827 0.859250i −0.219433 0.126690i
\(47\) 1.42486i 0.207838i −0.994586 0.103919i \(-0.966862\pi\)
0.994586 0.103919i \(-0.0331382\pi\)
\(48\) −0.807554 + 1.39872i −0.116560 + 0.201888i
\(49\) 6.81965 + 11.8120i 0.974236 + 1.68743i
\(50\) 0 0
\(51\) 5.52566 0.773748
\(52\) 6.30252 + 11.2315i 0.874003 + 1.55753i
\(53\) −0.805400 −0.110630 −0.0553151 0.998469i \(-0.517616\pi\)
−0.0553151 + 0.998469i \(0.517616\pi\)
\(54\) −2.04426 + 1.18025i −0.278188 + 0.160612i
\(55\) 0 0
\(56\) −8.42890 + 14.5993i −1.12636 + 1.95091i
\(57\) 3.94371i 0.522357i
\(58\) 8.08888 + 4.67012i 1.06212 + 0.613216i
\(59\) 9.71559 + 5.60930i 1.26486 + 0.730269i 0.974011 0.226499i \(-0.0727282\pi\)
0.290851 + 0.956768i \(0.406061\pi\)
\(60\) 0 0
\(61\) −6.20134 + 10.7410i −0.794001 + 1.37525i 0.129471 + 0.991583i \(0.458672\pi\)
−0.923472 + 0.383666i \(0.874661\pi\)
\(62\) −0.707376 1.22521i −0.0898369 0.155602i
\(63\) −3.93440 + 2.27152i −0.495687 + 0.286185i
\(64\) 11.7490 1.46863
\(65\) 0 0
\(66\) 10.2106 1.25683
\(67\) −9.12013 + 5.26551i −1.11420 + 0.643284i −0.939914 0.341411i \(-0.889095\pi\)
−0.174287 + 0.984695i \(0.555762\pi\)
\(68\) 9.86879 + 17.0933i 1.19677 + 2.07286i
\(69\) 0.364011 0.630486i 0.0438218 0.0759016i
\(70\) 0 0
\(71\) 0.898903 + 0.518982i 0.106680 + 0.0615918i 0.552391 0.833585i \(-0.313716\pi\)
−0.445711 + 0.895177i \(0.647049\pi\)
\(72\) −3.21354 1.85534i −0.378720 0.218654i
\(73\) 6.45306i 0.755274i 0.925954 + 0.377637i \(0.123263\pi\)
−0.925954 + 0.377637i \(0.876737\pi\)
\(74\) −5.33550 + 9.24135i −0.620239 + 1.07429i
\(75\) 0 0
\(76\) 12.1996 7.04343i 1.39939 0.807937i
\(77\) 19.6513 2.23948
\(78\) −7.42220 + 4.16495i −0.840398 + 0.471588i
\(79\) 4.22063 0.474857 0.237429 0.971405i \(-0.423695\pi\)
0.237429 + 0.971405i \(0.423695\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 12.2293 21.1817i 1.35050 2.33913i
\(83\) 7.69642i 0.844792i −0.906411 0.422396i \(-0.861189\pi\)
0.906411 0.422396i \(-0.138811\pi\)
\(84\) −14.0536 8.11385i −1.53337 0.885294i
\(85\) 0 0
\(86\) 25.7339i 2.77496i
\(87\) −1.97844 + 3.42676i −0.212111 + 0.367387i
\(88\) 8.02543 + 13.9004i 0.855513 + 1.48179i
\(89\) −5.93532 + 3.42676i −0.629142 + 0.363235i −0.780420 0.625256i \(-0.784995\pi\)
0.151278 + 0.988491i \(0.451661\pi\)
\(90\) 0 0
\(91\) −14.2848 + 8.01590i −1.49746 + 0.840295i
\(92\) 2.60048 0.271119
\(93\) 0.519046 0.299672i 0.0538226 0.0310745i
\(94\) 1.68170 + 2.91279i 0.173454 + 0.300431i
\(95\) 0 0
\(96\) 3.60889i 0.368331i
\(97\) −9.61107 5.54895i −0.975856 0.563411i −0.0748394 0.997196i \(-0.523844\pi\)
−0.901016 + 0.433785i \(0.857178\pi\)
\(98\) −27.8822 16.0978i −2.81653 1.62613i
\(99\) 4.32558i 0.434737i
\(100\) 0 0
\(101\) 2.83072 + 4.90294i 0.281667 + 0.487861i 0.971795 0.235826i \(-0.0757794\pi\)
−0.690129 + 0.723687i \(0.742446\pi\)
\(102\) −11.2959 + 6.52168i −1.11846 + 0.645742i
\(103\) 3.25369 0.320595 0.160298 0.987069i \(-0.448755\pi\)
0.160298 + 0.987069i \(0.448755\pi\)
\(104\) −11.5039 6.83080i −1.12805 0.669815i
\(105\) 0 0
\(106\) 1.64645 0.950576i 0.159917 0.0923281i
\(107\) 7.25780 + 12.5709i 0.701638 + 1.21527i 0.967891 + 0.251370i \(0.0808809\pi\)
−0.266253 + 0.963903i \(0.585786\pi\)
\(108\) 1.78599 3.09343i 0.171857 0.297665i
\(109\) 2.24315i 0.214855i −0.994213 0.107428i \(-0.965739\pi\)
0.994213 0.107428i \(-0.0342614\pi\)
\(110\) 0 0
\(111\) −3.91499 2.26032i −0.371594 0.214540i
\(112\) 7.33751i 0.693330i
\(113\) 0.809154 1.40150i 0.0761188 0.131842i −0.825453 0.564470i \(-0.809081\pi\)
0.901572 + 0.432629i \(0.142414\pi\)
\(114\) 4.65457 + 8.06195i 0.435940 + 0.755071i
\(115\) 0 0
\(116\) −14.1339 −1.31230
\(117\) −1.76443 3.14433i −0.163122 0.290693i
\(118\) −26.4816 −2.43783
\(119\) −21.7401 + 12.5517i −1.99292 + 1.15061i
\(120\) 0 0
\(121\) 3.85534 6.67764i 0.350485 0.607058i
\(122\) 29.2766i 2.65058i
\(123\) 8.97339 + 5.18079i 0.809104 + 0.467136i
\(124\) 1.85403 + 1.07042i 0.166496 + 0.0961267i
\(125\) 0 0
\(126\) 5.36195 9.28716i 0.477680 0.827366i
\(127\) 9.33047 + 16.1608i 0.827945 + 1.43404i 0.899648 + 0.436617i \(0.143823\pi\)
−0.0717028 + 0.997426i \(0.522843\pi\)
\(128\) −17.7672 + 10.2579i −1.57042 + 0.906680i
\(129\) −10.9019 −0.959855
\(130\) 0 0
\(131\) 9.45787 0.826338 0.413169 0.910654i \(-0.364422\pi\)
0.413169 + 0.910654i \(0.364422\pi\)
\(132\) −13.3809 + 7.72546i −1.16466 + 0.672415i
\(133\) 8.95823 + 15.5161i 0.776777 + 1.34542i
\(134\) 12.4293 21.5281i 1.07372 1.85975i
\(135\) 0 0
\(136\) −17.7570 10.2520i −1.52265 0.879100i
\(137\) −1.98355 1.14520i −0.169466 0.0978414i 0.412868 0.910791i \(-0.364527\pi\)
−0.582334 + 0.812950i \(0.697860\pi\)
\(138\) 1.71850i 0.146288i
\(139\) 4.18650 7.25122i 0.355094 0.615041i −0.632040 0.774936i \(-0.717782\pi\)
0.987134 + 0.159895i \(0.0511156\pi\)
\(140\) 0 0
\(141\) −1.23397 + 0.712432i −0.103919 + 0.0599976i
\(142\) −2.45012 −0.205609
\(143\) −0.190846 + 15.5949i −0.0159594 + 1.30411i
\(144\) 1.61511 0.134592
\(145\) 0 0
\(146\) −7.61624 13.1917i −0.630325 1.09175i
\(147\) 6.81965 11.8120i 0.562475 0.974236i
\(148\) 16.1477i 1.32733i
\(149\) 19.7954 + 11.4289i 1.62170 + 0.936291i 0.986465 + 0.163974i \(0.0524315\pi\)
0.635238 + 0.772316i \(0.280902\pi\)
\(150\) 0 0
\(151\) 14.9011i 1.21263i −0.795223 0.606317i \(-0.792646\pi\)
0.795223 0.606317i \(-0.207354\pi\)
\(152\) −7.31692 + 12.6733i −0.593480 + 1.02794i
\(153\) −2.76283 4.78536i −0.223362 0.386874i
\(154\) −40.1724 + 23.1935i −3.23718 + 1.86899i
\(155\) 0 0
\(156\) 6.57549 11.0739i 0.526460 0.886620i
\(157\) 0.495803 0.0395694 0.0197847 0.999804i \(-0.493702\pi\)
0.0197847 + 0.999804i \(0.493702\pi\)
\(158\) −8.62805 + 4.98140i −0.686410 + 0.396299i
\(159\) 0.402700 + 0.697497i 0.0319362 + 0.0553151i
