Properties

Label 975.2.bc.c.901.1
Level $975$
Weight $2$
Character 975.901
Analytic conductor $7.785$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(751,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.751");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 975.901
Dual form 975.2.bc.c.751.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(1.50000 - 0.866025i) q^{7} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{4} +(1.50000 - 0.866025i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-3.00000 - 1.73205i) q^{11} +2.00000 q^{12} +(-3.50000 + 0.866025i) q^{13} +(-2.00000 + 3.46410i) q^{16} +(3.00000 - 1.73205i) q^{19} +1.73205i q^{21} +(-3.00000 + 5.19615i) q^{23} +1.00000 q^{27} +(-3.00000 - 1.73205i) q^{28} +(-3.00000 + 5.19615i) q^{29} +1.73205i q^{31} +(3.00000 - 1.73205i) q^{33} +(-1.00000 + 1.73205i) q^{36} +(1.00000 - 3.46410i) q^{39} +(-6.00000 - 3.46410i) q^{41} +(-0.500000 - 0.866025i) q^{43} +6.92820i q^{44} -3.46410i q^{47} +(-2.00000 - 3.46410i) q^{48} +(-2.00000 + 3.46410i) q^{49} +(5.00000 + 5.19615i) q^{52} -12.0000 q^{53} +3.46410i q^{57} +(-3.00000 + 1.73205i) q^{59} +(-0.500000 - 0.866025i) q^{61} +(-1.50000 - 0.866025i) q^{63} +8.00000 q^{64} +(-7.50000 - 4.33013i) q^{67} +(-3.00000 - 5.19615i) q^{69} +(-9.00000 + 5.19615i) q^{71} -1.73205i q^{73} +(-6.00000 - 3.46410i) q^{76} -6.00000 q^{77} -11.0000 q^{79} +(-0.500000 + 0.866025i) q^{81} +13.8564i q^{83} +(3.00000 - 1.73205i) q^{84} +(-3.00000 - 5.19615i) q^{87} +(6.00000 + 3.46410i) q^{89} +(-4.50000 + 4.33013i) q^{91} +12.0000 q^{92} +(-1.50000 - 0.866025i) q^{93} +(4.50000 - 2.59808i) q^{97} +3.46410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - 2 q^{4} + 3 q^{7} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} - 2 q^{4} + 3 q^{7} - q^{9} - 6 q^{11} + 4 q^{12} - 7 q^{13} - 4 q^{16} + 6 q^{19} - 6 q^{23} + 2 q^{27} - 6 q^{28} - 6 q^{29} + 6 q^{33} - 2 q^{36} + 2 q^{39} - 12 q^{41} - q^{43} - 4 q^{48} - 4 q^{49} + 10 q^{52} - 24 q^{53} - 6 q^{59} - q^{61} - 3 q^{63} + 16 q^{64} - 15 q^{67} - 6 q^{69} - 18 q^{71} - 12 q^{76} - 12 q^{77} - 22 q^{79} - q^{81} + 6 q^{84} - 6 q^{87} + 12 q^{89} - 9 q^{91} + 24 q^{92} - 3 q^{93} + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 0 0
\(6\) 0 0
\(7\) 1.50000 0.866025i 0.566947 0.327327i −0.188982 0.981981i \(-0.560519\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −3.00000 1.73205i −0.904534 0.522233i −0.0258656 0.999665i \(-0.508234\pi\)
−0.878668 + 0.477432i \(0.841568\pi\)
\(12\) 2.00000 0.577350
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) 3.00000 1.73205i 0.688247 0.397360i −0.114708 0.993399i \(-0.536593\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −3.00000 1.73205i −0.566947 0.327327i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i 0.987829 + 0.155543i \(0.0497126\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 3.00000 1.73205i 0.522233 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) −1.00000 + 1.73205i −0.166667 + 0.288675i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) 1.00000 3.46410i 0.160128 0.554700i
\(40\) 0 0
\(41\) −6.00000 3.46410i −0.937043 0.541002i −0.0480106 0.998847i \(-0.515288\pi\)
−0.889032 + 0.457845i \(0.848621\pi\)
\(42\) 0 0
\(43\) −0.500000 0.866025i −0.0762493 0.132068i 0.825380 0.564578i \(-0.190961\pi\)
−0.901629 + 0.432511i \(0.857628\pi\)
\(44\) 6.92820i 1.04447i
\(45\) 0 0
\(46\) 0 0
\(47\) 3.46410i 0.505291i −0.967559 0.252646i \(-0.918699\pi\)
0.967559 0.252646i \(-0.0813007\pi\)
\(48\) −2.00000 3.46410i −0.288675 0.500000i
\(49\) −2.00000 + 3.46410i −0.285714 + 0.494872i
\(50\) 0 0
\(51\) 0 0
\(52\) 5.00000 + 5.19615i 0.693375 + 0.720577i
