Properties

Label 975.2.bb.j.874.6
Level $975$
Weight $2$
Character 975.874
Analytic conductor $7.785$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(724,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.724"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,4,0,0,0,0,6,0,-8,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 874.6
Root \(-0.531325 + 1.98293i\) of defining polynomial
Character \(\chi\) \(=\) 975.874
Dual form 975.2.bb.j.724.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91766 - 1.10716i) q^{2} +(0.866025 - 0.500000i) q^{3} +(1.45161 - 2.51426i) q^{4} +(1.10716 - 1.91766i) q^{6} +(3.32254 + 1.91827i) q^{7} -2.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-2.90321 - 5.02851i) q^{11} -2.90321i q^{12} +(-3.56589 - 0.533338i) q^{13} +8.49532 q^{14} +(0.688892 + 1.19320i) q^{16} +(3.11085 + 1.79605i) q^{17} -2.21432i q^{18} +(1.07382 - 1.85991i) q^{19} +3.83654 q^{21} +(-11.1347 - 6.42864i) q^{22} +(5.39972 - 3.11753i) q^{23} +(-1.00000 - 1.73205i) q^{24} +(-7.42864 + 2.92525i) q^{26} -1.00000i q^{27} +(9.64603 - 5.56914i) q^{28} +(1.03334 + 1.78979i) q^{29} -5.28100 q^{31} +(6.10622 + 3.52543i) q^{32} +(-5.02851 - 2.90321i) q^{33} +7.95407 q^{34} +(-1.45161 - 2.51426i) q^{36} +(-4.11844 + 2.37778i) q^{37} -4.75557i q^{38} +(-3.35482 + 1.32106i) q^{39} +(5.55877 + 9.62806i) q^{41} +(7.35716 - 4.24766i) q^{42} +(-8.22318 - 4.74766i) q^{43} -16.8573 q^{44} +(6.90321 - 11.9567i) q^{46} +2.21432i q^{47} +(1.19320 + 0.688892i) q^{48} +(3.85950 + 6.68485i) q^{49} +3.59210 q^{51} +(-6.51721 + 8.19135i) q^{52} +0.815792i q^{53} +(-1.10716 - 1.91766i) q^{54} +(3.83654 - 6.64507i) q^{56} -2.14764i q^{57} +(3.96318 + 2.28814i) q^{58} +(-4.98741 + 8.63844i) q^{59} +(-2.64050 + 4.57348i) q^{61} +(-10.1271 + 5.84691i) q^{62} +(3.32254 - 1.91827i) q^{63} +12.8573 q^{64} -12.8573 q^{66} +(-3.07919 + 1.77777i) q^{67} +(9.03147 - 5.21432i) q^{68} +(3.11753 - 5.39972i) q^{69} +(-2.86987 + 4.97077i) q^{71} +(-1.73205 - 1.00000i) q^{72} +2.78568i q^{73} +(-5.26517 + 9.11955i) q^{74} +(-3.11753 - 5.39972i) q^{76} -22.2766i q^{77} +(-4.97077 + 6.24766i) q^{78} -12.3319 q^{79} +(-0.500000 - 0.866025i) q^{81} +(21.3196 + 12.3089i) q^{82} -0.622216i q^{83} +(5.56914 - 9.64603i) q^{84} -21.0257 q^{86} +(1.78979 + 1.03334i) q^{87} +(-10.0570 + 5.80642i) q^{88} +(-8.08419 - 14.0022i) q^{89} +(-10.8247 - 8.61236i) q^{91} -18.1017i q^{92} +(-4.57348 + 2.64050i) q^{93} +(2.45161 + 4.24631i) q^{94} +7.05086 q^{96} +(-3.68137 - 2.12544i) q^{97} +(14.8024 + 8.54617i) q^{98} -5.80642 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{4} + 6 q^{9} - 8 q^{11} + 48 q^{14} + 8 q^{16} + 20 q^{21} - 12 q^{24} - 36 q^{26} + 12 q^{29} - 36 q^{31} + 16 q^{34} - 4 q^{36} + 40 q^{41} - 96 q^{44} + 56 q^{46} + 60 q^{49} + 16 q^{51}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91766 1.10716i 1.35599 0.782880i 0.366908 0.930257i \(-0.380416\pi\)