\(160\) 0 0
\(161\) 3.30744i 0.260663i
\(162\) 2.04426 + 1.18025i 0.160612 + 0.0927294i
\(163\) −1.48871 0.859509i −0.116605 0.0673220i 0.440563 0.897722i \(-0.354779\pi\)
−0.557168 + 0.830400i \(0.688112\pi\)
\(164\) 37.0114i 2.89011i
\(165\) 0 0
\(166\) 9.08372 + 15.7335i 0.705033 + 1.22115i
\(167\) −4.92273 + 2.84214i −0.380933 + 0.219932i −0.678224 0.734855i \(-0.737250\pi\)
0.297291 + 0.954787i \(0.403917\pi\)
\(168\) 16.8578 1.30061
\(169\) −6.22254 11.4140i −0.478657 0.878002i
\(170\) 0 0
\(171\) −3.41535 + 1.97185i −0.261178 + 0.150791i
\(172\) −19.4706 33.7241i −1.48462 2.57144i
\(173\) 3.43576 5.95091i 0.261216 0.452439i −0.705349 0.708860i \(-0.749210\pi\)
0.966565 + 0.256421i \(0.0825432\pi\)
\(174\) 9.34023i 0.708081i
\(175\) 0 0
\(176\) −6.05030 3.49314i −0.456058 0.263305i
\(177\) 11.2186i 0.843242i
\(178\) 8.08888 14.0103i 0.606287 1.05012i
\(179\) 10.9566 + 18.9774i 0.818937 + 1.41844i 0.906466 + 0.422278i \(0.138769\pi\)
−0.0875295 + 0.996162i \(0.527897\pi\)
\(180\) 0 0
\(181\) −17.9404 −1.33350 −0.666750 0.745281i \(-0.732315\pi\)
−0.666750 + 0.745281i \(0.732315\pi\)
\(182\) 19.7411 33.2463i 1.46331 2.46438i
\(183\) 12.4027 0.916833
\(184\) −2.33953 + 1.35073i −0.172472 + 0.0995770i
\(185\) 0 0
\(186\) −0.707376 + 1.22521i −0.0518673 + 0.0898369i
\(187\) 23.9017i 1.74787i
\(188\) −4.40772 2.54480i −0.321466 0.185598i
\(189\) 3.93440 + 2.27152i 0.286185 + 0.165229i
\(190\) 0 0
\(191\) 1.25521 2.17409i 0.0908239 0.157312i −0.817034 0.576589i \(-0.804383\pi\)
0.907858 + 0.419278i \(0.137717\pi\)
\(192\) −5.87451 10.1749i −0.423956 0.734313i
\(193\) 8.16136 4.71197i 0.587468 0.339175i −0.176628 0.984278i \(-0.556519\pi\)
0.764096 + 0.645103i \(0.223186\pi\)
\(194\) 26.1967 1.88081
\(195\) 0 0
\(196\) 48.7194 3.47996
\(197\) 21.3578 12.3309i 1.52168 0.878542i 0.522007 0.852941i \(-0.325183\pi\)
0.999672 0.0256008i \(-0.00814988\pi\)
\(198\) −5.10528 8.84261i −0.362817 0.628417i
\(199\) 12.9766 22.4761i 0.919886 1.59329i 0.120300 0.992738i \(-0.461614\pi\)
0.799586 0.600552i \(-0.205052\pi\)
\(200\) 0 0
\(201\) 9.12013 + 5.26551i 0.643284 + 0.371400i
\(202\) −11.5734 6.68192i −0.814303 0.470138i
\(203\) 17.9763i 1.26169i
\(204\) 9.86879 17.0933i 0.690954 1.19677i
\(205\) 0 0
\(206\) −6.65137 + 3.84017i −0.463423 + 0.267557i
\(207\) −0.728022 −0.0506010
\(208\) 5.82292 + 0.0712591i 0.403747 + 0.00494093i
\(209\) 17.0588 1.17998
\(210\) 0 0
\(211\) −5.77273 9.99866i −0.397411 0.688336i 0.595994 0.802989i \(-0.296758\pi\)
−0.993406 + 0.114652i \(0.963425\pi\)
\(212\) −1.43844 + 2.49145i −0.0987924 + 0.171113i
\(213\) 1.03796i 0.0711201i
\(214\) −29.6736 17.1321i −2.02845 1.17112i
\(215\) 0 0
\(216\) 3.71068i 0.252480i
\(217\) −1.36142 + 2.35805i −0.0924194 + 0.160075i
\(218\) 2.64749 + 4.58558i 0.179310 + 0.310575i
\(219\) 5.58852 3.22653i 0.377637 0.218029i
\(220\) 0 0
\(221\) −9.74965 17.3745i −0.655833 1.16873i
\(222\) 10.6710 0.716190
\(223\) −7.03409 + 4.06113i −0.471037 + 0.271954i −0.716674 0.697408i \(-0.754336\pi\)
0.245636 + 0.969362i \(0.421003\pi\)
\(224\) −8.19768 14.1988i −0.547730 0.948697i
\(225\) 0 0
\(226\) 3.82002i 0.254104i
\(227\) −11.7666 6.79346i −0.780978 0.450898i 0.0557990 0.998442i \(-0.482229\pi\)
−0.836777 + 0.547544i \(0.815563\pi\)
\(228\) −12.1996 7.04343i −0.807937 0.466463i
\(229\) 3.61042i 0.238583i 0.992859 + 0.119292i \(0.0380624\pi\)
−0.992859 + 0.119292i \(0.961938\pi\)
\(230\) 0 0
\(231\) −9.82567 17.0186i −0.646482 1.11974i
\(232\) 12.7156 7.34135i 0.834820 0.481983i
\(233\) 28.6851 1.87922 0.939612 0.342240i \(-0.111186\pi\)
0.939612 + 0.342240i \(0.111186\pi\)
\(234\) 7.31805 + 4.34534i 0.478396 + 0.284064i
\(235\) 0 0
\(236\) 34.7040 20.0363i 2.25904 1.30425i
\(237\) −2.11031 3.65517i −0.137080 0.237429i
\(238\) 29.6283 51.3177i 1.92052 3.32643i
\(239\) 2.00405i 0.129631i 0.997897 + 0.0648157i \(0.0206459\pi\)
−0.997897 + 0.0648157i \(0.979354\pi\)
\(240\) 0 0
\(241\) 24.5161 + 14.1544i 1.57922 + 0.911762i 0.994969 + 0.100188i \(0.0319445\pi\)
0.584250 + 0.811574i \(0.301389\pi\)
\(242\) 18.2011i 1.17001i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 22.1511 + 38.3668i 1.41808 + 2.45619i
\(245\) 0 0
\(246\) −24.4586 −1.55942
\(247\) −12.4003 + 6.95840i −0.789012 + 0.442752i
\(248\) −2.22397 −0.141222
\(249\) −6.66530 + 3.84821i −0.422396 + 0.243870i
\(250\) 0 0
\(251\) −8.84280 + 15.3162i −0.558152 + 0.966748i 0.439498 + 0.898243i \(0.355156\pi\)
−0.997651 + 0.0685050i \(0.978177\pi\)
\(252\) 16.2277i 1.02225i
\(253\) 2.72722 + 1.57456i 0.171459 + 0.0989918i
\(254\) −38.1477 22.0246i −2.39360 1.38195i
\(255\) 0 0
\(256\) 12.4649 21.5898i 0.779053 1.34936i
\(257\) 9.97787 + 17.2822i 0.622402 + 1.07803i 0.989037 + 0.147668i \(0.0471766\pi\)
−0.366635 + 0.930365i \(0.619490\pi\)
\(258\) 22.2862 12.8669i 1.38748 0.801061i
\(259\) 20.5375 1.27614
\(260\) 0 0
\(261\) 3.95688 0.244925
\(262\) −19.3343 + 11.1627i −1.19448 + 0.689633i
\(263\) −1.69847 2.94183i −0.104732 0.181401i 0.808897 0.587951i \(-0.200065\pi\)
−0.913629 + 0.406550i \(0.866732\pi\)
\(264\) 8.02543 13.9004i 0.493931 0.855513i
\(265\) 0 0
\(266\) −36.6258 21.1459i −2.24567 1.29654i
\(267\) 5.93532 + 3.42676i 0.363235 + 0.209714i
\(268\) 37.6166i 2.29780i
\(269\) −7.66836 + 13.2820i −0.467548 + 0.809817i −0.999312 0.0370755i \(-0.988196\pi\)
0.531765 + 0.846892i \(0.321529\pi\)
\(270\) 0 0
\(271\) −15.8495 + 9.15070i −0.962787 + 0.555865i −0.897030 0.441970i \(-0.854280\pi\)
−0.0657572 + 0.997836i \(0.520946\pi\)
\(272\) 8.92454 0.541130
\(273\) 14.0844 + 8.36307i 0.852426 + 0.506156i
\(274\) 5.40652 0.326620
\(275\) 0 0
\(276\) −1.30024 2.25209i −0.0782654 0.135560i
\(277\) −3.90042 + 6.75572i −0.234353 + 0.405912i −0.959085 0.283120i \(-0.908631\pi\)
