Properties

Label 975.2.bc
Level $975$
Weight $2$
Character orbit 975.bc
Rep. character $\chi_{975}(751,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $90$
Newform subspaces $14$
Sturm bound $280$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 14 \)
Sturm bound: \(280\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(975, [\chi])\).

Total New Old
Modular forms 304 90 214
Cusp forms 256 90 166
Eisenstein series 48 0 48

Trace form

\( 90 q + q^{3} + 46 q^{4} - 3 q^{7} - 45 q^{9} + O(q^{10}) \) \( 90 q + q^{3} + 46 q^{4} - 3 q^{7} - 45 q^{9} + 18 q^{11} + 12 q^{12} - 5 q^{13} + 16 q^{14} - 36 q^{16} + 12 q^{17} - 24 q^{19} - 12 q^{22} - 2 q^{23} + 52 q^{26} - 2 q^{27} + 6 q^{28} + 18 q^{29} - 60 q^{32} + 6 q^{33} + 46 q^{36} + 12 q^{37} - 8 q^{39} - 48 q^{41} + 20 q^{42} - 19 q^{43} - 84 q^{46} + 20 q^{48} + 74 q^{49} - 16 q^{51} - 26 q^{52} + 8 q^{53} + 4 q^{56} + 24 q^{58} + 54 q^{59} - 37 q^{61} + 52 q^{62} + 3 q^{63} - 80 q^{64} + 32 q^{66} + 15 q^{67} - 24 q^{68} + 6 q^{69} - 42 q^{71} - 4 q^{74} - 48 q^{76} - 52 q^{77} + 8 q^{78} + 42 q^{79} - 45 q^{81} + 16 q^{82} + 30 q^{84} + 10 q^{87} - 8 q^{88} - 84 q^{89} - 39 q^{91} + 16 q^{92} + 3 q^{93} - 40 q^{94} + 27 q^{97} + 96 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(975, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
975.2.bc.a 975.bc 13.e $2$ $7.785$ \(\Q(\sqrt{-3}) \) None 975.2.bc.a \(-3\) \(-1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
975.2.bc.b 975.bc 13.e $2$ $7.785$ \(\Q(\sqrt{-3}) \) None 975.2.bc.b \(-3\) \(1\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
975.2.bc.c 975.bc 13.e $2$ $7.785$ \(\Q(\sqrt{-3}) \) None 39.2.j.a \(0\) \(-1\) \(0\) \(3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+\zeta_{6})q^{3}-2\zeta_{6}q^{4}+(2-\zeta_{6})q^{7}+\cdots\)
975.2.bc.d 975.bc 13.e $2$ $7.785$ \(\Q(\sqrt{-3}) \) None 975.2.bc.d \(0\) \(-1\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+\zeta_{6})q^{3}-2\zeta_{6}q^{4}+(4-2\zeta_{6})q^{7}+\cdots\)
975.2.bc.e 975.bc 13.e $2$ $7.785$ \(\Q(\sqrt{-3}) \) None 975.2.bc.d \(0\) \(1\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\zeta_{6})q^{3}-2\zeta_{6}q^{4}+(-4+2\zeta_{6})q^{7}+\cdots\)
975.2.bc.f 975.bc 13.e $2$ $7.785$ \(\Q(\sqrt{-3}) \) None 975.2.bc.b \(3\) \(-1\) \(0\) \(3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{2}+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
975.2.bc.g 975.bc 13.e $2$ $7.785$ \(\Q(\sqrt{-3}) \) None 975.2.bc.a \(3\) \(1\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\)
975.2.bc.h 975.bc 13.e $4$ $7.785$ \(\Q(\zeta_{12})\) None 195.2.bb.a \(6\) \(2\) \(0\) \(12\) $\mathrm{SU}(2)[C_{6}]$ \(q+(2-\zeta_{12}-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+\zeta_{12}^{2}q^{3}+\cdots\)
975.2.bc.i 975.bc 13.e $8$ $7.785$ 8.0.56070144.2 None 195.2.bb.c \(-6\) \(4\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-\beta _{2}+\beta _{5}+\beta _{6})q^{2}+\beta _{6}q^{3}+\cdots\)
975.2.bc.j 975.bc 13.e $8$ $7.785$ 8.0.191102976.5 None 195.2.bb.b \(0\) \(-4\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{5}-\beta _{6})q^{2}-\beta _{1}q^{3}+(1-\beta _{1}+\cdots)q^{4}+\cdots\)
975.2.bc.k 975.bc 13.e $12$ $7.785$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 975.2.bc.k \(0\) \(-6\) \(0\) \(3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{1}-\beta _{3})q^{2}+\beta _{6}q^{3}+(1-\beta _{2}+\beta _{6}+\cdots)q^{4}+\cdots\)
975.2.bc.l 975.bc 13.e $12$ $7.785$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 975.2.bc.k \(0\) \(6\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{2}+(1+\beta _{6})q^{3}+(-\beta _{6}-\beta _{10}+\cdots)q^{4}+\cdots\)
975.2.bc.m 975.bc 13.e $16$ $7.785$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 195.2.v.a \(0\) \(-8\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}-\beta _{5})q^{2}+(-1-\beta _{3})q^{3}+(-\beta _{3}+\cdots)q^{4}+\cdots\)
975.2.bc.n 975.bc 13.e $16$ $7.785$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 195.2.v.a \(0\) \(8\) \(0\) \(6\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{5}q^{2}-\beta _{3}q^{3}+(1-\beta _{2}+\beta _{3}+\beta _{13}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(975, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(975, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 2}\)