0.989080 + 0.147377i \(0.0470831\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 1.45161 2.51426i 0.725803 1.25713i
\(5\) 0 0
\(6\) 1.10716 1.91766i 0.451996 0.782880i
\(7\) 3.32254 + 1.91827i 1.25580 + 0.725037i 0.972255 0.233922i \(-0.0751560\pi\)
0.283546 + 0.958959i \(0.408489\pi\)
\(8\) 2.00000i 0.707107i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0 0
\(11\) −2.90321 5.02851i −0.875351 1.51615i −0.856388 0.516333i \(-0.827297\pi\)
−0.0189633 0.999820i \(-0.506037\pi\)
\(12\) 2.90321i 0.838085i
\(13\) −3.56589 0.533338i −0.988999 0.147921i
\(14\) 8.49532 2.27047
\(15\) 0 0
\(16\) 0.688892 + 1.19320i 0.172223 + 0.298299i
\(17\) 3.11085 + 1.79605i 0.754493 + 0.435607i 0.827315 0.561738i \(-0.189867\pi\)
−0.0728222 + 0.997345i \(0.523201\pi\)
\(18\) 2.21432i 0.521920i
\(19\) 1.07382 1.85991i 0.246352 0.426693i −0.716159 0.697937i \(-0.754102\pi\)
0.962511 + 0.271244i \(0.0874349\pi\)
\(20\) 0 0
\(21\) 3.83654 0.837201
\(22\) −11.1347 6.42864i −2.37393 1.37059i
\(23\) 5.39972 3.11753i 1.12592 0.650050i 0.183014 0.983110i \(-0.441414\pi\)
0.942906 + 0.333060i \(0.108081\pi\)
\(24\) −1.00000 1.73205i −0.204124 0.353553i
\(25\) 0 0
\(26\) −7.42864 + 2.92525i −1.45688 + 0.573688i
\(27\) 1.00000i 0.192450i
\(28\) 9.64603 5.56914i 1.82293 1.05247i
\(29\) 1.03334 + 1.78979i 0.191886 + 0.332356i 0.945875 0.324530i \(-0.105206\pi\)
−0.753989 + 0.656887i \(0.771873\pi\)
\(30\) 0 0
\(31\) −5.28100 −0.948495 −0.474247 0.880392i \(-0.657280\pi\)
−0.474247 + 0.880392i \(0.657280\pi\)
\(32\) 6.10622 + 3.52543i 1.07944 + 0.623213i
\(33\) −5.02851 2.90321i −0.875351 0.505384i
\(34\) 7.95407 1.36411
\(35\) 0 0
\(36\) −1.45161 2.51426i −0.241934 0.419043i
\(37\) −4.11844 + 2.37778i −0.677068 + 0.390905i −0.798749 0.601664i \(-0.794505\pi\)
0.121681 + 0.992569i \(0.461171\pi\)
\(38\) 4.75557i 0.771455i
\(39\) −3.35482 + 1.32106i −0.537201 + 0.211539i
\(40\) 0 0
\(41\) 5.55877 + 9.62806i 0.868133 + 1.50365i 0.863902 + 0.503660i \(0.168014\pi\)
0.00423144 + 0.999991i \(0.498653\pi\)
\(42\) 7.35716 4.24766i 1.13523 0.655428i
\(43\) −8.22318 4.74766i −1.25402 0.724011i −0.282118 0.959380i \(-0.591037\pi\)
−0.971906 + 0.235369i \(0.924370\pi\)
\(44\) −16.8573 −2.54133
\(45\) 0 0
\(46\) 6.90321 11.9567i 1.01782 1.76292i
\(47\) 2.21432i 0.322992i 0.986873 + 0.161496i \(0.0516318\pi\)
−0.986873 + 0.161496i \(0.948368\pi\)
\(48\) 1.19320 + 0.688892i 0.172223 + 0.0994330i
\(49\) 3.85950 + 6.68485i 0.551357 + 0.954979i
\(50\) 0 0
\(51\) 3.59210 0.502995
\(52\) −6.51721 + 8.19135i −0.903775 + 1.13594i
\(53\) 0.815792i 0.112058i 0.998429 + 0.0560288i \(0.0178439\pi\)