0.724731 + 0.689032i \(0.241964\pi\)
\(278\) 19.7645i 1.18540i
\(279\) −0.519046 0.299672i −0.0310745 0.0179409i
\(280\) 0 0
\(281\) 23.2268i 1.38559i −0.721134 0.692796i \(-0.756379\pi\)
0.721134 0.692796i \(-0.243621\pi\)
\(282\) 1.68170 2.91279i 0.100144 0.173454i
\(283\) −3.92173 6.79264i −0.233123 0.403780i 0.725603 0.688114i \(-0.241561\pi\)
−0.958725 + 0.284333i \(0.908228\pi\)
\(284\) 3.21087 1.85379i 0.190530 0.110002i
\(285\) 0 0
\(286\) −18.0158 32.1053i −1.06530 1.89843i
\(287\) −47.0732 −2.77864
\(288\) 3.12539 1.80444i 0.184165 0.106328i
\(289\) −6.76647 11.7199i −0.398028 0.689405i
\(290\) 0 0
\(291\) 11.0979i 0.650571i
\(292\) 19.9621 + 11.5251i 1.16819 + 0.674457i
\(293\) −8.90314 5.14023i −0.520127 0.300296i 0.216859 0.976203i \(-0.430419\pi\)
−0.736987 + 0.675907i \(0.763752\pi\)
\(294\) 32.1956i 1.87769i
\(295\) 0 0
\(296\) 8.38732 + 14.5273i 0.487503 + 0.844380i
\(297\) 3.74607 2.16279i 0.217369 0.125498i
\(298\) −53.9559 −3.12558
\(299\) −2.62473 0.0321206i −0.151792 0.00185758i
\(300\) 0 0
\(301\) 42.8922 24.7638i 2.47227 1.42736i
\(302\) 17.5870 + 30.4617i 1.01202 + 1.75287i
\(303\) 2.83072 4.90294i 0.162620 0.281667i
\(304\) 6.36951i 0.365317i
\(305\) 0 0
\(306\) 11.2959 + 6.52168i 0.645742 + 0.372820i
\(307\) 33.8058i 1.92940i −0.263348 0.964701i \(-0.584827\pi\)
0.263348 0.964701i \(-0.415173\pi\)
\(308\) 35.0971 60.7900i 1.99985 3.46383i
\(309\) −1.62684 2.81777i −0.0925478 0.160298i
\(310\) 0 0
\(311\) −0.286772 −0.0162613 −0.00813066 0.999967i \(-0.502588\pi\)
−0.00813066 + 0.999967i \(0.502588\pi\)
\(312\) −0.163716 + 13.3780i −0.00926862 + 0.757383i
\(313\) −27.8341 −1.57328 −0.786639 0.617413i \(-0.788181\pi\)
−0.786639 + 0.617413i \(0.788181\pi\)
\(314\) −1.01355 + 0.585173i −0.0571979 + 0.0330232i
\(315\) 0 0
\(316\) 7.53801 13.0562i 0.424046 0.734469i
\(317\) 23.6134i 1.32626i −0.748504 0.663130i \(-0.769228\pi\)
0.748504 0.663130i \(-0.230772\pi\)
\(318\) −1.64645 0.950576i −0.0923281 0.0533056i
\(319\) −14.8227 8.55790i −0.829913 0.479151i
\(320\) 0 0
\(321\) 7.25780 12.5709i 0.405091 0.701638i
\(322\) −3.90362 6.76126i −0.217540 0.376790i
\(323\) −18.8721 + 10.8958i −1.05007 + 0.606258i
\(324\) −3.57199 −0.198444
\(325\) 0 0
\(326\) 4.05775 0.224738
\(327\) −1.94263 + 1.12158i −0.107428 + 0.0620233i
\(328\) −19.2243 33.2974i −1.06148 1.83854i
\(329\) 3.23661 5.60598i 0.178440 0.309068i
\(330\) 0 0
\(331\) 4.51960 + 2.60939i 0.248420 + 0.143425i 0.619041 0.785359i \(-0.287522\pi\)
−0.370621 + 0.928784i \(0.620855\pi\)
\(332\) −23.8083 13.7457i −1.30665 0.754396i
\(333\) 4.52064i 0.247730i
\(334\) 6.70889 11.6201i 0.367094 0.635826i
\(335\) 0 0
\(336\) −6.35447 + 3.66876i −0.346665 + 0.200147i
\(337\) 19.8753 1.08268 0.541339 0.840804i \(-0.317918\pi\)
0.541339 + 0.840804i \(0.317918\pi\)
\(338\) 26.1919 + 15.9890i 1.42465 + 0.869689i
\(339\) −1.61831 −0.0878944
\(340\) 0 0
\(341\) 1.29625 + 2.24518i 0.0701961 + 0.121583i
\(342\) 4.65457 8.06195i 0.251690 0.435940i
\(343\) 30.1627i 1.62863i
\(344\) 35.0336 + 20.2266i 1.88888 + 1.09055i
\(345\) 0 0
\(346\) 16.2203i 0.872007i
\(347\) −0.854503 + 1.48004i −0.0458721 + 0.0794529i −0.888050 0.459747i \(-0.847940\pi\)
0.842178 + 0.539200i \(0.181273\pi\)
\(348\) 7.06695 + 12.2403i 0.378828 + 0.656150i
\(349\) 13.3270 7.69437i 0.713380 0.411870i −0.0989311 0.995094i \(-0.531542\pi\)
0.812311 + 0.583224i \(0.198209\pi\)
\(350\) 0 0
\(351\) −1.84085 + 3.10021i −0.0982573 + 0.165477i
\(352\) −15.6105 −0.832045
\(353\) 16.2885 9.40416i 0.866948 0.500533i 0.000615369 1.00000i \(-0.499804\pi\)
0.866333 + 0.499467i \(0.166471\pi\)
\(354\) 13.2408 + 22.9337i 0.703740 + 1.21891i
\(355\) 0 0
\(356\) 24.4806i 1.29747i
\(357\) 21.7401 + 12.5517i 1.15061 + 0.664305i
\(358\) −44.7963 25.8632i −2.36756 1.36691i
\(359\) 17.0768i 0.901280i −0.892706 0.450640i \(-0.851196\pi\)
0.892706 0.450640i \(-0.148804\pi\)
\(360\) 0 0
\(361\) −1.72359 2.98534i −0.0907152 0.157123i
\(362\) 36.6748 21.1742i 1.92759 1.11289i
\(363\) −7.71067 −0.404705
\(364\) −0.715972 + 58.5054i −0.0375271 + 3.06652i
\(365\) 0 0
\(366\) −25.3543 + 14.6383i −1.32529 + 0.765156i
\(367\) −5.20957 9.02325i −0.271938 0.471010i 0.697420 0.716662i \(-0.254331\pi\)
−0.969358 + 0.245653i \(0.920998\pi\)
\(368\) 0.587917 1.01830i 0.0306473 0.0530827i
\(369\) 10.3616i 0.539402i
\(370\) 0 0
\(371\) −3.16876 1.82949i −0.164514 0.0949822i
\(372\) 2.14084i 0.110998i
\(373\) −12.0400 + 20.8540i −0.623410 + 1.07978i 0.365437 + 0.930836i \(0.380920\pi\)
−0.988846 + 0.148941i \(0.952414\pi\)
\(374\) −28.2101 48.8613i −1.45871 2.52656i
\(375\) 0 0
\(376\) 5.28721 0.272667
\(377\) 14.2657 + 0.174579i 0.734719 + 0.00899127i
\(378\) −10.7239 −0.551578
\(379\) −7.64369 + 4.41308i −0.392630 + 0.226685i −0.683299 0.730139i \(-0.739455\pi\)
0.290669 + 0.956824i \(0.406122\pi\)
\(380\) 0 0
\(381\) 9.33047 16.1608i 0.478014 0.827945i
\(382\) 5.92587i 0.303194i
\(383\) −14.0423 8.10734i −0.717529 0.414266i 0.0963135 0.995351i \(-0.469295\pi\)
−0.813843 + 0.581085i \(0.802628\pi\)
\(384\) 17.7672 + 10.2579i 0.906680 + 0.523472i
\(385\) 0 0
\(386\) −11.1226 + 19.2649i −0.566126 + 0.980560i
\(387\) 5.45093 + 9.44128i 0.277086 + 0.479927i
\(388\) −34.3306 + 19.8208i −1.74287 + 1.00625i
\(389\) −33.1860 −1.68259 −0.841297 0.540573i \(-0.818208\pi\)
−0.841297 + 0.540573i \(0.818208\pi\)
\(390\) 0 0
\(391\) −4.02281 −0.203442
\(392\) −43.8305 + 25.3055i −2.21377 + 1.27812i
\(393\) −4.72894 8.19076i −0.238543 0.413169i
\(394\) −29.1072 + 50.4152i −1.46640 + 2.53988i
\(395\) 0 0
\(396\) 13.3809 + 7.72546i 0.672415 + 0.388219i
\(397\) −6.49531 3.75007i −0.325990 0.188211i 0.328069 0.944654i \(-0.393602\pi\)
−0.654060 + 0.756443i \(0.726935\pi\)
