Properties

Label 975.2.bb.k.874.4
Level $975$
Weight $2$
Character 975.874
Analytic conductor $7.785$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(724,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.724");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 15x^{10} + 90x^{8} - 247x^{6} + 270x^{4} + 21x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 874.4
Root \(1.75780 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 975.874
Dual form 975.2.bb.k.724.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.294342 - 0.169938i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.942242 + 1.63201i) q^{4} +(-0.169938 + 0.294342i) q^{6} +(0.571683 + 0.330062i) q^{7} +1.32025i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.294342 - 0.169938i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.942242 + 1.63201i) q^{4} +(-0.169938 + 0.294342i) q^{6} +(0.571683 + 0.330062i) q^{7} +1.32025i q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.339877 - 0.588684i) q^{11} -1.88448i q^{12} +(3.04397 + 1.93243i) q^{13} +0.224361 q^{14} +(-1.66012 - 2.87542i) q^{16} +(6.43378 + 3.71455i) q^{17} -0.339877i q^{18} +(0.0577581 - 0.100040i) q^{19} -0.660123 q^{21} +(-0.200080 - 0.115516i) q^{22} +(-6.72812 + 3.88448i) q^{23} +(-0.660123 - 1.14337i) q^{24} +(1.22436 + 0.0515075i) q^{26} +1.00000i q^{27} +(-1.07733 + 0.621996i) q^{28} +(2.77230 + 4.80177i) q^{29} -9.97370 q^{31} +(-3.26402 - 1.88448i) q^{32} +(0.588684 + 0.339877i) q^{33} +2.52498 q^{34} +(0.942242 + 1.63201i) q^{36} +(-8.46017 + 4.88448i) q^{37} -0.0392613i q^{38} +(-3.60236 - 0.151548i) q^{39} +(-2.11218 - 3.65840i) q^{41} +(-0.194302 + 0.112180i) q^{42} +(0.471643 + 0.272303i) q^{43} +1.28098 q^{44} +(-1.32025 + 2.28673i) q^{46} +5.01963i q^{47} +(2.87542 + 1.66012i) q^{48} +(-3.28212 - 5.68480i) q^{49} -7.42909 q^{51} +(-6.02189 + 3.14697i) q^{52} +0.679754i q^{53} +(0.169938 + 0.294342i) q^{54} +(-0.435763 + 0.754763i) q^{56} +0.115516i q^{57} +(1.63201 + 0.942242i) q^{58} +(1.11218 - 1.92635i) q^{59} +(2.10236 - 3.64140i) q^{61} +(-2.93568 + 1.69491i) q^{62} +(0.571683 - 0.330062i) q^{63} +5.35951 q^{64} +0.231033 q^{66} +(6.61108 - 3.81691i) q^{67} +(-12.1244 + 7.00000i) q^{68} +(3.88448 - 6.72812i) q^{69} +(-3.65679 + 6.33374i) q^{71} +(1.14337 + 0.660123i) q^{72} +8.01963i q^{73} +(-1.66012 + 2.87542i) q^{74} +(0.108844 + 0.188524i) q^{76} -0.448721i q^{77} +(-1.08608 + 0.567573i) q^{78} -9.97370 q^{79} +(-0.500000 - 0.866025i) q^{81} +(-1.24341 - 0.717881i) q^{82} +1.76897i q^{83} +(0.621996 - 1.07733i) q^{84} +0.185099 q^{86} +(-4.80177 - 2.77230i) q^{87} +(0.777208 - 0.448721i) q^{88} +(6.77230 + 11.7300i) q^{89} +(1.10236 + 2.10943i) q^{91} -14.6405i q^{92} +(8.63748 - 4.98685i) q^{93} +(0.853028 + 1.47749i) q^{94} +3.76897 q^{96} +(8.57721 + 4.95206i) q^{97} +(-1.93213 - 1.11552i) q^{98} -0.679754 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 12 q^{4} + 6 q^{9} - 48 q^{14} - 24 q^{16} + 24 q^{19} - 12 q^{21} - 12 q^{24} - 36 q^{26} + 12 q^{29} + 12 q^{31} - 12 q^{36} - 24 q^{39} + 48 q^{44} - 24 q^{46} - 12 q^{49} - 60 q^{56} - 12 q^{59} + 6 q^{61} + 48 q^{64} + 96 q^{66} + 24 q^{71} - 24 q^{74} - 96 q^{76} + 12 q^{79} - 6 q^{81} - 24 q^{84} - 24 q^{86} + 60 q^{89} - 6 q^{91} + 72 q^{94} - 48 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.294342 0.169938i 0.208131 0.120165i −0.392311 0.919832i \(-0.628324\pi\)
0.600443 + 0.799668i \(0.294991\pi\)
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) −0.942242 + 1.63201i −0.471121 + 0.816005i
\(5\) 0 0
\(6\) −0.169938 + 0.294342i −0.0693771 + 0.120165i
\(7\) 0.571683 + 0.330062i 0.216076 + 0.124752i 0.604132 0.796884i \(-0.293520\pi\)
−0.388056 + 0.921636i \(0.626853\pi\)
\(8\) 1.32025i 0.466778i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −0.339877 0.588684i −0.102477 0.177495i 0.810228 0.586115i \(-0.199343\pi\)
−0.912704 + 0.408620i \(0.866010\pi\)
\(12\) 1.88448i 0.544004i
\(13\) 3.04397 + 1.93243i 0.844244 + 0.535959i
\(14\) 0.224361 0.0599629
\(15\) 0 0
\(16\) −1.66012 2.87542i −0.415031 0.718854i
\(17\) 6.43378 + 3.71455i 1.56042 + 0.900910i 0.997214 + 0.0745938i \(0.0237660\pi\)
0.563207 + 0.826316i \(0.309567\pi\)
\(18\) 0.339877i 0.0801098i
\(19\) 0.0577581 0.100040i 0.0132506 0.0229508i −0.859324 0.511431i \(-0.829115\pi\)
0.872575 + 0.488481i \(0.162449\pi\)
\(20\) 0 0
\(21\) −0.660123 −0.144051
\(22\) −0.200080 0.115516i −0.0426572 0.0246282i
\(23\) −6.72812 + 3.88448i −1.40291 + 0.809971i −0.994690 0.102913i \(-0.967184\pi\)
−0.408220 + 0.912883i \(0.633850\pi\)
\(24\) −0.660123 1.14337i −0.134747 0.233389i
\(25\) 0 0
\(26\) 1.22436 + 0.0515075i 0.240117 + 0.0101015i
\(27\) 1.00000i 0.192450i
\(28\) −1.07733 + 0.621996i −0.203596 + 0.117546i
\(29\) 2.77230 + 4.80177i 0.514804 + 0.891666i 0.999852 + 0.0171792i \(0.00546857\pi\)
−0.485049 + 0.874487i \(0.661198\pi\)
\(30\) 0 0
\(31\) −9.97370 −1.79133 −0.895664 0.444730i \(-0.853299\pi\)
−0.895664 + 0.444730i \(0.853299\pi\)
\(32\) −3.26402 1.88448i −0.577003 0.333133i
\(33\) 0.588684 + 0.339877i 0.102477 + 0.0591650i
\(34\) 2.52498 0.433030
\(35\) 0 0
\(36\) 0.942242 + 1.63201i 0.157040 + 0.272002i