−0.998429 + 0.0560288i \(0.982156\pi\)
\(54\) −1.10716 1.91766i −0.150665 0.260960i
\(55\) 0 0
\(56\) 3.83654 6.64507i 0.512679 0.887985i
\(57\) 2.14764i 0.284462i
\(58\) 3.96318 + 2.28814i 0.520391 + 0.300448i
\(59\) −4.98741 + 8.63844i −0.649305 + 1.12463i 0.333984 + 0.942579i \(0.391607\pi\)
−0.983289 + 0.182050i \(0.941727\pi\)
\(60\) 0 0
\(61\) −2.64050 + 4.57348i −0.338081 + 0.585574i −0.984072 0.177772i \(-0.943111\pi\)
0.645991 + 0.763345i \(0.276445\pi\)
\(62\) −10.1271 + 5.84691i −1.28615 + 0.742558i
\(63\) 3.32254 1.91827i 0.418600 0.241679i
\(64\) 12.8573 1.60716
\(65\) 0 0
\(66\) −12.8573 −1.58262
\(67\) −3.07919 + 1.77777i −0.376183 + 0.217189i −0.676156 0.736758i \(-0.736355\pi\)
0.299973 + 0.953948i \(0.403022\pi\)
\(68\) 9.03147 5.21432i 1.09523 0.632329i
\(69\) 3.11753 5.39972i 0.375307 0.650050i
\(70\) 0 0
\(71\) −2.86987 + 4.97077i −0.340591 + 0.589922i −0.984543 0.175145i \(-0.943961\pi\)
0.643951 + 0.765066i \(0.277294\pi\)
\(72\) −1.73205 1.00000i −0.204124 0.117851i
\(73\) 2.78568i 0.326039i 0.986623 + 0.163020i \(0.0521234\pi\)
−0.986623 + 0.163020i \(0.947877\pi\)
\(74\) −5.26517 + 9.11955i −0.612064 + 1.06013i
\(75\) 0 0
\(76\) −3.11753 5.39972i −0.357605 0.619391i
\(77\) 22.2766i 2.53865i
\(78\) −4.97077 + 6.24766i −0.562829 + 0.707408i
\(79\) −12.3319 −1.38744 −0.693721 0.720244i \(-0.744030\pi\)
−0.693721 + 0.720244i \(0.744030\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 21.3196 + 12.3089i 2.35436 + 1.35929i
\(83\) 0.622216i 0.0682970i −0.999417 0.0341485i \(-0.989128\pi\)
0.999417 0.0341485i \(-0.0108719\pi\)
\(84\) 5.56914 9.64603i 0.607643 1.05247i
\(85\) 0 0
\(86\) −21.0257 −2.26726
\(87\) 1.78979 + 1.03334i 0.191886 + 0.110785i
\(88\) −10.0570 + 5.80642i −1.07208 + 0.618967i
\(89\) −8.08419 14.0022i −0.856923 1.48423i −0.874850 0.484395i \(-0.839040\pi\)
0.0179269 0.999839i \(-0.494293\pi\)
\(90\) 0 0
\(91\) −10.8247 8.61236i −1.13474 0.902821i
\(92\) 18.1017i 1.88723i
\(93\) −4.57348 + 2.64050i −0.474247 + 0.273807i
\(94\) 2.45161 + 4.24631i 0.252864 + 0.437973i
\(95\) 0 0
\(96\) 7.05086 0.719625
\(97\) −3.68137 2.12544i −0.373787 0.215806i 0.301325 0.953522i \(-0.402571\pi\)
−0.675112 + 0.737716i \(0.735905\pi\)
\(98\) 14.8024 + 8.54617i 1.49527 + 0.863294i
\(99\) −5.80642 −0.583568
\(100\) 0 0
\(101\) 1.11753 + 1.93562i 0.111199 + 0.192602i 0.916254 0.400598i \(-0.131198\pi\)
−0.805055 + 0.593200i \(0.797864\pi\)
\(102\) 6.88842 3.97703i 0.682056 0.393785i
\(103\) 2.44446i 0.240860i 0.992722 + 0.120430i \(0.0384273\pi\)
−0.992722 + 0.120430i \(0.961573\pi\)
\(104\) −1.06668 + 7.13177i −0.104596 + 0.699328i
\(105\) 0 0
\(106\) 0.903212 + 1.56441i 0.0877277 + 0.151949i
\(107\) 1.43096 0.826164i 0.138336 0.0798682i −0.429235 0.903193i \(-0.641217\pi\)