\(398\) 61.2626i 3.07082i
\(399\) 8.95823 15.5161i 0.448472 0.776777i
\(400\) 0 0
\(401\) 2.95696 1.70720i 0.147664 0.0852536i −0.424348 0.905499i \(-0.639497\pi\)
0.572011 + 0.820246i \(0.306163\pi\)
\(402\) −24.8585 −1.23983
\(403\) −1.85809 1.10330i −0.0925579 0.0549593i
\(404\) 20.2225 1.00611
\(405\) 0 0
\(406\) 21.2166 + 36.7482i 1.05296 + 1.82378i
\(407\) 9.77720 16.9346i 0.484638 0.839417i
\(408\) 20.5040i 1.01510i
\(409\) −12.6543 7.30598i −0.625716 0.361257i 0.153375 0.988168i \(-0.450986\pi\)
−0.779091 + 0.626911i \(0.784319\pi\)
\(410\) 0 0
\(411\) 2.29041i 0.112978i
\(412\) 5.81106 10.0650i 0.286290 0.495869i
\(413\) 25.4833 + 44.1384i 1.25395 + 2.17191i
\(414\) 1.48827 0.859250i 0.0731442 0.0422298i
\(415\) 0 0
\(416\) 11.3475 6.36764i 0.556358 0.312199i
\(417\) −8.37299 −0.410027
\(418\) −34.8726 + 20.1337i −1.70568 + 0.984773i
\(419\) 1.70258 + 2.94896i 0.0831765 + 0.144066i 0.904613 0.426234i \(-0.140160\pi\)
−0.821436 + 0.570300i \(0.806827\pi\)
\(420\) 0 0
\(421\) 14.9006i 0.726213i 0.931748 + 0.363107i \(0.118284\pi\)
−0.931748 + 0.363107i \(0.881716\pi\)
\(422\) 23.6019 + 13.6266i 1.14892 + 0.663331i
\(423\) 1.23397 + 0.712432i 0.0599976 + 0.0346396i
\(424\) 2.98858i 0.145138i
\(425\) 0 0
\(426\) 1.22506 + 2.12186i 0.0593543 + 0.102805i
\(427\) −48.7971 + 28.1730i −2.36146 + 1.36339i
\(428\) 51.8495 2.50624
\(429\) 13.6010 7.63219i 0.656664 0.368486i
\(430\) 0 0
\(431\) 4.80354 2.77332i 0.231378 0.133586i −0.379829 0.925057i \(-0.624017\pi\)
0.611208 + 0.791470i \(0.290684\pi\)
\(432\) −0.807554 1.39872i −0.0388535 0.0672962i
\(433\) 6.28072 10.8785i 0.301832 0.522789i −0.674719 0.738075i \(-0.735735\pi\)
0.976551 + 0.215286i \(0.0690684\pi\)
\(434\) 6.42729i 0.308520i
\(435\) 0 0
\(436\) −6.93904 4.00625i −0.332320 0.191865i
\(437\) 2.87111i 0.137344i
\(438\) −7.61624 + 13.1917i −0.363918 + 0.630325i
\(439\) −14.7936 25.6233i −0.706060 1.22293i −0.966308 0.257390i \(-0.917138\pi\)
0.260248 0.965542i \(-0.416196\pi\)
\(440\) 0 0
\(441\) −13.6393 −0.649490
\(442\) 40.4371 + 24.0109i 1.92340 + 1.14208i
\(443\) 29.6951 1.41086 0.705428 0.708781i \(-0.250755\pi\)
0.705428 + 0.708781i \(0.250755\pi\)
\(444\) −13.9843 + 8.07383i −0.663665 + 0.383167i
\(445\) 0 0
\(446\) 9.58633 16.6040i 0.453926 0.786222i
\(447\) 22.8578i 1.08114i
\(448\) 46.2253 + 26.6882i 2.18394 + 1.26090i
\(449\) −9.55371 5.51584i −0.450867 0.260308i 0.257329 0.966324i \(-0.417158\pi\)
−0.708196 + 0.706015i \(0.750491\pi\)
\(450\) 0 0
\(451\) −22.4099 + 38.8152i −1.05524 + 1.82773i
\(452\) −2.89029 5.00612i −0.135948 0.235468i
\(453\) −12.9047 + 7.45054i −0.606317 + 0.350057i
\(454\) 32.0720 1.50521
\(455\) 0 0
\(456\) 14.6338 0.685292
\(457\) 12.3287 7.11796i 0.576711 0.332964i −0.183114 0.983092i \(-0.558618\pi\)
0.759825 + 0.650128i \(0.225285\pi\)
\(458\) −4.26121 7.38063i −0.199113 0.344874i
\(459\) −2.76283 + 4.78536i −0.128958 + 0.223362i
\(460\) 0 0
\(461\) −19.3611 11.1781i −0.901736 0.520618i −0.0239731 0.999713i \(-0.507632\pi\)
−0.877763 + 0.479095i \(0.840965\pi\)
\(462\) 40.1724 + 23.1935i 1.86899 + 1.07906i
\(463\) 29.9717i 1.39290i 0.717604 + 0.696451i \(0.245239\pi\)
−0.717604 + 0.696451i \(0.754761\pi\)
\(464\) −3.19539 + 5.53458i −0.148342 + 0.256936i
\(465\) 0 0
\(466\) −58.6398 + 33.8557i −2.71644 + 1.56833i
\(467\) −17.3591 −0.803282 −0.401641 0.915797i \(-0.631560\pi\)
−0.401641 + 0.915797i \(0.631560\pi\)
\(468\) −12.8780 0.157597i −0.595286 0.00728493i
\(469\) −47.8429 −2.20918
\(470\) 0 0
\(471\) −0.247901 0.429378i −0.0114227 0.0197847i
\(472\) −20.8143 + 36.0515i −0.958057 + 1.65940i
\(473\) 47.1569i 2.16828i
\(474\) 8.62805 + 4.98140i 0.396299 + 0.228803i
\(475\) 0 0
\(476\) 89.6688i 4.10996i
\(477\) 0.402700 0.697497i 0.0184384 0.0319362i
\(478\) −2.36529 4.09680i −0.108186 0.187383i
\(479\) −8.85694 + 5.11356i −0.404684 + 0.233644i −0.688503 0.725233i \(-0.741732\pi\)
0.283819 + 0.958878i \(0.408399\pi\)
\(480\) 0 0
\(481\) −0.199452 + 16.2982i −0.00909424 + 0.743133i
\(482\) −66.8229 −3.04370
\(483\) 2.86433 1.65372i 0.130331 0.0752469i
\(484\) −13.7712 23.8524i −0.625964 1.08420i
\(485\) 0 0
\(486\) 2.36051i 0.107075i
\(487\) 14.2659 + 8.23642i 0.646449 + 0.373228i 0.787095 0.616832i \(-0.211584\pi\)
−0.140645 + 0.990060i \(0.544918\pi\)
\(488\) −39.8566 23.0112i −1.80422 1.04167i
\(489\) 1.71902i 0.0777367i
\(490\) 0 0
\(491\) 14.2907 + 24.7523i 0.644931 + 1.11705i 0.984317 + 0.176407i \(0.0564473\pi\)
−0.339386 + 0.940647i \(0.610219\pi\)
\(492\) 32.0528 18.5057i 1.44505 0.834302i
\(493\) 21.8644 0.984722
\(494\) 17.1367 28.8602i 0.771018 1.29848i
\(495\) 0 0
\(496\) 0.838316 0.484002i 0.0376415 0.0217323i
\(497\) 2.35776 + 4.08376i 0.105760 + 0.183182i
\(498\) 9.08372 15.7335i 0.407051 0.705033i
\(499\) 14.6508i 0.655858i 0.944702 + 0.327929i \(0.106351\pi\)
−0.944702 + 0.327929i \(0.893649\pi\)
\(500\) 0 0
\(501\) 4.92273 + 2.84214i 0.219932 + 0.126978i
\(502\) 41.7469i 1.86326i
\(503\) 1.21181 2.09892i 0.0540320 0.0935861i −0.837744 0.546063i \(-0.816126\pi\)
0.891776 + 0.452477i \(0.149459\pi\)
\(504\) −8.42890 14.5993i −0.375453 0.650304i
\(505\) 0 0
\(506\) −7.43352 −0.330460
\(507\) −6.77356 + 11.0959i −0.300825 + 0.492786i
\(508\) 66.6566 2.95741
\(509\) −12.3914 + 7.15420i −0.549240 + 0.317104i −0.748816 0.662778i \(-0.769377\pi\)
0.199575 + 0.979883i \(0.436044\pi\)
\(510\) 0 0
\(511\) −14.6583 + 25.3889i −0.648445 + 1.12314i
\(512\) 17.8150i 0.787321i
\(513\) 3.41535 + 1.97185i 0.150791 + 0.0870595i
\(514\) −40.7947 23.5528i −1.79938 1.03887i
\(515\) 0 0
\(516\) −19.4706 + 33.7241i −0.857147 + 1.48462i
\(517\) −3.08169 5.33764i −0.135532 0.234749i
\(518\) −41.9839 + 24.2394i −1.84467 + 1.06502i
\(519\) −6.87152 −0.301626