\(37\) −8.46017 + 4.88448i −1.39084 + 0.803004i −0.993409 0.114626i \(-0.963433\pi\)
−0.397435 + 0.917630i \(0.630100\pi\)
\(38\) 0.0392613i 0.00636903i
\(39\) −3.60236 0.151548i −0.576840 0.0242670i
\(40\) 0 0
\(41\) −2.11218 3.65840i −0.329867 0.571347i 0.652618 0.757687i \(-0.273671\pi\)
−0.982485 + 0.186340i \(0.940337\pi\)
\(42\) −0.194302 + 0.112180i −0.0299814 + 0.0173098i
\(43\) 0.471643 + 0.272303i 0.0719249 + 0.0415259i 0.535531 0.844515i \(-0.320111\pi\)
−0.463606 + 0.886041i \(0.653445\pi\)
\(44\) 1.28098 0.193116
\(45\) 0 0
\(46\) −1.32025 + 2.28673i −0.194660 + 0.337160i
\(47\) 5.01963i 0.732188i 0.930578 + 0.366094i \(0.119305\pi\)
−0.930578 + 0.366094i \(0.880695\pi\)
\(48\) 2.87542 + 1.66012i 0.415031 + 0.239618i
\(49\) −3.28212 5.68480i −0.468874 0.812114i
\(50\) 0 0
\(51\) −7.42909 −1.04028
\(52\) −6.02189 + 3.14697i −0.835086 + 0.436406i
\(53\) 0.679754i 0.0933714i 0.998910 + 0.0466857i \(0.0148659\pi\)
−0.998910 + 0.0466857i \(0.985134\pi\)
\(54\) 0.169938 + 0.294342i 0.0231257 + 0.0400549i
\(55\) 0 0
\(56\) −0.435763 + 0.754763i −0.0582312 + 0.100859i
\(57\) 0.115516i 0.0153005i
\(58\) 1.63201 + 0.942242i 0.214294 + 0.123722i
\(59\) 1.11218 1.92635i 0.144794 0.250790i −0.784502 0.620126i \(-0.787082\pi\)
0.929296 + 0.369336i \(0.120415\pi\)
\(60\) 0 0
\(61\) 2.10236 3.64140i 0.269180 0.466234i −0.699470 0.714662i \(-0.746581\pi\)
0.968650 + 0.248428i \(0.0799139\pi\)
\(62\) −2.93568 + 1.69491i −0.372832 + 0.215254i
\(63\) 0.571683 0.330062i 0.0720253 0.0415838i
\(64\) 5.35951 0.669938
\(65\) 0 0
\(66\) 0.231033 0.0284381
\(67\) 6.61108 3.81691i 0.807672 0.466310i −0.0384746 0.999260i \(-0.512250\pi\)
0.846147 + 0.532950i \(0.178917\pi\)
\(68\) −12.1244 + 7.00000i −1.47029 + 0.848875i
\(69\) 3.88448 6.72812i 0.467637 0.809971i
\(70\) 0 0
\(71\) −3.65679 + 6.33374i −0.433981 + 0.751677i −0.997212 0.0746227i \(-0.976225\pi\)
0.563231 + 0.826299i \(0.309558\pi\)
\(72\) 1.14337 + 0.660123i 0.134747 + 0.0777963i
\(73\) 8.01963i 0.938627i 0.883032 + 0.469313i \(0.155499\pi\)
−0.883032 + 0.469313i \(0.844501\pi\)
\(74\) −1.66012 + 2.87542i −0.192985 + 0.334261i
\(75\) 0 0
\(76\) 0.108844 + 0.188524i 0.0124853 + 0.0216252i
\(77\) 0.448721i 0.0511365i
\(78\) −1.08608 + 0.567573i −0.122974 + 0.0642650i
\(79\) −9.97370 −1.12213 −0.561064 0.827772i \(-0.689608\pi\)
−0.561064 + 0.827772i \(0.689608\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −1.24341 0.717881i −0.137311 0.0792767i
\(83\) 1.76897i 0.194169i 0.995276 + 0.0970847i \(0.0309518\pi\)
−0.995276 + 0.0970847i \(0.969048\pi\)
\(84\) 0.621996 1.07733i 0.0678653 0.117546i
\(85\) 0 0
\(86\) 0.185099 0.0199598
\(87\) −4.80177 2.77230i −0.514804 0.297222i
\(88\) 0.777208 0.448721i 0.0828506 0.0478338i
\(89\) 6.77230 + 11.7300i 0.717863 + 1.24337i 0.961845 + 0.273595i \(0.0882128\pi\)
−0.243982 + 0.969780i \(0.578454\pi\)
\(90\) 0 0
\(91\) 1.10236 + 2.10943i 0.115559 + 0.221129i
\(92\) 14.6405i 1.52638i
\(93\) 8.63748 4.98685i 0.895664 0.517112i
\(94\) 0.853028 + 1.47749i 0.0879831 + 0.152391i
\(95\) 0 0
\(96\) 3.76897 0.384669
\(97\) 8.57721 + 4.95206i 0.870884 + 0.502805i 0.867642 0.497190i \(-0.165635\pi\)
0.00324223 + 0.999995i \(0.498968\pi\)
\(98\) −1.93213 1.11552i −0.195175 0.112684i
\(99\) −0.679754 −0.0683178
\(100\) 0 0
\(101\) 4.67975 + 8.10557i 0.465653 + 0.806534i 0.999231 0.0392165i \(-0.0124862\pi\)
−0.533578 + 0.845751i \(0.679153\pi\)
\(102\) −2.18669 + 1.26249i −0.216515 + 0.125005i
\(103\) 4.50535i 0.443925i 0.975055 + 0.221962i \(0.0712462\pi\)
−0.975055 + 0.221962i \(0.928754\pi\)
\(104\) −2.55128 + 4.01878i −0.250173 + 0.394074i
\(105\) 0 0
\(106\) 0.115516 + 0.200080i 0.0112199 + 0.0194335i
\(107\) −0.494422 + 0.285455i −0.0477976 + 0.0275960i −0.523708 0.851898i \(-0.675452\pi\)
0.475911 + 0.879494i \(0.342119\pi\)
\(108\) −1.63201 0.942242i −0.157040 0.0906673i
\(109\) −15.4095 −1.47596 −0.737979 0.674823i \(-0.764220\pi\)
−0.737979 + 0.674823i \(0.764220\pi\)
\(110\) 0 0
\(111\) 4.88448 8.46017i 0.463615 0.803004i
\(112\) 2.19177i 0.207103i
\(113\) 4.60747 + 2.66012i 0.433434 + 0.250243i 0.700809 0.713349i \(-0.252823\pi\)
−0.267374 + 0.963593i \(0.586156\pi\)
\(114\) 0.0196307 + 0.0340013i 0.00183858 + 0.00318451i
\(115\) 0 0
\(116\) −10.4487 −0.970139
\(117\) 3.19551 1.66994i 0.295425 0.154386i
\(118\) 0.756009i 0.0695962i
\(119\) 2.45206 + 4.24709i 0.224780 + 0.389330i
\(120\) 0 0
\(121\) 5.26897 9.12612i 0.478997 0.829647i
\(122\) 1.42909i 0.129384i
\(123\) 3.65840 + 2.11218i 0.329867 + 0.190449i
\(124\) 9.39764 16.2772i 0.843933 1.46173i
\(125\) 0 0
\(126\) 0.112180 0.194302i 0.00999381 0.0173098i
\(127\) 10.4093 6.00982i 0.923676 0.533285i 0.0388704 0.999244i \(-0.487624\pi\)
0.884806 + 0.465959i \(0.154291\pi\)
\(128\) 8.10557 4.67975i 0.716438 0.413636i
\(129\) −0.544607 −0.0479500
\(130\) 0 0
\(131\) 10.9041 0.952697 0.476348 0.879257i \(-0.341960\pi\)
0.476348 + 0.879257i \(0.341960\pi\)
\(132\) −1.10937 + 0.640492i −0.0965579 + 0.0557477i
\(133\) 0.0660387 0.0381275i 0.00572629 0.00330607i
\(134\) 1.29728 2.24695i 0.112068 0.194107i
\(135\) 0 0
\(136\) −4.90411 + 8.49418i −0.420524 + 0.728370i