0.567571 + 0.823325i \(0.307883\pi\)
\(108\) −2.51426 1.45161i −0.241934 0.139681i
\(109\) 2.61285 0.250265 0.125133 0.992140i \(-0.460064\pi\)
0.125133 + 0.992140i \(0.460064\pi\)
\(110\) 0 0
\(111\) −2.37778 + 4.11844i −0.225689 + 0.390905i
\(112\) 5.28592i 0.499472i
\(113\) 2.10326 + 1.21432i 0.197858 + 0.114234i 0.595656 0.803240i \(-0.296892\pi\)
−0.397798 + 0.917473i \(0.630225\pi\)
\(114\) −2.37778 4.11844i −0.222700 0.385728i
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) −2.24483 + 2.82148i −0.207534 + 0.260846i
\(118\) 22.0874i 2.03331i
\(119\) 6.89062 + 11.9349i 0.631662 + 1.09407i
\(120\) 0 0
\(121\) −11.3573 + 19.6714i −1.03248 + 1.78831i
\(122\) 11.6938i 1.05871i
\(123\) 9.62806 + 5.55877i 0.868133 + 0.501217i
\(124\) −7.66593 + 13.2778i −0.688420 + 1.19238i
\(125\) 0 0
\(126\) 4.24766 7.35716i 0.378411 0.655428i
\(127\) 16.6760 9.62790i 1.47976 0.854338i 0.480020 0.877258i \(-0.340629\pi\)
0.999737 + 0.0229193i \(0.00729607\pi\)
\(128\) 12.4434 7.18421i 1.09985 0.635000i
\(129\) −9.49532 −0.836016
\(130\) 0 0
\(131\) 13.4128 1.17188 0.585942 0.810353i \(-0.300725\pi\)
0.585942 + 0.810353i \(0.300725\pi\)
\(132\) −14.5988 + 8.42864i −1.27067 + 0.733619i
\(133\) 7.13562 4.11975i 0.618737 0.357228i
\(134\) −3.93655 + 6.81830i −0.340066 + 0.589012i
\(135\) 0 0
\(136\) 3.59210 6.22171i 0.308020 0.533507i
\(137\) 4.10048 + 2.36741i 0.350328 + 0.202262i 0.664830 0.746995i \(-0.268504\pi\)
−0.314502 + 0.949257i \(0.601838\pi\)
\(138\) 13.8064i 1.17528i
\(139\) −5.52074 + 9.56221i −0.468263 + 0.811056i −0.999342 0.0362665i \(-0.988453\pi\)
0.531079 + 0.847322i \(0.321787\pi\)
\(140\) 0 0
\(141\) 1.10716 + 1.91766i 0.0932397 + 0.161496i
\(142\) 12.7096i 1.06657i
\(143\) 7.67063 + 19.4795i 0.641450 + 1.62896i
\(144\) 1.37778 0.114815
\(145\) 0 0
\(146\) 3.08419 + 5.34198i 0.255250 + 0.442105i
\(147\) 6.68485 + 3.85950i 0.551357 + 0.318326i
\(148\) 13.8064i 1.13488i
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) 8.81135 0.717057 0.358529 0.933519i \(-0.383279\pi\)
0.358529 + 0.933519i \(0.383279\pi\)
\(152\) −3.71983 2.14764i −0.301718 0.174197i
\(153\) 3.11085 1.79605i 0.251498 0.145202i
\(154\) −24.6637 42.7188i −1.98746 3.44238i
\(155\) 0 0
\(156\) −1.54839 + 10.3525i −0.123971 + 0.828865i
\(157\) 2.73975i 0.218656i −0.994006 0.109328i \(-0.965130\pi\)
0.994006 0.109328i \(-0.0348698\pi\)
\(158\) −23.6483 + 13.6533i −1.88135 + 1.08620i
\(159\) 0.407896 + 0.706496i 0.0323482 + 0.0560288i
\(160\) 0 0
\(161\) 23.9210 1.88524
\(162\) −1.91766 1.10716i −0.150665 0.0869867i
\(163\) −21.3855 12.3469i −1.67504 0.967084i −0.964748 0.263177i \(-0.915230\pi\)
−0.710292 0.703907i \(-0.751437\pi\)
\(164\) 32.2766 2.52038
\(165\) 0 0
\(166\) −0.688892 1.19320i −0.0534684 0.0926100i