\(520\) 0 0
\(521\) −34.9071 −1.52931 −0.764654 0.644441i \(-0.777090\pi\)
−0.764654 + 0.644441i \(0.777090\pi\)
\(522\) −8.08888 + 4.67012i −0.354041 + 0.204405i
\(523\) 6.57502 + 11.3883i 0.287505 + 0.497974i 0.973214 0.229902i \(-0.0738407\pi\)
−0.685708 + 0.727877i \(0.740507\pi\)
\(524\) 16.8917 29.2573i 0.737917 1.27811i
\(525\) 0 0
\(526\) 6.94420 + 4.00924i 0.302782 + 0.174811i
\(527\) −2.86807 1.65588i −0.124935 0.0721314i
\(528\) 6.98628i 0.304039i
\(529\) 11.2350 19.4596i 0.488478 0.846069i
\(530\) 0 0
\(531\) −9.71559 + 5.60930i −0.421621 + 0.243423i
\(532\) 63.9973 2.77464
\(533\) 0.457157 37.3564i 0.0198017 1.61809i
\(534\) −16.1778 −0.700080
\(535\) 0 0
\(536\) −19.5386 33.8419i −0.843940 1.46175i
\(537\) 10.9566 18.9774i 0.472813 0.818937i
\(538\) 36.2024i 1.56080i
\(539\) 51.0937 + 29.4990i 2.20076 + 1.27061i
\(540\) 0 0
\(541\) 19.0301i 0.818169i −0.912496 0.409085i \(-0.865848\pi\)
0.912496 0.409085i \(-0.134152\pi\)
\(542\) 21.6003 37.4128i 0.927811 1.60702i
\(543\) 8.97021 + 15.5369i 0.384948 + 0.666750i
\(544\) 17.2698 9.97075i 0.740439 0.427492i
\(545\) 0 0
\(546\) −38.6627 0.473142i −1.65461 0.0202486i
\(547\) 21.1122 0.902694 0.451347 0.892348i \(-0.350944\pi\)
0.451347 + 0.892348i \(0.350944\pi\)
\(548\) −7.08522 + 4.09065i −0.302666 + 0.174744i
\(549\) −6.20134 10.7410i −0.264667 0.458416i
\(550\) 0 0
\(551\) 15.6048i 0.664785i
\(552\) 2.33953 + 1.35073i 0.0995770 + 0.0574908i
\(553\) 16.6056 + 9.58726i 0.706143 + 0.407692i
\(554\) 18.4139i 0.782332i
\(555\) 0 0
\(556\) −14.9541 25.9013i −0.634195 1.09846i
\(557\) −8.79709 + 5.07900i −0.372745 + 0.215204i −0.674657 0.738132i \(-0.735708\pi\)
0.301912 + 0.953336i \(0.402375\pi\)
\(558\) 1.41475 0.0598912
\(559\) 19.2356 + 34.2790i 0.813578 + 1.44985i
\(560\) 0 0
\(561\) 20.6995 11.9509i 0.873933 0.504566i
\(562\) 27.4134 + 47.4815i 1.15637 + 2.00288i
\(563\) −7.46961 + 12.9377i −0.314807 + 0.545261i −0.979396 0.201947i \(-0.935273\pi\)
0.664590 + 0.747208i \(0.268606\pi\)
\(564\) 5.08959i 0.214311i
\(565\) 0 0
\(566\) 16.0341 + 9.25727i 0.673962 + 0.389112i
\(567\) 4.54305i 0.190790i
\(568\) −1.92577 + 3.33554i −0.0808037 + 0.139956i
\(569\) −12.0374 20.8495i −0.504636 0.874055i −0.999986 0.00536121i \(-0.998293\pi\)
0.495350 0.868694i \(-0.335040\pi\)
\(570\) 0 0
\(571\) 1.95913 0.0819868 0.0409934 0.999159i \(-0.486948\pi\)
0.0409934 + 0.999159i \(0.486948\pi\)
\(572\) 47.9010 + 28.4428i 2.00284 + 1.18925i
\(573\) −2.51042 −0.104874
\(574\) 96.2297 55.5583i 4.01655 2.31896i
\(575\) 0 0
\(576\) −5.87451 + 10.1749i −0.244771 + 0.423956i
\(577\) 1.22118i 0.0508382i −0.999677 0.0254191i \(-0.991908\pi\)
0.999677 0.0254191i \(-0.00809202\pi\)
\(578\) 27.6648 + 15.9723i 1.15071 + 0.664360i
\(579\) −8.16136 4.71197i −0.339175 0.195823i
\(580\) 0 0
\(581\) 17.4826 30.2808i 0.725301 1.25626i
\(582\) −13.0983 22.6870i −0.542943 0.940405i
\(583\) −3.01708 + 1.74191i −0.124955 + 0.0721427i
\(584\) −23.9452 −0.990861
\(585\) 0 0
\(586\) 24.2671 1.00246
\(587\) 25.6779 14.8251i 1.05984 0.611898i 0.134451 0.990920i \(-0.457073\pi\)
0.925388 + 0.379022i \(0.123739\pi\)
\(588\) −24.3597 42.1922i −1.00458 1.73998i
\(589\) −1.18182 + 2.04697i −0.0486959 + 0.0843438i
\(590\) 0 0
\(591\) −21.3578 12.3309i −0.878542 0.507226i
\(592\) −6.32313 3.65066i −0.259879 0.150041i
\(593\) 10.2794i 0.422126i 0.977473 + 0.211063i \(0.0676925\pi\)
−0.977473 + 0.211063i \(0.932308\pi\)
\(594\) −5.10528 + 8.84261i −0.209472 + 0.362817i
\(595\) 0 0
\(596\) 70.7089 40.8238i 2.89635 1.67221i
\(597\) −25.9532 −1.06219
\(598\) 5.40352 3.03218i 0.220967 0.123995i
\(599\) −15.0591 −0.615296 −0.307648 0.951500i \(-0.599542\pi\)
−0.307648 + 0.951500i \(0.599542\pi\)
\(600\) 0 0
\(601\) −10.2473 17.7489i −0.417998 0.723993i 0.577740 0.816221i \(-0.303935\pi\)
−0.995738 + 0.0922273i \(0.970601\pi\)
\(602\) −58.4551 + 101.247i −2.38245 + 4.12653i
\(603\) 10.5310i 0.428856i
\(604\) −46.0955 26.6132i −1.87560 1.08288i
\(605\) 0 0
\(606\) 13.3638i 0.542869i
\(607\) −1.34177 + 2.32401i −0.0544608 + 0.0943288i −0.891971 0.452094i \(-0.850677\pi\)
0.837510 + 0.546422i \(0.184011\pi\)
\(608\) −7.11620 12.3256i −0.288600 0.499870i
\(609\) −15.5679 + 8.98815i −0.630844 + 0.364218i
\(610\) 0 0
\(611\) 4.41737 + 2.62296i 0.178708 + 0.106114i
\(612\) −19.7376 −0.797845
\(613\) 9.16309 5.29031i 0.370094 0.213674i −0.303406 0.952862i \(-0.598124\pi\)
0.673499 + 0.739188i \(0.264790\pi\)
\(614\) 39.8994 + 69.1079i 1.61021 + 2.78897i
\(615\) 0 0
\(616\) 72.9198i 2.93802i
\(617\) −15.4896 8.94290i −0.623586 0.360028i 0.154678 0.987965i \(-0.450566\pi\)
−0.778264 + 0.627937i \(0.783899\pi\)
\(618\) 6.65137 + 3.84017i 0.267557 + 0.154474i
\(619\) 8.37677i 0.336691i −0.985728 0.168345i \(-0.946158\pi\)
0.985728 0.168345i \(-0.0538424\pi\)
\(620\) 0 0
\(621\) 0.364011 + 0.630486i 0.0146073 + 0.0253005i
\(622\) 0.586235 0.338463i 0.0235059 0.0135711i
\(623\) −31.1358 −1.24743
\(624\) −2.84975 5.07842i −0.114081 0.203300i
\(625\) 0 0
\(626\) 56.9001 32.8513i 2.27419 1.31300i
\(627\) −8.52942 14.7734i −0.340632 0.589992i
\(628\) 0.885500 1.53373i 0.0353353 0.0612025i
\(629\) 24.9795i 0.995999i
\(630\) 0 0
\(631\) −30.5045 17.6118i −1.21437 0.701114i −0.250659 0.968076i \(-0.580647\pi\)
−0.963707 + 0.266961i \(0.913980\pi\)
\(632\) 15.6614i 0.622977i
\(633\) −5.77273 + 9.99866i −0.229445 + 0.397411i
\(634\) 27.8698 + 48.2719i 1.10685 + 1.91712i
\(635\) 0 0
\(636\) 2.87688 0.114076
\(637\) −49.1735 0.601771i −1.94833 0.0238430i
\(638\) 40.4019 1.59953
\(639\) −0.898903 + 0.518982i −0.0355600 + 0.0205306i
\(640\) 0 0
\(641\) 8.48264 14.6924i 0.335044 0.580313i −0.648449 0.761258i \(-0.724582\pi\)
0.983493 + 0.180945i \(0.0579155\pi\)