\(137\) 2.93568 + 1.69491i 0.250812 + 0.144806i 0.620136 0.784494i \(-0.287077\pi\)
−0.369324 + 0.929301i \(0.620411\pi\)
\(138\) 2.64049i 0.224774i
\(139\) 7.40411 12.8243i 0.628009 1.08774i −0.359942 0.932975i \(-0.617204\pi\)
0.987951 0.154768i \(-0.0494631\pi\)
\(140\) 0 0
\(141\) −2.50982 4.34713i −0.211365 0.366094i
\(142\) 2.48571i 0.208597i
\(143\) 0.103015 2.44872i 0.00861455 0.204772i
\(144\) −3.32025 −0.276687
\(145\) 0 0
\(146\) 1.36284 + 2.36051i 0.112790 + 0.195358i
\(147\) 5.68480 + 3.28212i 0.468874 + 0.270705i
\(148\) 18.4095i 1.51325i
\(149\) −8.54461 + 14.7997i −0.700001 + 1.21244i 0.268464 + 0.963290i \(0.413484\pi\)
−0.968465 + 0.249148i \(0.919849\pi\)
\(150\) 0 0
\(151\) 13.0130 1.05898 0.529490 0.848316i \(-0.322383\pi\)
0.529490 + 0.848316i \(0.322383\pi\)
\(152\) 0.132077 + 0.0762550i 0.0107129 + 0.00618510i
\(153\) 6.43378 3.71455i 0.520140 0.300303i
\(154\) −0.0762550 0.132077i −0.00614480 0.0106431i
\(155\) 0 0
\(156\) 3.64163 5.73630i 0.291563 0.459272i
\(157\) 0.775639i 0.0619028i 0.999521 + 0.0309514i \(0.00985370\pi\)
−0.999521 + 0.0309514i \(0.990146\pi\)
\(158\) −2.93568 + 1.69491i −0.233550 + 0.134840i
\(159\) −0.339877 0.588684i −0.0269540 0.0466857i
\(160\) 0 0
\(161\) −5.12847 −0.404180
\(162\) −0.294342 0.169938i −0.0231257 0.0133516i
\(163\) −10.5638 6.09903i −0.827423 0.477713i 0.0255466 0.999674i \(-0.491867\pi\)
−0.852969 + 0.521961i \(0.825201\pi\)
\(164\) 7.96074 0.621629
\(165\) 0 0
\(166\) 0.300616 + 0.520681i 0.0233323 + 0.0404127i
\(167\) 1.37745 0.795270i 0.106590 0.0615398i −0.445757 0.895154i \(-0.647066\pi\)
0.552347 + 0.833614i \(0.313732\pi\)
\(168\) 0.871525i 0.0672396i
\(169\) 5.53146 + 11.7645i 0.425497 + 0.904960i
\(170\) 0 0
\(171\) −0.0577581 0.100040i −0.00441688 0.00765025i
\(172\) −0.888804 + 0.513151i −0.0677707 + 0.0391274i
\(173\) −11.0412 6.37467i −0.839451 0.484657i 0.0176268 0.999845i \(-0.494389\pi\)
−0.857077 + 0.515188i \(0.827722\pi\)
\(174\) −1.88448 −0.142862
\(175\) 0 0
\(176\) −1.12847 + 1.95458i −0.0850620 + 0.147332i
\(177\) 2.22436i 0.167193i
\(178\) 3.98675 + 2.30175i 0.298819 + 0.172523i
\(179\) 8.88115 + 15.3826i 0.663808 + 1.14975i 0.979607 + 0.200923i \(0.0643942\pi\)
−0.315799 + 0.948826i \(0.602272\pi\)
\(180\) 0 0
\(181\) 7.02630 0.522261 0.261130 0.965304i \(-0.415905\pi\)
0.261130 + 0.965304i \(0.415905\pi\)
\(182\) 0.682946 + 0.433560i 0.0506233 + 0.0321376i
\(183\) 4.20473i 0.310823i
\(184\) −5.12847 8.88278i −0.378076 0.654847i
\(185\) 0 0
\(186\) 1.69491 2.93568i 0.124277 0.215254i
\(187\) 5.04995i 0.369289i
\(188\) −8.19209 4.72971i −0.597470 0.344949i
\(189\) −0.330062 + 0.571683i −0.0240084 + 0.0415838i
\(190\) 0 0
\(191\) 6.97703 12.0846i 0.504840 0.874409i −0.495144 0.868811i \(-0.664885\pi\)
0.999984 0.00559828i \(-0.00178200\pi\)
\(192\) −4.64147 + 2.67975i −0.334969 + 0.193395i
\(193\) 20.5675 11.8747i 1.48048 0.854757i 0.480728 0.876870i \(-0.340373\pi\)
0.999755 + 0.0221126i \(0.00703924\pi\)
\(194\) 3.36618 0.241678
\(195\) 0 0
\(196\) 12.3702 0.883586
\(197\) −13.6903 + 7.90411i −0.975395 + 0.563145i −0.900877 0.434075i \(-0.857075\pi\)
−0.0745186 + 0.997220i \(0.523742\pi\)
\(198\) −0.200080 + 0.115516i −0.0142191 + 0.00820939i
\(199\) 4.38448 7.59415i 0.310808 0.538335i −0.667730 0.744404i \(-0.732734\pi\)
0.978537 + 0.206069i \(0.0660671\pi\)
\(200\) 0 0
\(201\) −3.81691 + 6.61108i −0.269224 + 0.466310i
\(202\) 2.75490 + 1.59054i 0.193834 + 0.111910i
\(203\) 3.66012i 0.256890i
\(204\) 7.00000 12.1244i 0.490098 0.848875i
\(205\) 0 0
\(206\) 0.765631 + 1.32611i 0.0533441 + 0.0923946i
\(207\) 7.76897i 0.539981i
\(208\) 0.503175 11.9607i 0.0348889 0.829328i
\(209\) −0.0785226 −0.00543152
\(210\) 0 0
\(211\) −4.40411 7.62815i −0.303192 0.525143i 0.673665 0.739037i \(-0.264719\pi\)
−0.976857 + 0.213893i \(0.931386\pi\)
\(212\) −1.10937 0.640492i −0.0761915 0.0439892i
\(213\) 7.31357i 0.501118i
\(214\) −0.0970195 + 0.168043i −0.00663211 + 0.0114872i
\(215\) 0 0
\(216\) −1.32025 −0.0898314
\(217\) −5.70180 3.29193i −0.387063 0.223471i
\(218\) −4.53565 + 2.61866i −0.307193 + 0.177358i
\(219\) −4.00982 6.94520i −0.270958 0.469313i
\(220\) 0 0
\(221\) 12.4061 + 23.7398i 0.834526 + 1.59691i
\(222\) 3.32025i 0.222840i
\(223\) 8.69426 5.01963i 0.582210 0.336139i −0.179801 0.983703i \(-0.557545\pi\)
0.762011 + 0.647564i \(0.224212\pi\)
\(224\) −1.24399 2.15466i −0.0831177 0.143964i
\(225\) 0 0
\(226\) 1.80823 0.120282
\(227\) 1.04910 + 0.605701i 0.0696315 + 0.0402018i 0.534412 0.845224i \(-0.320533\pi\)
−0.464780 + 0.885426i \(0.653867\pi\)
\(228\) −0.188524 0.108844i −0.0124853 0.00720839i
\(229\) −19.2440 −1.27168 −0.635839 0.771821i \(-0.719346\pi\)
−0.635839 + 0.771821i \(0.719346\pi\)
\(230\) 0 0
\(231\) 0.224361 + 0.388604i 0.0147618 + 0.0255683i
\(232\) −6.33952 + 3.66012i −0.416210 + 0.240299i
\(233\) 23.9081i 1.56627i −0.621849 0.783137i \(-0.713618\pi\)
0.621849 0.783137i \(-0.286382\pi\)
\(234\) 0.656787 1.03457i 0.0429355 0.0676322i
\(235\) 0 0
\(236\) 2.09589 + 3.63018i 0.136431 + 0.236305i
\(237\) 8.63748 4.98685i 0.561064 0.323931i
\(238\) 1.44349 + 0.833398i 0.0935674 + 0.0540211i