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.46410i 0.458831i
\(58\) 0 0
\(59\) −3.00000 + 1.73205i −0.390567 + 0.225494i −0.682406 0.730974i \(-0.739066\pi\)
0.291839 + 0.956467i \(0.405733\pi\)
\(60\) 0 0
\(61\) −0.500000 0.866025i −0.0640184 0.110883i 0.832240 0.554416i \(-0.187058\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) −1.50000 0.866025i −0.188982 0.109109i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −7.50000 4.33013i −0.916271 0.529009i −0.0338274 0.999428i \(-0.510770\pi\)
−0.882443 + 0.470418i \(0.844103\pi\)
\(68\) 0 0
\(69\) −3.00000 5.19615i −0.361158 0.625543i
\(70\) 0 0
\(71\) −9.00000 + 5.19615i −1.06810 + 0.616670i −0.927663 0.373419i \(-0.878185\pi\)
−0.140441 + 0.990089i \(0.544852\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i −0.994850 0.101361i \(-0.967680\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −6.00000 3.46410i −0.688247 0.397360i
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 13.8564i 1.52094i 0.649374 + 0.760469i \(0.275031\pi\)
−0.649374 + 0.760469i \(0.724969\pi\)
\(84\) 3.00000 1.73205i 0.327327 0.188982i
\(85\) 0 0
\(86\) 0 0
\(87\) −3.00000 5.19615i −0.321634 0.557086i
\(88\) 0 0
\(89\) 6.00000 + 3.46410i 0.635999 + 0.367194i 0.783072 0.621932i \(-0.213652\pi\)
−0.147073 + 0.989126i \(0.546985\pi\)
\(90\) 0 0
\(91\) −4.50000 + 4.33013i −0.471728 + 0.453921i
\(92\) 12.0000 1.25109
\(93\) −1.50000 0.866025i −0.155543 0.0898027i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.50000 2.59808i 0.456906 0.263795i −0.253837 0.967247i \(-0.581693\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 3.46410i 0.348155i
\(100\) 0 0
\(101\) 9.00000 15.5885i 0.895533 1.55111i 0.0623905 0.998052i \(-0.480128\pi\)
0.833143 0.553058i \(-0.186539\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.00000 + 5.19615i −0.290021 + 0.502331i −0.973814 0.227345i \(-0.926996\pi\)
0.683793 + 0.729676i \(0.260329\pi\)
\(108\) −1.00000 1.73205i −0.0962250 0.166667i
\(109\) 15.5885i 1.49310i −0.665327 0.746552i \(-0.731708\pi\)
0.665327 0.746552i \(-0.268292\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 6.92820i 0.654654i
\(113\) 3.00000 + 5.19615i 0.282216 + 0.488813i 0.971930 0.235269i \(-0.0755971\pi\)
−0.689714 + 0.724082i \(0.742264\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.0000 1.11417
\(117\) 2.50000 + 2.59808i 0.231125 + 0.240192i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.500000 + 0.866025i 0.0454545 + 0.0787296i
\(122\) 0 0
\(123\) 6.00000 3.46410i 0.541002 0.312348i
\(124\) 3.00000 1.73205i 0.269408 0.155543i
\(125\) 0 0
\(126\) 0 0
\(127\) 6.50000 11.2583i 0.576782 0.999015i −0.419064 0.907957i \(-0.637642\pi\)
0.995846 0.0910585i \(-0.0290250\pi\)
\(128\) 0 0
\(129\) 1.00000 0.0880451
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) −6.00000 3.46410i −0.522233 0.301511i
\(133\) 3.00000 5.19615i 0.260133 0.450564i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) −2.50000 4.33013i −0.212047 0.367277i 0.740308 0.672268i \(-0.234680\pi\)
−0.952355 + 0.304991i \(0.901346\pi\)
\(140\) 0 0
\(141\) 3.00000 + 1.73205i 0.252646 + 0.145865i
\(142\) 0 0
\(143\) 12.0000 + 3.46410i 1.00349 + 0.289683i
\(144\) 4.00000 0.333333
\(145\) 0 0
\(146\) 0 0
\(147\) −2.00000 3.46410i −0.164957 0.285714i
\(148\) 0 0
\(149\) −6.00000 + 3.46410i −0.491539 + 0.283790i −0.725213 0.688525i \(-0.758259\pi\)
0.233674 + 0.972315i \(0.424925\pi\)
\(150\) 0 0
\(151\) 3.46410i 0.281905i −0.990016 0.140952i \(-0.954984\pi\)
0.990016 0.140952i \(-0.0450164\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −7.00000 + 1.73205i −0.560449 + 0.138675i
\(157\) −11.0000 −0.877896 −0.438948 0.898513i \(-0.644649\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 0 0