\(642\) 34.2642i 1.35230i
\(643\) −39.8916 23.0314i −1.57317 0.908272i −0.995777 0.0918073i \(-0.970736\pi\)
−0.577396 0.816464i \(-0.695931\pi\)
\(644\) 10.2313 + 5.90707i 0.403171 + 0.232771i
\(645\) 0 0
\(646\) 25.7196 44.5476i 1.01192 1.75270i
\(647\) 0.851665 + 1.47513i 0.0334824 + 0.0579932i 0.882281 0.470723i \(-0.156007\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(648\) 3.21354 1.85534i 0.126240 0.0728846i
\(649\) 48.5270 1.90485
\(650\) 0 0
\(651\) 2.72285 0.106717
\(652\) −5.31766 + 3.07015i −0.208256 + 0.120237i
\(653\) −1.37739 2.38570i −0.0539013 0.0933597i 0.837816 0.545953i \(-0.183832\pi\)
−0.891717 + 0.452593i \(0.850499\pi\)
\(654\) 2.64749 4.58558i 0.103525 0.179310i
\(655\) 0 0
\(656\) 14.4930 + 8.36754i 0.565857 + 0.326697i
\(657\) −5.58852 3.22653i −0.218029 0.125879i
\(658\) 15.2801i 0.595680i
\(659\) 10.7195 18.5668i 0.417574 0.723260i −0.578121 0.815951i \(-0.696214\pi\)
0.995695 + 0.0926917i \(0.0295471\pi\)
\(660\) 0 0
\(661\) −5.93927 + 3.42904i −0.231011 + 0.133374i −0.611038 0.791601i \(-0.709248\pi\)
0.380027 + 0.924975i \(0.375915\pi\)
\(662\) −12.3190 −0.478791
\(663\) −10.1719 + 17.1307i −0.395045 + 0.665301i
\(664\) 28.5589 1.10830
\(665\) 0 0
\(666\) −5.33550 9.24135i −0.206746 0.358095i
\(667\) 1.44035 2.49476i 0.0557705 0.0965973i
\(668\) 20.3042i 0.785592i
\(669\) 7.03409 + 4.06113i 0.271954 + 0.157012i
\(670\) 0 0
\(671\) 53.6489i 2.07109i
\(672\) −8.19768 + 14.1988i −0.316232 + 0.547730i
\(673\) 0.450047 + 0.779505i 0.0173481 + 0.0300477i 0.874569 0.484901i \(-0.161144\pi\)
−0.857221 + 0.514949i \(0.827811\pi\)
\(674\) −40.6303 + 23.4579i −1.56502 + 0.903565i
\(675\) 0 0
\(676\) −46.4219 1.13636i −1.78546 0.0437063i
\(677\) 40.3221 1.54970 0.774851 0.632144i \(-0.217825\pi\)
0.774851 + 0.632144i \(0.217825\pi\)
\(678\) 3.30824 1.91001i 0.127052 0.0733536i
\(679\) −25.2092 43.6635i −0.967439 1.67565i
\(680\) 0 0
\(681\) 13.5869i 0.520652i
\(682\) −5.29975 3.05981i −0.202938 0.117166i
\(683\) −6.91828 3.99427i −0.264721 0.152837i 0.361765 0.932269i \(-0.382174\pi\)
−0.626486 + 0.779433i \(0.715507\pi\)
\(684\) 14.0869i 0.538625i
\(685\) 0 0
\(686\) −35.5996 61.6603i −1.35920 2.35420i
\(687\) 3.12672 1.80521i 0.119292 0.0688731i
\(688\) −17.6077 −0.671286
\(689\) 1.48262 2.49691i 0.0564834 0.0951246i
\(690\) 0 0
\(691\) 29.0446 16.7689i 1.10491 0.637919i 0.167402 0.985889i \(-0.446462\pi\)
0.937506 + 0.347970i \(0.113129\pi\)
\(692\) −12.2725 21.2566i −0.466530 0.808053i
\(693\) −9.82567 + 17.0186i −0.373246 + 0.646482i
\(694\) 4.03412i 0.153133i
\(695\) 0 0
\(696\) −12.7156 7.34135i −0.481983 0.278273i
\(697\) 57.2546i 2.16867i
\(698\) −18.1626 + 31.4586i −0.687465 + 1.19072i
\(699\) −14.3426 24.8420i −0.542486 0.939612i
\(700\) 0 0
\(701\) 5.96325 0.225229 0.112614 0.993639i \(-0.464078\pi\)
0.112614 + 0.993639i \(0.464078\pi\)
\(702\) 0.104146 8.51029i 0.00393075 0.321200i
\(703\) 17.8281 0.672399
\(704\) 44.0126 25.4107i 1.65879 0.957701i
\(705\) 0 0
\(706\) −22.1986 + 38.4490i −0.835454 + 1.44705i
\(707\) 25.7202i 0.967306i
\(708\) −34.7040 20.0363i −1.30425 0.753012i
\(709\) −29.4208 16.9861i −1.10492 0.637926i −0.167411 0.985887i \(-0.553541\pi\)
−0.937509 + 0.347961i \(0.886874\pi\)
\(710\) 0 0
\(711\) −2.11031 + 3.65517i −0.0791429 + 0.137080i
\(712\) −12.7156 22.0241i −0.476537 0.825386i
\(713\) −0.377877 + 0.218168i −0.0141516 + 0.00817044i
\(714\) −59.2566 −2.21762
\(715\) 0 0
\(716\) 78.2738 2.92523
\(717\) 1.73556 1.00203i 0.0648157 0.0374213i
\(718\) 20.1550 + 34.9094i 0.752177 + 1.30281i
\(719\) 12.0007 20.7858i 0.447549 0.775178i −0.550677 0.834719i \(-0.685630\pi\)
0.998226 + 0.0595406i \(0.0189636\pi\)
\(720\) 0 0
\(721\) 12.8013 + 7.39083i 0.476745 + 0.275249i
\(722\) 7.04692 + 4.06854i 0.262259 + 0.151415i
\(723\) 28.3087i 1.05281i
\(724\) −32.0414 + 55.4974i −1.19081 + 2.06255i
\(725\) 0 0
\(726\) 15.7626 9.10054i 0.585005 0.337753i
\(727\) −26.1991 −0.971672 −0.485836 0.874050i \(-0.661485\pi\)
−0.485836 + 0.874050i \(0.661485\pi\)
\(728\) −29.7444 53.0064i −1.10240 1.96455i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 30.1200 + 52.1693i 1.11403 + 1.92955i
\(732\) 22.1511 38.3668i 0.818728 1.41808i
\(733\) 49.2273i 1.81825i −0.416520 0.909127i \(-0.636750\pi\)
0.416520 0.909127i \(-0.363250\pi\)
\(734\) 21.2994 + 12.2972i 0.786176 + 0.453899i
\(735\) 0 0
\(736\) 2.62735i 0.0968455i
\(737\) −22.7764 + 39.4499i −0.838979 + 1.45315i
\(738\) 12.2293 + 21.1817i 0.450166 + 0.779711i
\(739\) 1.15468 0.666653i 0.0424755 0.0245232i −0.478612 0.878027i \(-0.658860\pi\)
0.521087 + 0.853503i \(0.325527\pi\)
\(740\) 0 0
\(741\) 12.2263 + 7.25977i 0.449144 + 0.266694i
\(742\) 8.63703 0.317075
\(743\) −25.8413 + 14.9195i −0.948025 + 0.547342i −0.892467 0.451113i \(-0.851027\pi\)
−0.0555581 + 0.998455i \(0.517694\pi\)
\(744\) 1.11198 + 1.92601i 0.0407673 + 0.0706111i
\(745\) 0 0
\(746\) 56.8412i 2.08110i
\(747\) 6.66530 + 3.84821i 0.243870 + 0.140799i
\(748\) 73.9383 + 42.6883i 2.70345 + 1.56084i
\(749\) 65.9451i 2.40958i
\(750\) 0 0
\(751\) −4.94574 8.56627i −0.180473 0.312588i 0.761569 0.648084i \(-0.224429\pi\)
−0.942042 + 0.335496i \(0.891096\pi\)
\(752\) −1.99299 + 1.15065i −0.0726770 + 0.0419601i
\(753\) 17.6856 0.644499
\(754\) −29.3687 + 16.4802i −1.06955 + 0.600173i
\(755\) 0 0
\(756\) 14.0536 8.11385i 0.511125 0.295098i
\(757\) 24.2455 + 41.9944i 0.881217 + 1.52631i 0.849989 + 0.526800i \(0.176608\pi\)
0.0312280 + 0.999512i \(0.490058\pi\)
\(758\) 10.4171 18.0430i 0.378366 0.655350i
\(759\) 3.14912i 0.114306i
\(760\) 0 0
\(761\) 21.6052 + 12.4738i 0.783188 + 0.452174i 0.837559 0.546347i \(-0.183982\pi\)
−0.0543707 + 0.998521i \(0.517315\pi\)
\(762\) 44.0492i 1.59574i