\(239\) −18.6798 −1.20829 −0.604146 0.796873i \(-0.706486\pi\)
−0.604146 + 0.796873i \(0.706486\pi\)
\(240\) 0 0
\(241\) −3.05776 + 5.29619i −0.196968 + 0.341158i −0.947544 0.319626i \(-0.896443\pi\)
0.750576 + 0.660784i \(0.229776\pi\)
\(242\) 3.58160i 0.230234i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 3.96187 + 6.86216i 0.253633 + 0.439305i
\(245\) 0 0
\(246\) 1.43576 0.0915409
\(247\) 0.369134 0.192905i 0.0234874 0.0122743i
\(248\) 13.1677i 0.836152i
\(249\) −0.884484 1.53197i −0.0560519 0.0970847i
\(250\) 0 0
\(251\) −1.67975 + 2.90942i −0.106025 + 0.183641i −0.914157 0.405361i \(-0.867146\pi\)
0.808131 + 0.589002i \(0.200479\pi\)
\(252\) 1.24399i 0.0783641i
\(253\) 4.57347 + 2.64049i 0.287531 + 0.166006i
\(254\) 2.04260 3.53788i 0.128164 0.221986i
\(255\) 0 0
\(256\) −3.76897 + 6.52804i −0.235560 + 0.408003i
\(257\) 8.75452 5.05442i 0.546092 0.315286i −0.201452 0.979498i \(-0.564566\pi\)
0.747544 + 0.664212i \(0.231233\pi\)
\(258\) −0.160301 + 0.0925496i −0.00997988 + 0.00576189i
\(259\) −6.44872 −0.400704
\(260\) 0 0
\(261\) 5.54461 0.343203
\(262\) 3.20954 1.85303i 0.198286 0.114480i
\(263\) −19.5014 + 11.2592i −1.20251 + 0.694269i −0.961112 0.276157i \(-0.910939\pi\)
−0.241397 + 0.970426i \(0.577606\pi\)
\(264\) −0.448721 + 0.777208i −0.0276169 + 0.0478338i
\(265\) 0 0
\(266\) 0.0129587 0.0224450i 0.000794546 0.00137619i
\(267\) −11.7300 6.77230i −0.717863 0.414458i
\(268\) 14.3858i 0.878753i
\(269\) 4.24733 7.35659i 0.258964 0.448539i −0.707001 0.707213i \(-0.749952\pi\)
0.965965 + 0.258674i \(0.0832855\pi\)
\(270\) 0 0
\(271\) −4.68510 8.11483i −0.284600 0.492941i 0.687912 0.725794i \(-0.258527\pi\)
−0.972512 + 0.232853i \(0.925194\pi\)
\(272\) 24.6664i 1.49562i
\(273\) −2.00939 1.27564i −0.121614 0.0772052i
\(274\) 1.15212 0.0696024
\(275\) 0 0
\(276\) 7.32025 + 12.6790i 0.440627 + 0.763188i
\(277\) 0.622685 + 0.359508i 0.0374135 + 0.0216007i 0.518590 0.855023i \(-0.326457\pi\)
−0.481177 + 0.876624i \(0.659790\pi\)
\(278\) 5.03297i 0.301858i
\(279\) −4.98685 + 8.63748i −0.298555 + 0.517112i
\(280\) 0 0
\(281\) 1.54461 0.0921435 0.0460718 0.998938i \(-0.485330\pi\)
0.0460718 + 0.998938i \(0.485330\pi\)
\(282\) −1.47749 0.853028i −0.0879831 0.0507971i
\(283\) −15.6920 + 9.05977i −0.932791 + 0.538547i −0.887693 0.460435i \(-0.847693\pi\)
−0.0450980 + 0.998983i \(0.514360\pi\)
\(284\) −6.89116 11.9358i −0.408915 0.708261i
\(285\) 0 0
\(286\) −0.385810 0.738268i −0.0228134 0.0436547i
\(287\) 2.78860i 0.164606i
\(288\) −3.26402 + 1.88448i −0.192334 + 0.111044i
\(289\) 19.0957 + 33.0747i 1.12328 + 1.94557i
\(290\) 0 0
\(291\) −9.90411 −0.580589
\(292\) −13.0881 7.55643i −0.765924 0.442207i
\(293\) 26.4181 + 15.2525i 1.54336 + 0.891059i 0.998623 + 0.0524523i \(0.0167037\pi\)
0.544737 + 0.838607i \(0.316630\pi\)
\(294\) 2.23103 0.130116
\(295\) 0 0
\(296\) −6.44872 11.1695i −0.374824 0.649215i
\(297\) 0.588684 0.339877i 0.0341589 0.0197217i
\(298\) 5.80823i 0.336462i
\(299\) −27.9867 1.17737i −1.61851 0.0680890i
\(300\) 0 0
\(301\) 0.179754 + 0.311343i 0.0103608 + 0.0179455i
\(302\) 3.83026 2.21140i 0.220407 0.127252i
\(303\) −8.10557 4.67975i −0.465653 0.268845i
\(304\) −0.383543 −0.0219977
\(305\) 0 0
\(306\) 1.26249 2.18669i 0.0721716 0.125005i
\(307\) 4.77564i 0.272560i 0.990670 + 0.136280i \(0.0435147\pi\)
−0.990670 + 0.136280i \(0.956485\pi\)
\(308\) 0.732318 + 0.422804i 0.0417277 + 0.0240915i
\(309\) −2.25267 3.90174i −0.128150 0.221962i
\(310\) 0 0
\(311\) 30.5812 1.73410 0.867051 0.498220i \(-0.166013\pi\)
0.867051 + 0.498220i \(0.166013\pi\)
\(312\) 0.200080 4.75601i 0.0113273 0.269256i
\(313\) 26.7230i 1.51048i −0.655451 0.755238i \(-0.727521\pi\)
0.655451 0.755238i \(-0.272479\pi\)
\(314\) 0.131811 + 0.228303i 0.00743852 + 0.0128839i
\(315\) 0 0
\(316\) 9.39764 16.2772i 0.528658 0.915663i
\(317\) 20.6271i 1.15854i 0.815137 + 0.579268i \(0.196662\pi\)
−0.815137 + 0.579268i \(0.803338\pi\)
\(318\) −0.200080 0.115516i −0.0112199 0.00647783i
\(319\) 1.88448 3.26402i 0.105511 0.182750i
\(320\) 0 0
\(321\) 0.285455 0.494422i 0.0159325 0.0275960i
\(322\) −1.50953 + 0.871525i −0.0841226 + 0.0485682i
\(323\) 0.743207 0.429091i 0.0413531 0.0238752i
\(324\) 1.88448 0.104694
\(325\) 0 0
\(326\) −4.14584 −0.229617
\(327\) 13.3450 7.70473i 0.737979 0.426073i
\(328\) 4.82999 2.78860i 0.266692 0.153975i
\(329\) −1.65679 + 2.86964i −0.0913416 + 0.158208i
\(330\) 0 0
\(331\) −2.68510 + 4.65073i −0.147586 + 0.255627i −0.930335 0.366711i \(-0.880484\pi\)
0.782749 + 0.622338i \(0.213817\pi\)
\(332\) −2.88697 1.66680i −0.158443 0.0914773i
\(333\) 9.76897i 0.535336i
\(334\) 0.270294 0.468163i 0.0147898 0.0256167i
\(335\) 0 0
\(336\) 1.09589 + 1.89813i 0.0597855 + 0.103551i
\(337\) 28.7623i 1.56678i −0.621529 0.783391i \(-0.713488\pi\)
0.621529 0.783391i \(-0.286512\pi\)
\(338\) 3.62738 + 2.52277i 0.197303 + 0.137221i
\(339\) −5.32025 −0.288956
\(340\) 0 0
\(341\) 3.38983 + 5.87136i 0.183570 + 0.317952i
\(342\) −0.0340013 0.0196307i −0.00183858 0.00106150i
\(343\) 8.95407i 0.483474i
\(344\) −0.359508 + 0.622685i −0.0193833 + 0.0335729i
\(345\) 0 0
\(346\) −4.33320 −0.232955
\(347\) 19.3956 + 11.1981i 1.04121 + 0.601143i 0.920176 0.391505i \(-0.128045\pi\)