\(159\) 6.00000 10.3923i 0.475831 0.824163i
\(160\) 0 0
\(161\) 10.3923i 0.819028i
\(162\) 0 0
\(163\) 16.5000 9.52628i 1.29238 0.746156i 0.313304 0.949653i \(-0.398564\pi\)
0.979076 + 0.203497i \(0.0652307\pi\)
\(164\) 13.8564i 1.08200i
\(165\) 0 0
\(166\) 0 0
\(167\) 6.00000 + 3.46410i 0.464294 + 0.268060i 0.713848 0.700301i \(-0.246951\pi\)
−0.249554 + 0.968361i \(0.580284\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) −3.00000 1.73205i −0.229416 0.132453i
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 12.0000 6.92820i 0.904534 0.522233i
\(177\) 3.46410i 0.260378i
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 14.0000 1.04061 0.520306 0.853980i \(-0.325818\pi\)
0.520306 + 0.853980i \(0.325818\pi\)
\(182\) 0 0
\(183\) 1.00000 0.0739221
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −6.00000 + 3.46410i −0.437595 + 0.252646i
\(189\) 1.50000 0.866025i 0.109109 0.0629941i
\(190\) 0 0
\(191\) 9.00000 + 15.5885i 0.651217 + 1.12794i 0.982828 + 0.184525i \(0.0590746\pi\)
−0.331611 + 0.943416i \(0.607592\pi\)
\(192\) −4.00000 + 6.92820i −0.288675 + 0.500000i
\(193\) 13.5000 + 7.79423i 0.971751 + 0.561041i 0.899770 0.436365i \(-0.143734\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 8.00000 0.571429
\(197\) −12.0000 6.92820i −0.854965 0.493614i 0.00735824 0.999973i \(-0.497658\pi\)
−0.862323 + 0.506359i \(0.830991\pi\)
\(198\) 0 0
\(199\) −3.50000 6.06218i −0.248108 0.429736i 0.714893 0.699234i \(-0.246476\pi\)
−0.963001 + 0.269498i \(0.913142\pi\)
\(200\) 0 0
\(201\) 7.50000 4.33013i 0.529009 0.305424i
\(202\) 0 0
\(203\) 10.3923i 0.729397i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 4.00000 13.8564i 0.277350 0.960769i
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −6.50000 + 11.2583i −0.447478 + 0.775055i −0.998221 0.0596196i \(-0.981011\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 12.0000 + 20.7846i 0.824163 + 1.42749i
\(213\) 10.3923i 0.712069i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.50000 + 2.59808i 0.101827 + 0.176369i
\(218\) 0 0
\(219\) 1.50000 + 0.866025i 0.101361 + 0.0585206i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −15.0000 8.66025i −1.00447 0.579934i −0.0949052 0.995486i \(-0.530255\pi\)
−0.909569 + 0.415553i \(0.863588\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.0000 + 10.3923i −1.19470 + 0.689761i −0.959369 0.282153i \(-0.908951\pi\)
−0.235333 + 0.971915i \(0.575618\pi\)
\(228\) 6.00000 3.46410i 0.397360 0.229416i
\(229\) 27.7128i 1.83131i 0.401960 + 0.915657i \(0.368329\pi\)
−0.401960 + 0.915657i \(0.631671\pi\)
\(230\) 0 0
\(231\) 3.00000 5.19615i 0.197386 0.341882i
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.00000 + 3.46410i 0.390567 + 0.225494i
\(237\) 5.50000 9.52628i 0.357263 0.618798i
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 18.0000 10.3923i 1.15948 0.669427i 0.208302 0.978065i \(-0.433206\pi\)
0.951180 + 0.308637i \(0.0998729\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −1.00000 + 1.73205i −0.0640184 + 0.110883i
\(245\) 0 0
\(246\) 0 0
\(247\) −9.00000 + 8.66025i −0.572656 + 0.551039i
\(248\) 0 0
\(249\) −12.0000 6.92820i −0.760469 0.439057i
\(250\) 0 0
\(251\) −6.00000 10.3923i −0.378717 0.655956i 0.612159 0.790735i \(-0.290301\pi\)
−0.990876 + 0.134778i \(0.956968\pi\)
\(252\) 3.46410i 0.218218i
\(253\) 18.0000 10.3923i 1.13165 0.653359i
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 + 3.46410i −0.367194 + 0.212000i
\(268\) 17.3205i 1.05802i
\(269\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(270\) 0 0
\(271\) −4.50000 2.59808i −0.273356 0.157822i 0.357056 0.934083i \(-0.383781\pi\)
−0.630412 + 0.776261i \(0.717114\pi\)
\(272\) 0 0