\(763\) 5.09538 8.82545i 0.184465 0.319503i
\(764\) −4.48360 7.76582i −0.162211 0.280957i
\(765\) 0 0
\(766\) 38.2748 1.38293
\(767\) −35.2749 + 19.7945i −1.27370 + 0.714736i
\(768\) −24.9297 −0.899573
\(769\) 7.28560 4.20634i 0.262725 0.151685i −0.362852 0.931847i \(-0.618197\pi\)
0.625577 + 0.780162i \(0.284864\pi\)
\(770\) 0 0
\(771\) 9.97787 17.2822i 0.359344 0.622402i
\(772\) 33.6621i 1.21153i
\(773\) −32.3114 18.6550i −1.16216 0.670973i −0.210339 0.977628i \(-0.567457\pi\)
−0.951821 + 0.306655i \(0.900790\pi\)
\(774\) −22.2862 12.8669i −0.801061 0.462493i
\(775\) 0 0
\(776\) 20.5904 35.6636i 0.739151 1.28025i
\(777\) −10.2687 17.7860i −0.368389 0.638069i
\(778\) 67.8406 39.1678i 2.43220 1.40423i
\(779\) −40.8630 −1.46407
\(780\) 0 0
\(781\) 4.48980 0.160658
\(782\) 8.22365 4.74793i 0.294077 0.169786i
\(783\) −1.97844 3.42676i −0.0707036 0.122462i
\(784\) 11.0145 19.0776i 0.393374 0.681344i
\(785\) 0 0
\(786\) 19.3343 + 11.1627i 0.689633 + 0.398160i
\(787\) 17.7335 + 10.2385i 0.632133 + 0.364962i 0.781578 0.623808i \(-0.214415\pi\)
−0.149445 + 0.988770i \(0.547749\pi\)
\(788\) 88.0918i 3.13814i
\(789\) −1.69847 + 2.94183i −0.0604670 + 0.104732i
\(790\) 0 0
\(791\) 6.36706 3.67603i 0.226387 0.130704i
\(792\) −16.0509 −0.570342
\(793\) −21.8837 38.9981i −0.777113 1.38486i
\(794\) 17.7041 0.628296
\(795\) 0 0
\(796\) −46.3522 80.2843i −1.64291 2.84560i
\(797\) 12.2660 21.2453i 0.434484 0.752548i −0.562770 0.826614i \(-0.690264\pi\)
0.997253 + 0.0740660i \(0.0235975\pi\)
\(798\) 42.2919i 1.49712i
\(799\) 6.81850 + 3.93666i 0.241221 + 0.139269i
\(800\) 0 0
\(801\) 6.85351i 0.242157i
\(802\) −4.02986 + 6.97992i −0.142299 + 0.246470i
\(803\) 13.9566 + 24.1736i 0.492519 + 0.853067i
\(804\) 32.5770 18.8083i 1.14890 0.663318i
\(805\) 0 0
\(806\) 5.10058 + 0.0624194i 0.179660 + 0.00219863i
\(807\) 15.3367 0.539878
\(808\) −18.1932 + 10.5039i −0.640036 + 0.369525i
\(809\) −8.38808 14.5286i −0.294909 0.510798i 0.680055 0.733161i \(-0.261956\pi\)
−0.974964 + 0.222364i \(0.928623\pi\)
\(810\) 0 0
\(811\) 50.7808i 1.78315i −0.452869 0.891577i \(-0.649600\pi\)
0.452869 0.891577i \(-0.350400\pi\)
\(812\) −55.6084 32.1055i −1.95147 1.12668i
\(813\) 15.8495 + 9.15070i 0.555865 + 0.320929i
\(814\) 46.1583i 1.61785i
\(815\) 0 0
\(816\) −4.46227 7.72888i −0.156211 0.270565i
\(817\) 37.2336 21.4969i 1.30264 0.752080i
\(818\) 34.4916 1.20597
\(819\) 0.200441 16.3790i 0.00700397 0.572328i
\(820\) 0 0
\(821\) 6.62188 3.82315i 0.231105 0.133429i −0.379977 0.924996i \(-0.624068\pi\)
0.611082 + 0.791567i \(0.290735\pi\)
\(822\) −2.70326 4.68219i −0.0942871 0.163310i
\(823\) 2.54563 4.40916i 0.0887351 0.153694i −0.818242 0.574874i \(-0.805051\pi\)
0.906977 + 0.421181i \(0.138384\pi\)
\(824\) 12.0734i 0.420596i
\(825\) 0 0
\(826\) −104.189 60.1535i −3.62520 2.09301i
\(827\) 47.2400i 1.64270i 0.570426 + 0.821349i \(0.306778\pi\)
−0.570426 + 0.821349i \(0.693222\pi\)
\(828\) −1.30024 + 2.25209i −0.0451865 + 0.0782654i
\(829\) 5.70266 + 9.87730i 0.198062 + 0.343053i 0.947900 0.318568i \(-0.103202\pi\)
−0.749838 + 0.661621i \(0.769869\pi\)
\(830\) 0 0
\(831\) 7.80083 0.270608
\(832\) −21.6282 + 36.4244i −0.749822 + 1.26279i
\(833\) −75.3662 −2.61128
\(834\) 17.1165 9.88224i 0.592698 0.342194i
\(835\) 0 0
\(836\) 30.4669 52.7703i 1.05372 1.82510i
\(837\) 0.599343i 0.0207163i
\(838\) −6.96103 4.01895i −0.240465 0.138832i
\(839\) 23.5533 + 13.5985i 0.813151 + 0.469473i 0.848049 0.529918i \(-0.177777\pi\)
−0.0348977 + 0.999391i \(0.511111\pi\)
\(840\) 0 0
\(841\) 6.67156 11.5555i 0.230054 0.398465i
\(842\) −17.5865 30.4608i −0.606072 1.04975i
\(843\) −20.1150 + 11.6134i −0.692796 + 0.399986i
\(844\) −41.2402 −1.41955
\(845\) 0 0
\(846\) −3.36340 −0.115636
\(847\) 30.3368 17.5150i 1.04239 0.601822i
\(848\) 0.650404 + 1.12653i 0.0223350 + 0.0386853i
\(849\) −3.92173 + 6.79264i −0.134593 + 0.233123i
\(850\) 0 0
\(851\) 2.85020 + 1.64556i 0.0977036 + 0.0564092i
\(852\) −3.21087 1.85379i −0.110002 0.0635100i
\(853\) 29.5962i 1.01335i 0.862136 + 0.506677i \(0.169126\pi\)
−0.862136 + 0.506677i \(0.830874\pi\)
\(854\) 66.5025 115.186i 2.27567 3.94158i
\(855\) 0 0
\(856\) −46.6465 + 26.9314i −1.59434 + 0.920495i
\(857\) 23.3137 0.796382 0.398191 0.917302i \(-0.369638\pi\)
0.398191 + 0.917302i \(0.369638\pi\)
\(858\) −18.7961 + 31.6548i −0.641689 + 1.08068i
\(859\) 46.6719 1.59242 0.796212 0.605018i \(-0.206834\pi\)
0.796212 + 0.605018i \(0.206834\pi\)
\(860\) 0 0
\(861\) 23.5366 + 40.7666i 0.802125 + 1.38932i
\(862\) −6.54645 + 11.3388i −0.222973 + 0.386200i
\(863\) 52.3597i 1.78234i −0.453665 0.891172i \(-0.649884\pi\)
0.453665 0.891172i \(-0.350116\pi\)
\(864\) −3.12539 1.80444i −0.106328 0.0613884i
\(865\) 0 0
\(866\) 29.6514i 1.00759i
\(867\) −6.76647 + 11.7199i −0.229802 + 0.398028i
\(868\) 4.86298 + 8.42293i 0.165060 + 0.285893i
\(869\) 15.8107 9.12833i 0.536343 0.309658i
\(870\) 0 0
\(871\) 0.464632 37.9673i 0.0157435 1.28647i
\(872\) 8.32362 0.281873
\(873\) 9.61107 5.54895i 0.325285 0.187804i
\(874\) −3.38863 5.86928i −0.114622 0.198531i
\(875\) 0 0
\(876\) 23.0502i 0.778795i
\(877\) 13.6960 + 7.90738i 0.462480 + 0.267013i 0.713087 0.701076i \(-0.247297\pi\)
−0.250606 + 0.968089i \(0.580630\pi\)
\(878\) 60.4839 + 34.9204i 2.04123 + 1.17851i
\(879\) 10.2805i 0.346751i
\(880\) 0 0
\(881\) 21.4105 + 37.0841i 0.721338 + 1.24939i 0.960464 + 0.278406i \(0.0898059\pi\)
−0.239126 + 0.970989i \(0.576861\pi\)
\(882\) 27.8822 16.0978i 0.938844 0.542042i
\(883\) 18.5133 0.623024 0.311512 0.950242i \(-0.399165\pi\)
0.311512 + 0.950242i \(0.399165\pi\)
\(884\) −71.1595 0.870829i −2.39335 0.0292892i
\(885\) 0 0
\(886\) −60.7044 + 35.0477i −2.03941 + 1.17745i
\(887\) 16.6949 + 28.9164i 0.560560 + 0.970919i 0.997448 + 0.0714024i \(0.0227474\pi\)