0.121035 + 0.992648i \(0.461379\pi\)
\(348\) 9.04886 5.22436i 0.485070 0.280055i
\(349\) −5.98685 10.3695i −0.320469 0.555068i 0.660116 0.751164i \(-0.270507\pi\)
−0.980585 + 0.196096i \(0.937174\pi\)
\(350\) 0 0
\(351\) −1.93243 + 3.04397i −0.103145 + 0.162475i
\(352\) 2.56197i 0.136553i
\(353\) −14.7541 + 8.51830i −0.785283 + 0.453384i −0.838299 0.545210i \(-0.816450\pi\)
0.0530161 + 0.998594i \(0.483117\pi\)
\(354\) 0.378004 + 0.654723i 0.0200907 + 0.0347981i
\(355\) 0 0
\(356\) −25.5246 −1.35280
\(357\) −4.24709 2.45206i −0.224780 0.129777i
\(358\) 5.22819 + 3.01850i 0.276318 + 0.159533i
\(359\) 35.0825 1.85159 0.925793 0.378031i \(-0.123399\pi\)
0.925793 + 0.378031i \(0.123399\pi\)
\(360\) 0 0
\(361\) 9.49333 + 16.4429i 0.499649 + 0.865417i
\(362\) 2.06814 1.19404i 0.108699 0.0627573i
\(363\) 10.5379i 0.553098i
\(364\) −4.48131 0.188524i −0.234884 0.00988133i
\(365\) 0 0
\(366\) 0.714545 + 1.23763i 0.0373499 + 0.0646919i
\(367\) −17.3920 + 10.0413i −0.907855 + 0.524150i −0.879740 0.475455i \(-0.842284\pi\)
−0.0281143 + 0.999605i \(0.508950\pi\)
\(368\) 22.3390 + 12.8974i 1.16450 + 0.672326i
\(369\) −4.22436 −0.219911
\(370\) 0 0
\(371\) −0.224361 + 0.388604i −0.0116482 + 0.0201753i
\(372\) 18.7953i 0.974489i
\(373\) 20.3334 + 11.7395i 1.05283 + 0.607849i 0.923439 0.383745i \(-0.125366\pi\)
0.129387 + 0.991594i \(0.458699\pi\)
\(374\) −0.858181 1.48641i −0.0443755 0.0768606i
\(375\) 0 0
\(376\) −6.62715 −0.341769
\(377\) −0.840272 + 19.9737i −0.0432762 + 1.02870i
\(378\) 0.224361i 0.0115399i
\(379\) 10.5707 + 18.3090i 0.542981 + 0.940471i 0.998731 + 0.0503631i \(0.0160379\pi\)
−0.455750 + 0.890108i \(0.650629\pi\)
\(380\) 0 0
\(381\) −6.00982 + 10.4093i −0.307892 + 0.533285i
\(382\) 4.74266i 0.242656i
\(383\) −1.50571 0.869323i −0.0769383 0.0444203i 0.461037 0.887381i \(-0.347477\pi\)
−0.537976 + 0.842960i \(0.680811\pi\)
\(384\) −4.67975 + 8.10557i −0.238813 + 0.413636i
\(385\) 0 0
\(386\) 4.03593 6.99043i 0.205423 0.355803i
\(387\) 0.471643 0.272303i 0.0239750 0.0138420i
\(388\) −16.1636 + 9.33207i −0.820584 + 0.473764i
\(389\) 26.6664 1.35204 0.676020 0.736883i \(-0.263703\pi\)
0.676020 + 0.736883i \(0.263703\pi\)
\(390\) 0 0
\(391\) −57.7164 −2.91884
\(392\) 7.50533 4.33320i 0.379076 0.218860i
\(393\) −9.44324 + 5.45206i −0.476348 + 0.275020i
\(394\) −2.68643 + 4.65303i −0.135340 + 0.234416i
\(395\) 0 0
\(396\) 0.640492 1.10937i 0.0321860 0.0557477i
\(397\) 12.5960 + 7.27230i 0.632175 + 0.364986i 0.781594 0.623788i \(-0.214407\pi\)
−0.149419 + 0.988774i \(0.547740\pi\)
\(398\) 2.98037i 0.149392i
\(399\) −0.0381275 + 0.0660387i −0.00190876 + 0.00330607i
\(400\) 0 0
\(401\) 4.18510 + 7.24880i 0.208994 + 0.361988i 0.951398 0.307964i \(-0.0996478\pi\)
−0.742404 + 0.669952i \(0.766314\pi\)
\(402\) 2.59456i 0.129405i
\(403\) −30.3596 19.2734i −1.51232 0.960078i
\(404\) −17.6378 −0.877515
\(405\) 0 0
\(406\) 0.621996 + 1.07733i 0.0308691 + 0.0534669i
\(407\) 5.75084 + 3.32025i 0.285058 + 0.164578i
\(408\) 9.80823i 0.485580i
\(409\) 8.62734 14.9430i 0.426595 0.738883i −0.569973 0.821663i \(-0.693046\pi\)
0.996568 + 0.0827798i \(0.0263798\pi\)
\(410\) 0 0
\(411\) −3.38983 −0.167208
\(412\) −7.35277 4.24513i −0.362245 0.209142i
\(413\) 1.27163 0.734176i 0.0625728 0.0361264i
\(414\) 1.32025 + 2.28673i 0.0648866 + 0.112387i
\(415\) 0 0
\(416\) −6.29394 12.0438i −0.308586 0.590495i
\(417\) 14.8082i 0.725162i
\(418\) −0.0231125 + 0.0133440i −0.00113047 + 0.000652677i
\(419\) 6.43243 + 11.1413i 0.314245 + 0.544288i 0.979277 0.202527i \(-0.0649155\pi\)
−0.665032 + 0.746815i \(0.731582\pi\)
\(420\) 0 0
\(421\) 24.5616 1.19706 0.598529 0.801101i \(-0.295752\pi\)
0.598529 + 0.801101i \(0.295752\pi\)
\(422\) −2.59263 1.49686i −0.126207 0.0728658i
\(423\) 4.34713 + 2.50982i 0.211365 + 0.122031i
\(424\) −0.897442 −0.0435837
\(425\) 0 0
\(426\) −1.24286 2.15269i −0.0602166 0.104298i
\(427\) 2.40377 1.38782i 0.116327 0.0671613i
\(428\) 1.07587i 0.0520041i
\(429\) 1.13515 + 2.17216i 0.0548054 + 0.104873i
\(430\) 0 0
\(431\) −12.3898 21.4598i −0.596797 1.03368i −0.993291 0.115645i \(-0.963106\pi\)
0.396493 0.918038i \(-0.370227\pi\)
\(432\) 2.87542 1.66012i 0.138344 0.0798727i
\(433\) 12.1754 + 7.02945i 0.585110 + 0.337814i 0.763162 0.646208i \(-0.223646\pi\)
−0.178051 + 0.984021i \(0.556979\pi\)
\(434\) −2.23770 −0.107413
\(435\) 0 0
\(436\) 14.5194 25.1484i 0.695355 1.20439i
\(437\) 0.897442i 0.0429305i
\(438\) −2.36051 1.36284i −0.112790 0.0651192i
\(439\) 10.4226 + 18.0525i 0.497444 + 0.861598i 0.999996 0.00294880i \(-0.000938633\pi\)
−0.502552 + 0.864547i \(0.667605\pi\)
\(440\) 0 0
\(441\) −6.56424 −0.312583
\(442\) 7.68594 + 4.87933i 0.365583 + 0.232086i
\(443\) 11.4291i 0.543012i −0.962437 0.271506i \(-0.912478\pi\)
0.962437 0.271506i \(-0.0875218\pi\)
\(444\) 9.20473 + 15.9431i 0.436837 + 0.756624i
\(445\) 0 0
\(446\) 1.70606 2.95498i 0.0807841 0.139922i
\(447\) 17.0892i 0.808292i
\(448\) 3.06394 + 1.76897i 0.144758 + 0.0835759i
\(449\) 12.9541 22.4371i 0.611340 1.05887i −0.379675 0.925120i \(-0.623964\pi\)
0.991015 0.133752i \(-0.0427026\pi\)
\(450\) 0 0
\(451\) −1.43576 + 2.48681i −0.0676074 + 0.117099i