\(167\) 6.84865 3.95407i 0.529964 0.305975i −0.211038 0.977478i \(-0.567684\pi\)
0.741002 + 0.671503i \(0.234351\pi\)
\(168\) 7.67307i 0.591990i
\(169\) 12.4311 + 3.80365i 0.956239 + 0.292588i
\(170\) 0 0
\(171\) −1.07382 1.85991i −0.0821172 0.142231i
\(172\) −23.8736 + 13.7835i −1.82035 + 1.05098i
\(173\) −3.16301 1.82616i −0.240479 0.138841i 0.374918 0.927058i \(-0.377671\pi\)
−0.615397 + 0.788217i \(0.711004\pi\)
\(174\) 4.57628 0.346927
\(175\) 0 0
\(176\) 4.00000 6.92820i 0.301511 0.522233i
\(177\) 9.97481i 0.749753i
\(178\) −31.0054 17.9010i −2.32395 1.34174i
\(179\) −2.92073 5.05885i −0.218306 0.378116i 0.735985 0.676998i \(-0.236720\pi\)
−0.954290 + 0.298882i \(0.903386\pi\)
\(180\) 0 0
\(181\) 10.0874 0.749792 0.374896 0.927067i \(-0.377678\pi\)
0.374896 + 0.927067i \(0.377678\pi\)
\(182\) −30.2933 4.53088i −2.24549 0.335851i
\(183\) 5.28100i 0.390382i
\(184\) −6.23506 10.7994i −0.459655 0.796146i
\(185\) 0 0
\(186\) −5.84691 + 10.1271i −0.428716 + 0.742558i
\(187\) 20.8573i 1.52524i
\(188\) 5.56737 + 3.21432i 0.406042 + 0.234428i
\(189\) 1.91827 3.32254i 0.139533 0.241679i
\(190\) 0 0
\(191\) −7.98741 + 13.8346i −0.577948 + 1.00104i 0.417766 + 0.908555i \(0.362813\pi\)
−0.995714 + 0.0924813i \(0.970520\pi\)
\(192\) 11.1347 6.42864i 0.803580 0.463947i
\(193\) 3.20705 1.85159i 0.230849 0.133280i −0.380115 0.924939i \(-0.624116\pi\)
0.610963 + 0.791659i \(0.290782\pi\)
\(194\) −9.41282 −0.675801
\(195\) 0 0
\(196\) 22.4099 1.60071
\(197\) 14.2002 8.19850i 1.01172 0.584119i 0.100028 0.994985i \(-0.468107\pi\)
0.911696 + 0.410866i \(0.134774\pi\)
\(198\) −11.1347 + 6.42864i −0.791311 + 0.456864i
\(199\) 2.64764 4.58585i 0.187686 0.325082i −0.756792 0.653656i \(-0.773234\pi\)
0.944478 + 0.328573i \(0.106568\pi\)
\(200\) 0 0
\(201\) −1.77777 + 3.07919i −0.125394 + 0.217189i
\(202\) 4.28609 + 2.47457i 0.301568 + 0.174110i
\(203\) 7.92888i 0.556498i
\(204\) 5.21432 9.03147i 0.365075 0.632329i
\(205\) 0 0
\(206\) 2.70641 + 4.68764i 0.188564 + 0.326603i
\(207\) 6.23506i 0.433367i
\(208\) −1.82013 4.62222i −0.126204 0.320493i
\(209\) −12.4701 −0.862577
\(210\) 0 0
\(211\) −3.99532 6.92009i −0.275049 0.476399i 0.695099 0.718914i \(-0.255361\pi\)
−0.970147 + 0.242516i \(0.922027\pi\)
\(212\) 2.05111 + 1.18421i 0.140871 + 0.0813318i
\(213\) 5.73975i 0.393281i
\(214\) 1.82939 3.16860i 0.125055 0.216601i
\(215\) 0 0
\(216\) −2.00000 −0.136083
\(217\) −17.5463 10.1304i −1.19112 0.687694i
\(218\) 5.01055 2.89284i 0.339357 0.195928i
\(219\) 1.39284 + 2.41247i 0.0941194 + 0.163020i
\(220\) 0 0
\(221\) −10.1350 8.06366i −0.681757 0.542420i
\(222\) 10.5303i 0.706751i
\(223\) 8.12140 4.68889i 0.543849 0.313991i −0.202788 0.979223i \(-0.565000\pi\)
0.746637 + 0.665231i \(0.231667\pi\)