\(273\) −1.50000 6.06218i −0.0907841 0.366900i
\(274\) 0 0
\(275\) 0 0
\(276\) −6.00000 + 10.3923i −0.361158 + 0.625543i
\(277\) −5.00000 8.66025i −0.300421 0.520344i 0.675810 0.737075i \(-0.263794\pi\)
−0.976231 + 0.216731i \(0.930460\pi\)
\(278\) 0 0
\(279\) 1.50000 0.866025i 0.0898027 0.0518476i
\(280\) 0 0
\(281\) 24.2487i 1.44656i −0.690557 0.723278i \(-0.742634\pi\)
0.690557 0.723278i \(-0.257366\pi\)
\(282\) 0 0
\(283\) −5.50000 + 9.52628i −0.326941 + 0.566279i −0.981903 0.189383i \(-0.939351\pi\)
0.654962 + 0.755662i \(0.272685\pi\)
\(284\) 18.0000 + 10.3923i 1.06810 + 0.616670i
\(285\) 0 0
\(286\) 0 0
\(287\) −12.0000 −0.708338
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 5.19615i 0.304604i
\(292\) −3.00000 + 1.73205i −0.175562 + 0.101361i
\(293\) 15.0000 8.66025i 0.876309 0.505937i 0.00686959 0.999976i \(-0.497813\pi\)
0.869440 + 0.494039i \(0.164480\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.00000 1.73205i −0.174078 0.100504i
\(298\) 0 0
\(299\) 6.00000 20.7846i 0.346989 1.20201i
\(300\) 0 0
\(301\) −1.50000 0.866025i −0.0864586 0.0499169i
\(302\) 0 0
\(303\) 9.00000 + 15.5885i 0.517036 + 0.895533i
\(304\) 13.8564i 0.794719i
\(305\) 0 0
\(306\) 0 0
\(307\) 1.73205i 0.0988534i 0.998778 + 0.0494267i \(0.0157394\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) 6.00000 + 10.3923i 0.341882 + 0.592157i
\(309\) −0.500000 + 0.866025i −0.0284440 + 0.0492665i
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) −13.0000 −0.734803 −0.367402 0.930062i \(-0.619753\pi\)
−0.367402 + 0.930062i \(0.619753\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 11.0000 + 19.0526i 0.618798 + 1.07179i
\(317\) 6.92820i 0.389127i −0.980890 0.194563i \(-0.937671\pi\)
0.980890 0.194563i \(-0.0623290\pi\)
\(318\) 0 0
\(319\) 18.0000 10.3923i 1.00781 0.581857i
\(320\) 0 0
\(321\) −3.00000 5.19615i −0.167444 0.290021i
\(322\) 0 0
\(323\) 0 0
\(324\) 2.00000 0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) 13.5000 + 7.79423i 0.746552 + 0.431022i
\(328\) 0 0
\(329\) −3.00000 5.19615i −0.165395 0.286473i
\(330\) 0 0
\(331\) 4.50000 2.59808i 0.247342 0.142803i −0.371204 0.928551i \(-0.621055\pi\)
0.618547 + 0.785748i \(0.287722\pi\)
\(332\) 24.0000 13.8564i 1.31717 0.760469i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −6.00000 3.46410i −0.327327 0.188982i
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 3.00000 5.19615i 0.162459 0.281387i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.0000 20.7846i −0.644194 1.11578i −0.984487 0.175457i \(-0.943860\pi\)
0.340293 0.940319i \(-0.389474\pi\)
\(348\) −6.00000 + 10.3923i −0.321634 + 0.557086i
\(349\) −16.5000 9.52628i −0.883225 0.509930i −0.0115044 0.999934i \(-0.503662\pi\)
−0.871720 + 0.490004i \(0.836995\pi\)
\(350\) 0 0
\(351\) −3.50000 + 0.866025i −0.186816 + 0.0462250i
\(352\) 0 0
\(353\) −9.00000 5.19615i −0.479022 0.276563i 0.240987 0.970528i \(-0.422529\pi\)
−0.720009 + 0.693965i \(0.755862\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 13.8564i 0.734388i
\(357\) 0 0
\(358\) 0 0
\(359\) 6.92820i 0.365657i 0.983145 + 0.182828i \(0.0585252\pi\)
−0.983145 + 0.182828i \(0.941475\pi\)
\(360\) 0 0
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) 0 0
\(363\) −1.00000 −0.0524864
\(364\) 12.0000 + 3.46410i 0.628971 + 0.181568i
\(365\) 0 0
\(366\) 0 0
\(367\) 8.50000 14.7224i 0.443696 0.768505i −0.554264 0.832341i \(-0.687000\pi\)
0.997960 + 0.0638362i \(0.0203335\pi\)
\(368\) −12.0000 20.7846i −0.625543 1.08347i
\(369\) 6.92820i 0.360668i
\(370\) 0 0
\(371\) −18.0000 + 10.3923i −0.934513 + 0.539542i
\(372\) 3.46410i 0.179605i
\(373\) −5.50000 9.52628i −0.284779 0.493252i 0.687776 0.725923i \(-0.258587\pi\)