\(452\) −8.68270 + 5.01296i −0.408400 + 0.235790i
\(453\) −11.2696 + 6.50648i −0.529490 + 0.305701i
\(454\) 0.411728 0.0193233
\(455\) 0 0
\(456\) −0.152510 −0.00714193
\(457\) −5.11311 + 2.95206i −0.239181 + 0.138091i −0.614800 0.788683i \(-0.710763\pi\)
0.375619 + 0.926774i \(0.377430\pi\)
\(458\) −5.66432 + 3.27029i −0.264676 + 0.152811i
\(459\) −3.71455 + 6.43378i −0.173380 + 0.300303i
\(460\) 0 0
\(461\) 7.74600 13.4165i 0.360767 0.624867i −0.627320 0.778762i \(-0.715848\pi\)
0.988087 + 0.153894i \(0.0491815\pi\)
\(462\) 0.132077 + 0.0762550i 0.00614480 + 0.00354770i
\(463\) 17.4420i 0.810601i 0.914184 + 0.405300i \(0.132833\pi\)
−0.914184 + 0.405300i \(0.867167\pi\)
\(464\) 9.20473 15.9431i 0.427319 0.740138i
\(465\) 0 0
\(466\) −4.06291 7.03717i −0.188211 0.325991i
\(467\) 20.4790i 0.947657i 0.880617 + 0.473829i \(0.157128\pi\)
−0.880617 + 0.473829i \(0.842872\pi\)
\(468\) −0.285589 + 6.78860i −0.0132014 + 0.313803i
\(469\) 5.03926 0.232691
\(470\) 0 0
\(471\) −0.387820 0.671723i −0.0178698 0.0309514i
\(472\) 2.54326 + 1.46835i 0.117063 + 0.0675864i
\(473\) 0.370199i 0.0170217i
\(474\) 1.69491 2.93568i 0.0778500 0.134840i
\(475\) 0 0
\(476\) −9.24172 −0.423594
\(477\) 0.588684 + 0.339877i 0.0269540 + 0.0155619i
\(478\) −5.49824 + 3.17441i −0.251483 + 0.145194i
\(479\) −20.4953 35.4990i −0.936456 1.62199i −0.772017 0.635602i \(-0.780752\pi\)
−0.164439 0.986387i \(-0.552581\pi\)
\(480\) 0 0
\(481\) −35.1914 1.48046i −1.60459 0.0675033i
\(482\) 2.07852i 0.0946741i
\(483\) 4.44139 2.56424i 0.202090 0.116677i
\(484\) 9.92928 + 17.1980i 0.451331 + 0.781728i
\(485\) 0 0
\(486\) 0.339877 0.0154171
\(487\) 20.8391 + 12.0315i 0.944309 + 0.545197i 0.891309 0.453397i \(-0.149788\pi\)
0.0530008 + 0.998594i \(0.483121\pi\)
\(488\) 4.80755 + 2.77564i 0.217627 + 0.125647i
\(489\) 12.1981 0.551615
\(490\) 0 0
\(491\) −18.3865 31.8463i −0.829771 1.43721i −0.898218 0.439550i \(-0.855138\pi\)
0.0684471 0.997655i \(-0.478196\pi\)
\(492\) −6.89420 + 3.98037i −0.310815 + 0.179449i
\(493\) 41.1914i 1.85517i
\(494\) 0.0758696 0.119510i 0.00341354 0.00537701i
\(495\) 0 0
\(496\) 16.5576 + 28.6785i 0.743457 + 1.28770i
\(497\) −4.18105 + 2.41393i −0.187546 + 0.108280i
\(498\) −0.520681 0.300616i −0.0233323 0.0134709i
\(499\) −34.8212 −1.55881 −0.779405 0.626520i \(-0.784479\pi\)
−0.779405 + 0.626520i \(0.784479\pi\)
\(500\) 0 0
\(501\) −0.795270 + 1.37745i −0.0355300 + 0.0615398i
\(502\) 1.14182i 0.0509619i
\(503\) 27.7353 + 16.0130i 1.23665 + 0.713983i 0.968409 0.249368i \(-0.0802229\pi\)
0.268245 + 0.963351i \(0.413556\pi\)
\(504\) 0.435763 + 0.754763i 0.0194104 + 0.0336198i
\(505\) 0 0
\(506\) 1.79488 0.0797924
\(507\) −10.6726 7.42261i −0.473988 0.329650i
\(508\) 22.6508i 1.00497i
\(509\) −20.6731 35.8068i −0.916318 1.58711i −0.804960 0.593329i \(-0.797813\pi\)
−0.111359 0.993780i \(-0.535520\pi\)
\(510\) 0 0
\(511\) −2.64697 + 4.58469i −0.117095 + 0.202815i
\(512\) 21.2810i 0.940496i
\(513\) 0.100040 + 0.0577581i 0.00441688 + 0.00255008i
\(514\) 1.71788 2.97546i 0.0757725 0.131242i
\(515\) 0 0
\(516\) 0.513151 0.888804i 0.0225902 0.0391274i
\(517\) 2.95498 1.70606i 0.129960 0.0750323i
\(518\) −1.89813 + 1.09589i −0.0833990 + 0.0481505i
\(519\) 12.7493 0.559634
\(520\) 0 0
\(521\) 4.40279 0.192890 0.0964448 0.995338i \(-0.469253\pi\)
0.0964448 + 0.995338i \(0.469253\pi\)
\(522\) 1.63201 0.942242i 0.0714312 0.0412408i
\(523\) −28.1014 + 16.2244i −1.22879 + 0.709442i −0.966777 0.255623i \(-0.917720\pi\)
−0.262013 + 0.965064i \(0.584386\pi\)
\(524\) −10.2743 + 17.7956i −0.448835 + 0.777406i
\(525\) 0 0
\(526\) −3.82673 + 6.62808i −0.166853 + 0.288998i
\(527\) −64.1686 37.0478i −2.79523 1.61383i
\(528\) 2.25695i 0.0982211i
\(529\) 18.6784 32.3520i 0.812106 1.40661i
\(530\) 0 0
\(531\) −1.11218 1.92635i −0.0482645 0.0835966i
\(532\) 0.143701i 0.00623024i
\(533\) 0.640192 15.2177i 0.0277298 0.659151i
\(534\) −4.60350 −0.199213
\(535\) 0 0
\(536\) 5.03926 + 8.72826i 0.217663 + 0.377003i
\(537\) −15.3826 8.88115i −0.663808 0.383250i
\(538\) 2.88714i 0.124473i
\(539\) −2.23103 + 3.86426i −0.0960974 + 0.166446i
\(540\) 0 0
\(541\) −8.57720 −0.368762 −0.184381 0.982855i \(-0.559028\pi\)
−0.184381 + 0.982855i \(0.559028\pi\)
\(542\) −2.75804 1.59236i −0.118468 0.0683976i
\(543\) −6.08496 + 3.51315i −0.261130 + 0.150764i
\(544\) −14.0000 24.2487i −0.600245 1.03965i
\(545\) 0 0
\(546\) −0.808229 0.0340013i −0.0345890 0.00145512i
\(547\) 32.4920i 1.38926i 0.719368 + 0.694629i \(0.244431\pi\)
−0.719368 + 0.694629i \(0.755569\pi\)
\(548\) −5.53224 + 3.19404i −0.236325 + 0.136443i
\(549\) −2.10236 3.64140i −0.0897268 0.155411i
\(550\) 0 0
\(551\) 0.640492 0.0272859
\(552\) 8.88278 + 5.12847i 0.378076 + 0.218282i
\(553\) −5.70180 3.29193i −0.242465 0.139987i
\(554\) 0.244377 0.0103826
\(555\) 0 0
\(556\) 13.9529 + 24.1672i 0.591736 + 1.02492i
\(557\) 35.6933 20.6075i 1.51237 0.873169i 0.512477 0.858701i \(-0.328728\pi\)
0.999895 0.0144676i \(-0.00460533\pi\)
\(558\) 3.38983i 0.143503i
\(559\) 0.909460 + 1.74030i 0.0384661 + 0.0736068i
\(560\) 0 0
\(561\) 2.52498 + 4.37339i 0.106605 + 0.184645i
\(562\) 0.454643 0.262488i 0.0191779 0.0110724i