\(224\) 13.5254 + 23.4267i 0.903706 + 1.56526i
\(225\) 0 0
\(226\) 5.37778 0.357725
\(227\) −12.4776 7.20395i −0.828168 0.478143i 0.0250572 0.999686i \(-0.492023\pi\)
−0.853225 + 0.521543i \(0.825357\pi\)
\(228\) −5.39972 3.11753i −0.357605 0.206464i
\(229\) 17.9541 1.18644 0.593219 0.805041i \(-0.297857\pi\)
0.593219 + 0.805041i \(0.297857\pi\)
\(230\) 0 0
\(231\) −11.1383 19.2921i −0.732845 1.26932i
\(232\) 3.57959 2.06668i 0.235012 0.135684i
\(233\) 27.5210i 1.80296i −0.432821 0.901480i \(-0.642482\pi\)
0.432821 0.901480i \(-0.357518\pi\)
\(234\) −1.18098 + 7.89601i −0.0772032 + 0.516179i
\(235\) 0 0
\(236\) 14.4795 + 25.0792i 0.942535 + 1.63252i
\(237\) −10.6797 + 6.16593i −0.693721 + 0.400520i
\(238\) 26.4277 + 15.2580i 1.71305 + 0.989031i
\(239\) 19.0321 1.23109 0.615543 0.788104i \(-0.288937\pi\)
0.615543 + 0.788104i \(0.288937\pi\)
\(240\) 0 0
\(241\) −11.6407 + 20.1623i −0.749846 + 1.29877i 0.198051 + 0.980192i \(0.436539\pi\)
−0.947896 + 0.318579i \(0.896794\pi\)
\(242\) 50.2973i 3.23323i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 7.66593 + 13.2778i 0.490761 + 0.850022i
\(245\) 0 0
\(246\) 24.6178 1.56957
\(247\) −4.82109 + 6.05953i −0.306759 + 0.385559i
\(248\) 10.5620i 0.670687i
\(249\) −0.311108 0.538855i −0.0197157 0.0341485i
\(250\) 0 0
\(251\) 13.3620 23.1436i 0.843400 1.46081i −0.0436042 0.999049i \(-0.513884\pi\)
0.887004 0.461762i \(-0.152783\pi\)
\(252\) 11.1383i 0.701645i
\(253\) −31.3531 18.1017i −1.97115 1.13804i
\(254\) 21.3193 36.9260i 1.33769 2.31695i
\(255\) 0 0
\(256\) 3.05086 5.28424i 0.190678 0.330265i
\(257\) −10.3222 + 5.95952i −0.643880 + 0.371744i −0.786108 0.618090i \(-0.787907\pi\)
0.142227 + 0.989834i \(0.454574\pi\)
\(258\) −18.2088 + 10.5128i −1.13363 + 0.654500i
\(259\) −18.2449 −1.13368
\(260\) 0 0
\(261\) 2.06668 0.127924
\(262\) 25.7212 14.8501i 1.58906 0.917444i
\(263\) −13.7948 + 7.96444i −0.850625 + 0.491108i −0.860862 0.508839i \(-0.830075\pi\)
0.0102370 + 0.999948i \(0.496741\pi\)
\(264\) −5.80642 + 10.0570i −0.357361 + 0.618967i
\(265\) 0 0
\(266\) 9.12245 15.8006i 0.559334 0.968794i
\(267\) −14.0022 8.08419i −0.856923 0.494745i
\(268\) 10.3225i 0.630546i
\(269\) −4.79383 + 8.30316i −0.292285 + 0.506252i −0.974350 0.225039i \(-0.927749\pi\)
0.682065 + 0.731292i \(0.261082\pi\)
\(270\) 0 0
\(271\) −6.86196 11.8853i −0.416835 0.721979i 0.578785 0.815481i \(-0.303527\pi\)
−0.995619 + 0.0935019i \(0.970194\pi\)
\(272\) 4.94914i 0.300086i
\(273\) −13.6807 2.04617i −0.827991 0.123840i
\(274\) 10.4844 0.633387
\(275\) 0 0
\(276\) −9.05086 15.6765i −0.544797 0.943617i
\(277\) −10.2247 5.90321i −0.614340 0.354690i 0.160322 0.987065i \(-0.448747\pi\)
−0.774662 + 0.632375i \(0.782080\pi\)
\(278\) 24.4494i 1.46638i
\(279\) −2.64050 + 4.57348i −0.158082 + 0.273807i