−0.972556 + 0.232671i \(0.925254\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000 20.7846i 0.309016 1.07046i
\(378\) 0 0
\(379\) −19.5000 11.2583i −1.00165 0.578302i −0.0929123 0.995674i \(-0.529618\pi\)
−0.908735 + 0.417373i \(0.862951\pi\)
\(380\) 0 0
\(381\) 6.50000 + 11.2583i 0.333005 + 0.576782i
\(382\) 0 0
\(383\) −24.0000 + 13.8564i −1.22634 + 0.708029i −0.966263 0.257558i \(-0.917082\pi\)
−0.260080 + 0.965587i \(0.583749\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.500000 + 0.866025i −0.0254164 + 0.0440225i
\(388\) −9.00000 5.19615i −0.456906 0.263795i
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −3.00000 + 5.19615i −0.151330 + 0.262111i
\(394\) 0 0
\(395\) 0 0
\(396\) 6.00000 3.46410i 0.301511 0.174078i
\(397\) −13.5000 + 7.79423i −0.677546 + 0.391181i −0.798930 0.601424i \(-0.794600\pi\)
0.121384 + 0.992606i \(0.461267\pi\)
\(398\) 0 0
\(399\) 3.00000 + 5.19615i 0.150188 + 0.260133i
\(400\) 0 0
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) −1.50000 6.06218i −0.0747203 0.301979i
\(404\) −36.0000 −1.79107
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.50000 4.33013i 0.370851 0.214111i −0.302979 0.952997i \(-0.597981\pi\)
0.673830 + 0.738886i \(0.264648\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.00000 1.73205i −0.0492665 0.0853320i
\(413\) −3.00000 + 5.19615i −0.147620 + 0.255686i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) 6.00000 10.3923i 0.293119 0.507697i −0.681426 0.731887i \(-0.738640\pi\)
0.974546 + 0.224189i \(0.0719734\pi\)
\(420\) 0 0
\(421\) 12.1244i 0.590905i −0.955357 0.295452i \(-0.904530\pi\)
0.955357 0.295452i \(-0.0954704\pi\)
\(422\) 0 0
\(423\) −3.00000 + 1.73205i −0.145865 + 0.0842152i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.50000 0.866025i −0.0725901 0.0419099i
\(428\) 12.0000 0.580042
\(429\) −9.00000 + 8.66025i −0.434524 + 0.418121i
\(430\) 0 0
\(431\) 18.0000 + 10.3923i 0.867029 + 0.500580i 0.866360 0.499420i \(-0.166454\pi\)
0.000669521 1.00000i \(0.499787\pi\)
\(432\) −2.00000 + 3.46410i −0.0962250 + 0.166667i
\(433\) −11.5000 19.9186i −0.552655 0.957226i −0.998082 0.0619079i \(-0.980282\pi\)
0.445427 0.895318i \(-0.353052\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −27.0000 + 15.5885i −1.29307 + 0.746552i
\(437\) 20.7846i 0.994263i
\(438\) 0 0
\(439\) −17.5000 + 30.3109i −0.835229 + 1.44666i 0.0586141 + 0.998281i \(0.481332\pi\)
−0.893843 + 0.448379i \(0.852001\pi\)
\(440\) 0 0
\(441\) 4.00000 0.190476
\(442\) 0 0
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.92820i 0.327693i
\(448\) 12.0000 6.92820i 0.566947 0.327327i
\(449\) 33.0000 19.0526i 1.55737 0.899146i 0.559859 0.828588i \(-0.310855\pi\)
0.997508 0.0705577i \(-0.0224779\pi\)
\(450\) 0 0
\(451\) 12.0000 + 20.7846i 0.565058 + 0.978709i
\(452\) 6.00000 10.3923i 0.282216 0.488813i
\(453\) 3.00000 + 1.73205i 0.140952 + 0.0813788i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 31.5000 + 18.1865i 1.47351 + 0.850730i 0.999555 0.0298202i \(-0.00949348\pi\)
0.473953 + 0.880550i \(0.342827\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.0000 + 20.7846i −1.67669 + 0.968036i −0.712938 + 0.701228i \(0.752636\pi\)
−0.963750 + 0.266808i \(0.914031\pi\)
\(462\) 0 0
\(463\) 36.3731i 1.69040i 0.534450 + 0.845200i \(0.320519\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) −12.0000 20.7846i −0.557086 0.964901i
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) 2.00000 6.92820i 0.0924500 0.320256i
\(469\) −15.0000 −0.692636
\(470\) 0 0
\(471\) 5.50000 9.52628i 0.253427 0.438948i
\(472\) 0 0
\(473\) 3.46410i 0.159280i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 + 10.3923i 0.274721 + 0.475831i
\(478\) 0 0