\(563\) 10.5468 + 6.08921i 0.444496 + 0.256630i 0.705503 0.708707i \(-0.250721\pi\)
−0.261007 + 0.965337i \(0.584055\pi\)
\(564\) 9.45941 0.398313
\(565\) 0 0
\(566\) −3.07921 + 5.33334i −0.129429 + 0.224177i
\(567\) 0.660123i 0.0277226i
\(568\) −8.36210 4.82786i −0.350866 0.202572i
\(569\) 3.47169 + 6.01314i 0.145541 + 0.252084i 0.929575 0.368634i \(-0.120174\pi\)
−0.784034 + 0.620718i \(0.786841\pi\)
\(570\) 0 0
\(571\) 3.51429 0.147068 0.0735341 0.997293i \(-0.476572\pi\)
0.0735341 + 0.997293i \(0.476572\pi\)
\(572\) 3.89927 + 2.47541i 0.163037 + 0.103502i
\(573\) 13.9541i 0.582939i
\(574\) −0.473890 0.820802i −0.0197798 0.0342596i
\(575\) 0 0
\(576\) 2.67975 4.64147i 0.111656 0.193395i
\(577\) 3.14182i 0.130796i −0.997859 0.0653978i \(-0.979168\pi\)
0.997859 0.0653978i \(-0.0208316\pi\)
\(578\) 11.2413 + 6.49018i 0.467578 + 0.269956i
\(579\) −11.8747 + 20.5675i −0.493494 + 0.854757i
\(580\) 0 0
\(581\) −0.583868 + 1.01129i −0.0242229 + 0.0419553i
\(582\) −2.91520 + 1.68309i −0.120839 + 0.0697663i
\(583\) 0.400160 0.231033i 0.0165729 0.00956839i
\(584\) −10.5879 −0.438130
\(585\) 0 0
\(586\) 10.3679 0.428295
\(587\) −32.8897 + 18.9889i −1.35750 + 0.783754i −0.989287 0.145987i \(-0.953364\pi\)
−0.368215 + 0.929741i \(0.620031\pi\)
\(588\) −10.7129 + 6.18510i −0.441793 + 0.255069i
\(589\) −0.576062 + 0.997769i −0.0237362 + 0.0411124i
\(590\) 0 0
\(591\) 7.90411 13.6903i 0.325132 0.563145i
\(592\) 28.0899 + 16.2177i 1.15449 + 0.666543i
\(593\) 10.4487i 0.429078i 0.976715 + 0.214539i \(0.0688248\pi\)
−0.976715 + 0.214539i \(0.931175\pi\)
\(594\) 0.115516 0.200080i 0.00473969 0.00820939i
\(595\) 0 0
\(596\) −16.1022 27.8898i −0.659571 1.14241i
\(597\) 8.76897i 0.358890i
\(598\) −8.43773 + 4.40946i −0.345044 + 0.180316i
\(599\) 45.5705 1.86196 0.930981 0.365069i \(-0.118955\pi\)
0.930981 + 0.365069i \(0.118955\pi\)
\(600\) 0 0
\(601\) 7.39096 + 12.8015i 0.301484 + 0.522185i 0.976472 0.215643i \(-0.0691848\pi\)
−0.674989 + 0.737828i \(0.735851\pi\)
\(602\) 0.105818 + 0.0610942i 0.00431283 + 0.00249001i
\(603\) 7.63382i 0.310873i
\(604\) −12.2614 + 21.2373i −0.498907 + 0.864133i
\(605\) 0 0
\(606\) −3.18108 −0.129223
\(607\) −16.3977 9.46722i −0.665562 0.384263i 0.128831 0.991667i \(-0.458878\pi\)
−0.794393 + 0.607404i \(0.792211\pi\)
\(608\) −0.377048 + 0.217689i −0.0152913 + 0.00882844i
\(609\) −1.83006 3.16976i −0.0741578 0.128445i
\(610\) 0 0
\(611\) −9.70007 + 15.2796i −0.392423 + 0.618146i
\(612\) 14.0000i 0.565916i
\(613\) −2.23770 + 1.29193i −0.0903797 + 0.0521807i −0.544509 0.838755i \(-0.683284\pi\)
0.454129 + 0.890936i \(0.349951\pi\)
\(614\) 0.811565 + 1.40567i 0.0327521 + 0.0567283i
\(615\) 0 0
\(616\) 0.592422 0.0238694
\(617\) 12.1584 + 7.01963i 0.489477 + 0.282600i 0.724357 0.689425i \(-0.242137\pi\)
−0.234880 + 0.972024i \(0.575470\pi\)
\(618\) −1.32611 0.765631i −0.0533441 0.0307982i
\(619\) 17.8582 0.717781 0.358890 0.933380i \(-0.383155\pi\)
0.358890 + 0.933380i \(0.383155\pi\)
\(620\) 0 0
\(621\) −3.88448 6.72812i −0.155879 0.269990i
\(622\) 9.00134 5.19692i 0.360921 0.208378i
\(623\) 8.94111i 0.358218i
\(624\) 5.54461 + 10.6099i 0.221962 + 0.424736i
\(625\) 0 0
\(626\) −4.54127 7.86571i −0.181506 0.314377i
\(627\) 0.0680026 0.0392613i 0.00271576 0.00156795i
\(628\) −1.26585 0.730840i −0.0505130 0.0291637i
\(629\) −72.5745 −2.89374
\(630\) 0 0
\(631\) 12.4815 21.6186i 0.496881 0.860623i −0.503113 0.864221i \(-0.667812\pi\)
0.999994 + 0.00359801i \(0.00114528\pi\)
\(632\) 13.1677i 0.523784i
\(633\) 7.62815 + 4.40411i 0.303192 + 0.175048i
\(634\) 3.50535 + 6.07144i 0.139215 + 0.241128i
\(635\) 0 0
\(636\) 1.28098 0.0507944
\(637\) 0.994794 23.6468i 0.0394152 0.936920i
\(638\) 1.28098i 0.0507147i
\(639\) 3.65679 + 6.33374i 0.144660 + 0.250559i
\(640\) 0 0
\(641\) −11.6535 + 20.1844i −0.460284 + 0.797235i −0.998975 0.0452686i \(-0.985586\pi\)
0.538691 + 0.842503i \(0.318919\pi\)
\(642\) 0.194039i 0.00765811i
\(643\) −39.3860 22.7395i −1.55323 0.896759i −0.997876 0.0651470i \(-0.979248\pi\)
−0.555357 0.831612i \(-0.687418\pi\)
\(644\) 4.83226 8.36973i 0.190418 0.329813i
\(645\) 0 0
\(646\) 0.145838 0.252599i 0.00573792 0.00993836i
\(647\) −5.55076 + 3.20473i −0.218223 + 0.125991i −0.605127 0.796129i \(-0.706878\pi\)
0.386904 + 0.922120i \(0.373544\pi\)
\(648\) 1.14337 0.660123i 0.0449157 0.0259321i
\(649\) −1.51202 −0.0593519
\(650\) 0 0
\(651\) 6.58387 0.258042
\(652\) 19.9074 11.4935i 0.779632 0.450121i
\(653\) 1.28319 0.740848i 0.0502150 0.0289916i −0.474682 0.880157i \(-0.657437\pi\)
0.524897 + 0.851166i \(0.324104\pi\)
\(654\) 2.61866 4.53565i 0.102398 0.177358i
\(655\) 0 0
\(656\) −7.01296 + 12.1468i −0.273810 + 0.474253i
\(657\) 6.94520 + 4.00982i 0.270958 + 0.156438i
\(658\) 1.12621i 0.0439041i
\(659\) −3.54461 + 6.13944i −0.138078 + 0.239159i −0.926769 0.375631i \(-0.877426\pi\)
0.788691 + 0.614790i \(0.210759\pi\)
\(660\) 0 0
\(661\) −0.589214 1.02055i −0.0229178 0.0396947i 0.854339 0.519716i \(-0.173962\pi\)
−0.877257 + 0.480021i \(0.840629\pi\)
\(662\) 1.82521i 0.0709387i
\(663\) −22.6139 14.3562i −0.878251 0.557548i
\(664\) −2.33547 −0.0906339
\(665\) 0 0
\(666\) 1.66012 + 2.87542i 0.0643285 + 0.111420i