−0.436888 + 0.899516i \(0.643919\pi\)
\(888\) 8.38732 14.5273i 0.281460 0.487503i
\(889\) 84.7775i 2.84335i
\(890\) 0 0
\(891\) −3.74607 2.16279i −0.125498 0.0724562i
\(892\) 29.0126i 0.971414i
\(893\) 2.80962 4.86641i 0.0940205 0.162848i
\(894\) 26.9779 + 46.7272i 0.902277 + 1.56279i
\(895\) 0 0
\(896\) −93.2045 −3.11374
\(897\) 1.28455 + 2.28914i 0.0428897 + 0.0764321i
\(898\) 26.0403 0.868977
\(899\) 2.05380 1.18576i 0.0684981 0.0395474i
\(900\) 0 0
\(901\) 2.22519 3.85413i 0.0741317 0.128400i
\(902\) 105.798i 3.52267i
\(903\) −42.8922 24.7638i −1.42736 0.824089i
\(904\) 5.20050 + 3.00251i 0.172966 + 0.0998620i
\(905\) 0 0
\(906\) 17.5870 30.4617i 0.584291 1.01202i
\(907\) −16.5197 28.6130i −0.548528 0.950078i −0.998376 0.0569728i \(-0.981855\pi\)
0.449848 0.893105i \(-0.351478\pi\)
\(908\) −42.0302 + 24.2661i −1.39482 + 0.805300i
\(909\) −5.66143 −0.187778
\(910\) 0 0
\(911\) −7.00701 −0.232153 −0.116076 0.993240i \(-0.537032\pi\)
−0.116076 + 0.993240i \(0.537032\pi\)
\(912\) −5.51616 + 3.18476i −0.182658 + 0.105458i
\(913\) −16.6458 28.8313i −0.550894 0.954176i
\(914\) −16.8020 + 29.1019i −0.555760 + 0.962604i
\(915\) 0 0
\(916\) 11.1686 + 6.44819i 0.369021 + 0.213054i
\(917\) 37.2110 + 21.4838i 1.22882 + 0.709458i
\(918\) 13.0434i 0.430495i
\(919\) −5.28827 + 9.15956i −0.174444 + 0.302146i −0.939969 0.341261i \(-0.889146\pi\)
0.765525 + 0.643406i \(0.222479\pi\)
\(920\) 0 0
\(921\) −29.2767 + 16.9029i −0.964701 + 0.556970i
\(922\) 52.7721 1.73796
\(923\) −3.26369 + 1.83141i −0.107426 + 0.0602818i
\(924\) −70.1943 −2.30922
\(925\) 0 0
\(926\) −35.3742 61.2698i −1.16247 2.01345i
\(927\) −1.62684 + 2.81777i −0.0534325 + 0.0925478i
\(928\) 14.2799i 0.468762i
\(929\) −12.6230 7.28788i −0.414147 0.239108i 0.278423 0.960459i \(-0.410188\pi\)
−0.692570 + 0.721351i \(0.743522\pi\)
\(930\) 0 0
\(931\) 53.7894i 1.76288i
\(932\) 51.2314 88.7354i 1.67814 2.90663i
\(933\) 0.143386 + 0.248351i 0.00469424 + 0.00813066i
\(934\) 35.4864 20.4881i 1.16115 0.670391i
\(935\) 0 0
\(936\) 11.6676 6.54724i 0.381367 0.214003i
\(937\) 2.03451 0.0664644 0.0332322 0.999448i \(-0.489420\pi\)
0.0332322 + 0.999448i \(0.489420\pi\)
\(938\) 97.8033 56.4668i 3.19339 1.84370i
\(939\) 13.9171 + 24.1051i 0.454166 + 0.786639i
\(940\) 0 0
\(941\) 15.6270i 0.509424i 0.967017 + 0.254712i \(0.0819807\pi\)
−0.967017 + 0.254712i \(0.918019\pi\)
\(942\) 1.01355 + 0.585173i 0.0330232 + 0.0190660i
\(943\) −6.53283 3.77173i −0.212738 0.122824i
\(944\) 18.1192i 0.589731i
\(945\) 0 0
\(946\) 55.6570 + 96.4008i 1.80957 + 3.13426i
\(947\) −30.4622 + 17.5874i −0.989890 + 0.571513i −0.905241 0.424898i \(-0.860310\pi\)
−0.0846485 + 0.996411i \(0.526977\pi\)
\(948\) −15.0760 −0.489646
\(949\) −20.0058 11.8791i −0.649416 0.385612i
\(950\) 0 0
\(951\) −20.4498 + 11.8067i −0.663130 + 0.382858i
\(952\) −46.5753 80.6707i −1.50951 2.61455i
\(953\) −1.59492 + 2.76248i −0.0516645 + 0.0894855i −0.890701 0.454589i \(-0.849786\pi\)
0.839037 + 0.544075i \(0.183119\pi\)
\(954\) 1.90115i 0.0615521i
\(955\) 0 0
\(956\) 6.19939 + 3.57922i 0.200503 + 0.115760i
\(957\) 17.1158i 0.553275i
\(958\) 12.0706 20.9069i 0.389983 0.675470i
\(959\) −5.20272 9.01138i −0.168005 0.290993i
\(960\) 0 0
\(961\) 30.6408 0.988413
\(962\) −18.8282 33.5531i −0.607047 1.08179i
\(963\) −14.5156 −0.467759
\(964\) 87.5710 50.5591i 2.82047 1.62840i
\(965\) 0 0
\(966\) −3.90362 + 6.76126i −0.125597 + 0.217540i
\(967\) 19.5885i 0.629925i −0.949104 0.314962i \(-0.898008\pi\)
0.949104 0.314962i \(-0.101992\pi\)
\(968\) 24.7786 + 14.3059i 0.796414 + 0.459810i
\(969\) 18.8721 + 10.8958i 0.606258 + 0.350023i
\(970\) 0 0
\(971\) 9.75194 16.8909i 0.312955 0.542053i −0.666046 0.745911i \(-0.732015\pi\)
0.979001 + 0.203857i \(0.0653479\pi\)
\(972\) 1.78599 + 3.09343i 0.0572857 + 0.0992218i
\(973\) 32.9427 19.0195i 1.05609 0.609736i
\(974\) −38.8842 −1.24593
\(975\) 0 0
\(976\) 20.0317 0.641198
\(977\) −9.84958 + 5.68666i −0.315116 + 0.181932i −0.649213 0.760606i \(-0.724902\pi\)
0.334098 + 0.942538i \(0.391568\pi\)
\(978\) −2.02888 3.51412i −0.0648763 0.112369i
\(979\) −14.8227 + 25.6737i −0.473736 + 0.820535i
\(980\) 0 0
\(981\) 1.94263 + 1.12158i 0.0620233 + 0.0358092i
\(982\) −58.4278 33.7333i −1.86451 1.07647i
\(983\) 29.0243i 0.925732i −0.886428 0.462866i \(-0.846821\pi\)
0.886428 0.462866i \(-0.153179\pi\)
\(984\) −19.2243 + 33.2974i −0.612847 + 1.06148i
\(985\) 0 0
\(986\) −44.6964 + 25.8055i −1.42342 + 0.821814i
\(987\) −6.47323 −0.206045
\(988\) −0.621517 + 50.7871i −0.0197731 + 1.61575i
\(989\) 7.93679 0.252375
\(990\) 0 0
\(991\) 5.12446 + 8.87583i 0.162784 + 0.281950i 0.935866 0.352356i \(-0.114619\pi\)
−0.773082 + 0.634306i \(0.781286\pi\)
\(992\) 1.08148 1.87318i 0.0343371 0.0594735i
\(993\) 5.21879i 0.165613i
\(994\) −9.63973 5.56550i −0.305754 0.176527i
\(995\) 0 0
\(996\) 27.4915i 0.871101i
\(997\) −7.24112 + 12.5420i −0.229328 + 0.397209i −0.957609 0.288070i \(-0.906986\pi\)
0.728281 + 0.685279i \(0.240320\pi\)
\(998\) −17.2916 29.9499i −0.547356 0.948048i
\(999\) 3.91499 2.26032i 0.123865 0.0715134i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bc.k.751.1 12
5.2 odd 4 975.2.w.k.49.2 24
5.3 odd 4 975.2.w.k.49.11 24
5.4 even 2 975.2.bc.l.751.6 yes 12
13.4 even 6 inner 975.2.bc.k.901.1 yes 12
65.4 even 6 975.2.bc.l.901.6 yes 12
65.17 odd 12 975.2.w.k.199.11 24
65.43 odd 12 975.2.w.k.199.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
975.2.w.k.49.2 24 5.2 odd 4
975.2.w.k.49.11 24 5.3 odd 4
975.2.w.k.199.2 24 65.43 odd 12
975.2.w.k.199.11 24 65.17 odd 12
975.2.bc.k.751.1 12 1.1 even 1 trivial
975.2.bc.k.901.1 yes 12 13.4 even 6 inner
975.2.bc.l.751.6 yes 12 5.4 even 2
975.2.bc.l.901.6 yes 12 65.4 even 6