\(479\) 30.0000 + 17.3205i 1.37073 + 0.791394i 0.991021 0.133710i \(-0.0426889\pi\)
0.379714 + 0.925104i \(0.376022\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −9.00000 5.19615i −0.409514 0.236433i
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) 21.0000 12.1244i 0.951601 0.549407i 0.0580230 0.998315i \(-0.481520\pi\)
0.893578 + 0.448908i \(0.148187\pi\)
\(488\) 0 0
\(489\) 19.0526i 0.861586i
\(490\) 0 0
\(491\) −3.00000 + 5.19615i −0.135388 + 0.234499i −0.925746 0.378147i \(-0.876561\pi\)
0.790358 + 0.612646i \(0.209895\pi\)
\(492\) −12.0000 6.92820i −0.541002 0.312348i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −6.00000 3.46410i −0.269408 0.155543i
\(497\) −9.00000 + 15.5885i −0.403705 + 0.699238i
\(498\) 0 0
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) −6.00000 + 3.46410i −0.268060 + 0.154765i
\(502\) 0 0
\(503\) −15.0000 25.9808i −0.668817 1.15842i −0.978235 0.207499i \(-0.933468\pi\)
0.309418 0.950926i \(-0.399866\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.500000 + 12.9904i −0.0222058 + 0.576923i
\(508\) −26.0000 −1.15356
\(509\) −15.0000 8.66025i −0.664863 0.383859i 0.129264 0.991610i \(-0.458738\pi\)
−0.794128 + 0.607751i \(0.792072\pi\)
\(510\) 0 0
\(511\) −1.50000 2.59808i −0.0663561 0.114932i
\(512\) 0 0
\(513\) 3.00000 1.73205i 0.132453 0.0764719i
\(514\) 0 0
\(515\) 0 0
\(516\) −1.00000 1.73205i −0.0440225 0.0762493i
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) 0 0
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −24.0000 −1.05146 −0.525730 0.850652i \(-0.676208\pi\)
−0.525730 + 0.850652i \(0.676208\pi\)
\(522\) 0 0
\(523\) −14.0000 + 24.2487i −0.612177 + 1.06032i 0.378695 + 0.925521i \(0.376373\pi\)
−0.990873 + 0.134801i \(0.956961\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 13.8564i 0.603023i
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 3.00000 + 1.73205i 0.130189 + 0.0751646i
\(532\) −12.0000 −0.520266
\(533\) 24.0000 + 6.92820i 1.03956 + 0.300094i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −6.00000 10.3923i −0.258919 0.448461i
\(538\) 0 0
\(539\) 12.0000 6.92820i 0.516877 0.298419i
\(540\) 0 0
\(541\) 29.4449i 1.26593i −0.774179 0.632967i \(-0.781837\pi\)
0.774179 0.632967i \(-0.218163\pi\)
\(542\) 0 0
\(543\) −7.00000 + 12.1244i −0.300399 + 0.520306i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 19.0000 0.812381 0.406191 0.913788i \(-0.366857\pi\)
0.406191 + 0.913788i \(0.366857\pi\)
\(548\) 0 0
\(549\) −0.500000 + 0.866025i −0.0213395 + 0.0369611i
\(550\) 0 0
\(551\) 20.7846i 0.885454i
\(552\) 0 0
\(553\) −16.5000 + 9.52628i −0.701651 + 0.405099i
\(554\) 0 0
\(555\) 0 0
\(556\) −5.00000 + 8.66025i −0.212047 + 0.367277i
\(557\) 24.0000 + 13.8564i 1.01691 + 0.587115i 0.913208 0.407493i \(-0.133597\pi\)
0.103704 + 0.994608i \(0.466930\pi\)
\(558\) 0 0
\(559\) 2.50000 + 2.59808i 0.105739 + 0.109887i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.0000 36.3731i −0.885044 1.53294i −0.845663 0.533718i \(-0.820794\pi\)
−0.0393818 0.999224i \(-0.512539\pi\)
\(564\) 6.92820i 0.291730i
\(565\) 0 0
\(566\) 0 0
\(567\) 1.73205i 0.0727393i
\(568\) 0 0
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) 0 0
\(571\) −44.0000 −1.84134 −0.920671 0.390339i \(-0.872358\pi\)
−0.920671 + 0.390339i \(0.872358\pi\)
\(572\) −6.00000 24.2487i −0.250873 1.01389i
\(573\) −18.0000 −0.751961
\(574\) 0 0
\(575\) 0 0
\(576\) −4.00000 6.92820i −0.166667 0.288675i
\(577\) 34.6410i 1.44212i 0.692870 + 0.721062i \(0.256346\pi\)
−0.692870 + 0.721062i \(0.743654\pi\)
\(578\) 0 0
\(579\) −13.5000 + 7.79423i −0.561041 + 0.323917i
\(580\) 0 0
\(581\) 12.0000 + 20.7846i 0.497844 + 0.862291i
\(582\) 0 0