\(280\) 0 0
\(281\) −10.7906 −0.643713 −0.321857 0.946788i \(-0.604307\pi\)
−0.321857 + 0.946788i \(0.604307\pi\)
\(282\) 4.24631 + 2.45161i 0.252864 + 0.145991i
\(283\) 27.0162 15.5978i 1.60594 0.927192i 0.615680 0.787997i \(-0.288882\pi\)
0.990265 0.139196i \(-0.0444518\pi\)
\(284\) 8.33185 + 14.4312i 0.494404 + 0.856334i
\(285\) 0 0
\(286\) 36.2766 + 28.8624i 2.14508 + 1.70667i
\(287\) 42.6528i 2.51772i
\(288\) 6.10622 3.52543i 0.359812 0.207738i
\(289\) −2.04839 3.54792i −0.120494 0.208701i
\(290\) 0 0
\(291\) −4.25088 −0.249191
\(292\) 7.00391 + 4.04371i 0.409873 + 0.236640i
\(293\) 5.12603 + 2.95952i 0.299466 + 0.172897i 0.642203 0.766535i \(-0.278021\pi\)
−0.342737 + 0.939431i \(0.611354\pi\)
\(294\) 17.0923 0.996846
\(295\) 0 0
\(296\) 4.75557 + 8.23689i 0.276412 + 0.478759i
\(297\) −5.02851 + 2.90321i −0.291784 + 0.168461i
\(298\) 4.42864i 0.256544i
\(299\) −20.9175 + 8.23689i −1.20969 + 0.476351i
\(300\) 0 0
\(301\) −18.2146 31.5485i −1.04987 1.81843i
\(302\) 16.8971 9.75557i 0.972321 0.561370i
\(303\) 1.93562 + 1.11753i 0.111199 + 0.0642005i
\(304\) 2.95899 0.169710
\(305\) 0 0
\(306\) 3.97703 6.88842i 0.227352 0.393785i
\(307\) 14.5877i 0.832562i 0.909236 + 0.416281i \(0.136667\pi\)
−0.909236 + 0.416281i \(0.863333\pi\)
\(308\) −56.0089 32.3368i −3.19141 1.84256i
\(309\) 1.22223 + 2.11697i 0.0695303 + 0.120430i
\(310\) 0 0
\(311\) 17.9748 1.01926 0.509629 0.860394i \(-0.329783\pi\)
0.509629 + 0.860394i \(0.329783\pi\)
\(312\) 2.64212 + 6.70964i 0.149580 + 0.379858i
\(313\) 5.79060i 0.327304i 0.986518 + 0.163652i \(0.0523275\pi\)
−0.986518 + 0.163652i \(0.947673\pi\)
\(314\) −3.03334 5.25390i −0.171181 0.296495i
\(315\) 0 0
\(316\) −17.9010 + 31.0054i −1.00701 + 1.74419i
\(317\) 4.78415i 0.268705i 0.990934 + 0.134352i \(0.0428954\pi\)
−0.990934 + 0.134352i \(0.957105\pi\)
\(318\) 1.56441 + 0.903212i 0.0877277 + 0.0506496i
\(319\) 6.00000 10.3923i 0.335936 0.581857i
\(320\) 0 0
\(321\) 0.826164 1.43096i 0.0461120 0.0798682i
\(322\) 45.8724 26.4844i 2.55637 1.47592i
\(323\) 6.68100 3.85728i 0.371741 0.214625i
\(324\) −2.90321 −0.161290
\(325\) 0 0
\(326\) −54.6800 −3.02845
\(327\) 2.26279 1.30642i 0.125133 0.0722454i
\(328\) 19.2561 11.1175i 1.06324 0.613863i
\(329\) −4.24766 + 7.35716i −0.234181 + 0.405613i
\(330\) 0 0
\(331\) −1.33654 + 2.31495i −0.0734626 + 0.127241i −0.900417 0.435028i \(-0.856738\pi\)
0.826954 + 0.562269i \(0.190072\pi\)
\(332\) −1.56441 0.903212i −0.0858581 0.0495702i
\(333\) 4.75557i 0.260604i
\(334\) 8.75557 15.1651i 0.479083 0.829797i
\(335\) 0 0
\(336\) 2.64296 + 4.57774i 0.144185 + 0.249736i
\(337\) 29.0350i 1.58164i −0.612049 0.790820i \(-0.709655\pi\)
0.612049 0.790820i \(-0.290345\pi\)
\(338\) 28.0498 6.46912i 1.52571 0.351874i