\(667\) −37.3048 21.5379i −1.44445 0.833952i
\(668\) 2.99735i 0.115971i
\(669\) −5.01963 + 8.69426i −0.194070 + 0.336139i
\(670\) 0 0
\(671\) −2.85818 −0.110339
\(672\) 2.15466 + 1.24399i 0.0831177 + 0.0479880i
\(673\) 11.7412 6.77878i 0.452590 0.261303i −0.256334 0.966588i \(-0.582515\pi\)
0.708923 + 0.705286i \(0.249181\pi\)
\(674\) −4.88782 8.46595i −0.188272 0.326096i
\(675\) 0 0
\(676\) −24.4117 2.05759i −0.938913 0.0791381i
\(677\) 9.53793i 0.366573i −0.983060 0.183286i \(-0.941326\pi\)
0.983060 0.183286i \(-0.0586735\pi\)
\(678\) −1.56597 + 0.904114i −0.0601408 + 0.0347223i
\(679\) 3.26897 + 5.66202i 0.125451 + 0.217288i
\(680\) 0 0
\(681\) −1.21140 −0.0464210
\(682\) 1.99554 + 1.15212i 0.0764131 + 0.0441171i
\(683\) 38.5540 + 22.2592i 1.47523 + 0.851723i 0.999610 0.0279296i \(-0.00889141\pi\)
0.475617 + 0.879652i \(0.342225\pi\)
\(684\) 0.217689 0.00832353
\(685\) 0 0
\(686\) −1.52164 2.63556i −0.0580965 0.100626i
\(687\) 16.6658 9.62200i 0.635839 0.367102i
\(688\) 1.80823i 0.0689381i
\(689\) −1.31357 + 2.06915i −0.0500432 + 0.0788282i
\(690\) 0 0
\(691\) 2.64030 + 4.57313i 0.100442 + 0.173970i 0.911867 0.410486i \(-0.134641\pi\)
−0.811425 + 0.584457i \(0.801308\pi\)
\(692\) 20.8071 12.0130i 0.790966 0.456664i
\(693\) −0.388604 0.224361i −0.0147618 0.00852275i
\(694\) 7.61192 0.288945
\(695\) 0 0
\(696\) 3.66012 6.33952i 0.138737 0.240299i
\(697\) 31.3832i 1.18872i
\(698\) −3.52436 2.03479i −0.133399 0.0770180i
\(699\) 11.9541 + 20.7051i 0.452144 + 0.783137i
\(700\) 0 0
\(701\) 20.1392 0.760646 0.380323 0.924854i \(-0.375813\pi\)
0.380323 + 0.924854i \(0.375813\pi\)
\(702\) −0.0515075 + 1.22436i −0.00194403 + 0.0462105i
\(703\) 1.12847i 0.0425612i
\(704\) −1.82157 3.15506i −0.0686531 0.118911i
\(705\) 0 0
\(706\) −2.89517 + 5.01459i −0.108961 + 0.188727i
\(707\) 6.17843i 0.232364i
\(708\) −3.63018 2.09589i −0.136431 0.0787682i
\(709\) 0.770294 1.33419i 0.0289290 0.0501065i −0.851198 0.524844i \(-0.824124\pi\)
0.880127 + 0.474737i \(0.157457\pi\)
\(710\) 0 0
\(711\) −4.98685 + 8.63748i −0.187021 + 0.323931i
\(712\) −15.4865 + 8.94111i −0.580379 + 0.335082i
\(713\) 67.1043 38.7427i 2.51307 1.45092i
\(714\) −1.66680 −0.0623782
\(715\) 0 0
\(716\) −33.4728 −1.25094
\(717\) 16.1771 9.33988i 0.604146 0.348804i
\(718\) 10.3263 5.96187i 0.385373 0.222495i
\(719\) 18.5020 32.0464i 0.690009 1.19513i −0.281826 0.959466i \(-0.590940\pi\)
0.971835 0.235664i \(-0.0757266\pi\)
\(720\) 0 0
\(721\) −1.48704 + 2.57563i −0.0553803 + 0.0959215i
\(722\) 5.58857 + 3.22656i 0.207985 + 0.120080i
\(723\) 6.11552i 0.227438i
\(724\) −6.62048 + 11.4670i −0.246048 + 0.426168i
\(725\) 0 0
\(726\) 1.79080 + 3.10176i 0.0664628 + 0.115117i
\(727\) 44.9015i 1.66530i 0.553797 + 0.832652i \(0.313178\pi\)
−0.553797 + 0.832652i \(0.686822\pi\)
\(728\) −2.78497 + 1.45539i −0.103218 + 0.0539405i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 2.02297 + 3.50388i 0.0748221 + 0.129596i
\(732\) −6.86216 3.96187i −0.253633 0.146435i
\(733\) 4.94072i 0.182490i −0.995828 0.0912449i \(-0.970915\pi\)
0.995828 0.0912449i \(-0.0290846\pi\)
\(734\) −3.41280 + 5.91114i −0.125969 + 0.218184i
\(735\) 0 0
\(736\) 29.2810 1.07931
\(737\) −4.49391 2.59456i −0.165535 0.0955718i
\(738\) −1.24341 + 0.717881i −0.0457704 + 0.0264256i
\(739\) 3.01963 + 5.23015i 0.111079 + 0.192394i 0.916206 0.400709i \(-0.131236\pi\)
−0.805127 + 0.593103i \(0.797903\pi\)
\(740\) 0 0
\(741\) −0.223227 + 0.351628i −0.00820044 + 0.0129174i
\(742\) 0.152510i 0.00559882i
\(743\) −11.3093 + 6.52945i −0.414899 + 0.239542i −0.692893 0.721041i \(-0.743664\pi\)
0.277993 + 0.960583i \(0.410331\pi\)
\(744\) 6.58387 + 11.4036i 0.241376 + 0.418076i
\(745\) 0 0
\(746\) 7.97998 0.292168
\(747\) 1.53197 + 0.884484i 0.0560519 + 0.0323616i
\(748\) 8.24158 + 4.75828i 0.301342 + 0.173980i
\(749\) −0.376871 −0.0137706
\(750\) 0 0
\(751\) −24.0118 41.5897i −0.876204 1.51763i −0.855475 0.517845i \(-0.826735\pi\)
−0.0207292 0.999785i \(-0.506599\pi\)
\(752\) 14.4335 8.33320i 0.526337 0.303881i
\(753\) 3.35951i 0.122427i
\(754\) 3.14697 + 6.02189i 0.114606 + 0.219304i
\(755\) 0 0
\(756\) −0.621996 1.07733i −0.0226218 0.0391820i
\(757\) 3.95275 2.28212i 0.143665 0.0829450i −0.426445 0.904514i \(-0.640234\pi\)
0.570110 + 0.821569i \(0.306901\pi\)
\(758\) 6.22281 + 3.59274i 0.226023 + 0.130494i
\(759\) −5.28098 −0.191688
\(760\) 0 0
\(761\) −10.5446 + 18.2638i −0.382242 + 0.662062i −0.991382 0.131000i \(-0.958181\pi\)
0.609141 + 0.793062i \(0.291514\pi\)
\(762\) 4.08519i 0.147991i
\(763\) −8.80933 5.08607i −0.318919 0.184128i
\(764\) 13.1481 + 22.7732i 0.475682 + 0.823905i
\(765\) 0 0
\(766\) −0.590926 −0.0213510
\(767\) 7.10797 3.71455i 0.256654 0.134124i
\(768\) 7.53793i 0.272002i
\(769\) 21.1666 + 36.6616i 0.763287 + 1.32205i 0.941147 + 0.337996i \(0.109749\pi\)
−0.177860 + 0.984056i \(0.556917\pi\)
\(770\) 0 0
\(771\) −5.05442 + 8.75452i −0.182031 + 0.315286i
\(772\) 44.7552i 1.61078i
\(773\) −43.5122 25.1218i −1.56503 0.903568i −0.996735 0.0807410i \(-0.974271\pi\)
−0.568291 0.822827i \(-0.692395\pi\)
\(774\) 0.0925496 0.160301i 0.00332663 0.00576189i
\(775\) 0 0
\(776\) −6.53793