\(583\) 36.0000 + 20.7846i 1.49097 + 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.0000 + 15.5885i 1.11441 + 0.643404i 0.939968 0.341263i \(-0.110855\pi\)
0.174441 + 0.984668i \(0.444188\pi\)
\(588\) −4.00000 + 6.92820i −0.164957 + 0.285714i
\(589\) 3.00000 + 5.19615i 0.123613 + 0.214104i
\(590\) 0 0
\(591\) 12.0000 6.92820i 0.493614 0.284988i
\(592\) 0 0
\(593\) 3.46410i 0.142254i −0.997467 0.0711268i \(-0.977341\pi\)
0.997467 0.0711268i \(-0.0226595\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 12.0000 + 6.92820i 0.491539 + 0.283790i
\(597\) 7.00000 0.286491
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 13.0000 22.5167i 0.530281 0.918474i −0.469095 0.883148i \(-0.655420\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0 0
\(603\) 8.66025i 0.352673i
\(604\) −6.00000 + 3.46410i −0.244137 + 0.140952i
\(605\) 0 0
\(606\) 0 0
\(607\) 4.00000 + 6.92820i 0.162355 + 0.281207i 0.935713 0.352763i \(-0.114758\pi\)
−0.773358 + 0.633970i \(0.781424\pi\)
\(608\) 0 0
\(609\) −9.00000 5.19615i −0.364698 0.210559i
\(610\) 0 0
\(611\) 3.00000 + 12.1244i 0.121367 + 0.490499i
\(612\) 0 0
\(613\) −7.50000 4.33013i −0.302922 0.174892i 0.340833 0.940124i \(-0.389291\pi\)
−0.643755 + 0.765232i \(0.722624\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.00000 5.19615i 0.362326 0.209189i −0.307774 0.951459i \(-0.599584\pi\)
0.670101 + 0.742270i \(0.266251\pi\)
\(618\) 0 0
\(619\) 25.9808i 1.04425i 0.852867 + 0.522127i \(0.174861\pi\)
−0.852867 + 0.522127i \(0.825139\pi\)
\(620\) 0 0
\(621\) −3.00000 + 5.19615i −0.120386 + 0.208514i
\(622\) 0 0
\(623\) 12.0000 0.480770
\(624\) 10.0000 + 10.3923i 0.400320 + 0.416025i
\(625\) 0 0
\(626\) 0 0
\(627\) 6.00000 10.3923i 0.239617 0.415029i
\(628\) 11.0000 + 19.0526i 0.438948 + 0.760280i
\(629\) 0 0
\(630\) 0 0
\(631\) 1.50000 0.866025i 0.0597141 0.0344759i −0.469846 0.882749i \(-0.655690\pi\)
0.529560 + 0.848273i \(0.322357\pi\)
\(632\) 0 0
\(633\) −6.50000 11.2583i −0.258352 0.447478i
\(634\) 0 0
\(635\) 0 0
\(636\) −24.0000 −0.951662
\(637\) 4.00000 13.8564i 0.158486 0.549011i
\(638\) 0 0
\(639\) 9.00000 + 5.19615i 0.356034 + 0.205557i
\(640\) 0 0
\(641\) −9.00000 15.5885i −0.355479 0.615707i 0.631721 0.775196i \(-0.282349\pi\)
−0.987200 + 0.159489i \(0.949015\pi\)
\(642\) 0 0
\(643\) −16.5000 + 9.52628i −0.650696 + 0.375680i −0.788723 0.614749i \(-0.789257\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 18.0000 10.3923i 0.709299 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) −9.00000 + 15.5885i −0.353827 + 0.612845i −0.986916 0.161233i \(-0.948453\pi\)
0.633090 + 0.774078i \(0.281786\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) −3.00000 −0.117579
\(652\) −33.0000 19.0526i −1.29238 0.746156i
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 24.0000 13.8564i 0.937043 0.541002i
\(657\) −1.50000 + 0.866025i −0.0585206 + 0.0337869i
\(658\) 0 0
\(659\) −24.0000 41.5692i −0.934907 1.61931i −0.774799 0.632207i \(-0.782149\pi\)
−0.160108 0.987099i \(-0.551184\pi\)
\(660\) 0 0
\(661\) −22.5000 12.9904i −0.875149 0.505267i −0.00609283 0.999981i \(-0.501939\pi\)
−0.869056 + 0.494714i \(0.835273\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −18.0000 31.1769i −0.696963 1.20717i
\(668\) 13.8564i 0.536120i
\(669\) 15.0000 8.66025i 0.579934 0.334825i
\(670\) 0 0
\(671\) 3.46410i 0.133730i
\(672\) 0 0
\(673\) −0.500000 + 0.866025i −0.0192736 + 0.0333828i −0.875501 0.483216i \(-0.839469\pi\)
0.856228 + 0.516599i \(0.172802\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −22.0000 13.8564i −0.846154 0.532939i
\(677\) −48.0000 −1.84479 −0.922395 0.386248i \(-0.873771\pi\)
−0.922395 + 0.386248i \(0.873771\pi\)
\(678\) 0 0
\(679\) 4.50000 7.79423i 0.172694 0.299115i
\(680\) 0 0
\(681\) 20.7846i 0.796468i
\(682\) 0 0
\(683\) −21.0000 + 12.1244i −0.803543 + 0.463926i −0.844708 0.535227i \(-0.820226\pi\)
0.0411658 + 0.999152i \(0.486893\pi\)
\(684\) 6.92820i 0.264906i
\(685\) 0 0
\(686\) 0 0
\(687\) −24.0000 13.8564i −0.915657 0.528655i
\(688\) 4.00000 0.152499
\(689\) 42.0000 10.3923i 1.60007 0.395915i
\(690\) 0 0
\(691\) 37.5000 + 21.6506i 1.42657 + 0.823629i 0.996848 0.0793336i \(-0.0252792\pi\)
0.429719 + 0.902963i \(0.358613\pi\)
\(692\) −6.00000 + 10.3923i −0.228086 + 0.395056i
\(693\) 3.00000 + 5.19615i 0.113961 + 0.197386i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −9.00000 + 15.5885i −0.340411 + 0.589610i
\(700\) 0 0
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −24.0000 13.8564i −0.904534 0.522233i
\(705\) 0 0
\(706\) 0 0
\(707\) 31.1769i 1.17253i
\(708\) −6.00000 + 3.46410i −0.225494 + 0.130189i
\(709\) −16.5000 + 9.52628i −0.619671 + 0.357767i −0.776741 0.629821i \(-0.783128\pi\)
0.157070 + 0.987587i \(0.449795\pi\)
\(710\) 0 0
\(711\) 5.50000 + 9.52628i 0.206266 + 0.357263i
\(712\) 0 0
\(713\) −9.00000 5.19615i −0.337053 0.194597i
\(714\) 0 0
\(715\) 0 0
\(716\) 24.0000 0.896922
\(717\) 0 0
\(718\) 0 0
\(719\) 3.00000 + 5.19615i 0.111881 + 0.193784i 0.916529 0.399969i \(-0.130979\pi\)
−0.804648 + 0.593753i \(0.797646\pi\)
\(720\) 0 0
\(721\) 1.50000 0.866025i 0.0558629 0.0322525i
\(722\) 0 0
\(723\) 20.7846i 0.772988i
\(724\) −14.0000 24.2487i −0.520306 0.901196i
\(725\) 0 0
\(726\) 0 0
\(727\) 35.0000 1.29808 0.649039 0.760755i \(-0.275171\pi\)
0.649039 + 0.760755i \(0.275171\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) −1.00000 1.73205i −0.0369611 0.0640184i
\(733\) 39.8372i 1.47142i −0.677297 0.735710i \(-0.736849\pi\)
0.677297 0.735710i \(-0.263151\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0000 + 25.9808i 0.552532 + 0.957014i
\(738\) 0 0
\(739\) 39.0000 + 22.5167i 1.43464 + 0.828289i 0.997470 0.0710909i \(-0.0226481\pi\)
0.437168 + 0.899380i \(0.355981\pi\)
\(740\) 0 0
\(741\) −3.00000 12.1244i −0.110208 0.445399i
\(742\) 0 0
\(743\) 9.00000 + 5.19615i 0.330178 + 0.190628i 0.655920 0.754830i \(-0.272281\pi\)
−0.325742 + 0.945459i \(0.605614\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.0000 6.92820i 0.439057 0.253490i
\(748\) 0 0
\(749\) 10.3923i 0.379727i
\(750\) 0 0
\(751\) −4.00000 + 6.92820i −0.145962 + 0.252814i −0.929731 0.368238i \(-0.879961\pi\)
0.783769 + 0.621052i \(0.213294\pi\)
\(752\) 12.0000 + 6.92820i 0.437595 + 0.252646i
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) −3.00000 1.73205i −0.109109 0.0629941i
\(757\) 17.0000 29.4449i 0.617876 1.07019i −0.371997 0.928234i \(-0.621327\pi\)
0.989873 0.141958i \(-0.0453398\pi\)
\(758\) 0 0
\(759\) 20.7846i 0.754434i
\(760\) 0 0
\(761\) −18.0000 + 10.3923i −0.652499 + 0.376721i −0.789413 0.613862i \(-0.789615\pi\)
0.136914 + 0.990583i \(0.456282\pi\)
\(762\) 0 0
\(763\) −13.5000 23.3827i −0.488733 0.846510i
\(764\) 18.0000 31.1769i 0.651217 1.12794i
\(765\) 0 0
\(766\) 0 0
\(767\) 9.00000 8.66025i 0.324971 0.312704i
\(768\) 16.0000 0.577350
\(769\) −6.00000 3.46410i −0.216366 0.124919i 0.387901 0.921701i \(-0.373200\pi\)
−0.604266 + 0.796782i \(0.706534\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 31.1769i 1.12208i
\(773\) 45.0000 25.9808i 1.61854 0.934463i 0.631239 0.775589i \(-0.282547\pi\)
0.987299 0.158874i \(-0.0507865\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) −3.00000 + 5.19615i −0.107211 + 0.185695i
\(784\) −8.00000 13.8564i −0.285714 0.494872i
\(785\) 0 0
\(786\) 0 0
\(787\) −28.5000 + 16.4545i −1.01592 + 0.586539i −0.912918 0.408143i \(-0.866177\pi\)
−0.102997 + 0.994682i \(0.532843\pi\)
\(788\) 27.7128i 0.987228i
\(789\) 6.00000 +