\(339\) 2.42864 0.131906
\(340\) 0 0
\(341\) 15.3319 + 26.5555i 0.830266 + 1.43806i
\(342\) −4.11844 2.37778i −0.222700 0.128576i
\(343\) 2.75848i 0.148944i
\(344\) −9.49532 + 16.4464i −0.511953 + 0.886729i
\(345\) 0 0
\(346\) −8.08742 −0.434782
\(347\) −24.5156 14.1541i −1.31607 0.759832i −0.332974 0.942936i \(-0.608052\pi\)
−0.983093 + 0.183104i \(0.941385\pi\)
\(348\) 5.19615 3.00000i 0.278543 0.160817i
\(349\) −16.0232 27.7530i −0.857702 1.48558i −0.874115 0.485719i \(-0.838558\pi\)
0.0164125 0.999865i \(-0.494775\pi\)
\(350\) 0 0
\(351\) −0.533338 + 3.56589i −0.0284675 + 0.190333i
\(352\) 40.9403i 2.18212i
\(353\) 12.5477 7.24443i 0.667848 0.385582i −0.127413 0.991850i \(-0.540667\pi\)
0.795261 + 0.606268i \(0.207334\pi\)
\(354\) 11.0437 + 19.1283i 0.586967 + 1.01666i
\(355\) 0 0
\(356\) −46.9403 −2.48783
\(357\) 11.9349 + 6.89062i 0.631662 + 0.364690i
\(358\) −11.2019 6.46743i −0.592039 0.341814i
\(359\) 24.2701 1.28093 0.640463 0.767989i \(-0.278742\pi\)
0.640463 + 0.767989i \(0.278742\pi\)
\(360\) 0 0
\(361\) 7.19381 + 12.4601i 0.378622 + 0.655792i
\(362\) 19.3442 11.1684i 1.01671 0.586997i
\(363\) 22.7146i 1.19221i
\(364\) −37.3669 + 14.7143i −1.95856 + 0.771240i
\(365\) 0 0
\(366\) 5.84691 + 10.1271i 0.305623 + 0.529354i
\(367\) −1.93815 + 1.11899i −0.101170 + 0.0584107i −0.549732 0.835341i \(-0.685270\pi\)
0.448561 + 0.893752i \(0.351937\pi\)
\(368\) 7.43965 + 4.29529i 0.387819 + 0.223907i
\(369\) 11.1175 0.578756
\(370\) 0 0
\(371\) −1.56491 + 2.71050i −0.0812459 + 0.140722i
\(372\) 15.3319i 0.794919i
\(373\) 24.3466 + 14.0565i 1.26062 + 0.727820i 0.973195 0.229982i \(-0.0738669\pi\)
0.287427 + 0.957803i \(0.407200\pi\)
\(374\) −23.0923 39.9971i −1.19408 2.06820i
\(375\) 0 0
\(376\) 4.42864 0.228390
\(377\) −2.73020 6.93332i −0.140613 0.357084i
\(378\) 8.49532i 0.436952i
\(379\) −9.80888 16.9895i −0.503849 0.872691i −0.999990 0.00444967i \(-0.998584\pi\)
0.496142 0.868242i \(-0.334750\pi\)
\(380\) 0 0
\(381\) 9.62790 16.6760i 0.493252 0.854338i
\(382\) 35.3733i 1.80986i
\(383\) −16.8355 9.72001i −0.860256 0.496669i 0.00384183 0.999993i \(-0.498777\pi\)
−0.864098 + 0.503323i \(0.832110\pi\)
\(384\) 7.18421 12.4434i 0.366618 0.635000i
\(385\) 0 0
\(386\) 4.10001 7.10143i 0.208685 0.361453i
\(387\) −8.22318 + 4.74766i −0.418008 + 0.241337i
\(388\) −10.6878 + 6.17061i −0.542591 + 0.313265i
\(389\) 2.81579 0.142766 0.0713832 0.997449i \(-0.477259\pi\)
0.0713832 + 0.997449i \(0.477259\pi\)
\(390\) 0 0
\(391\) 22.3970 1.13266
\(392\) 13.3697 7.71900i 0.675272 0.389869i
\(393\) 11.6158 6.70641i 0.585942 0.338294i
\(394\) 18.1541 31.4438i 0.914590 1.58412i
\(395\) 0 0
\(396\) −8.42864 + 14.5988i −0.423555 + 0.733619i
\(397\) 10.9808 + 6.33976i 0.551110 + 0.318184i 0.749570 0.661926i \(-0.230261\pi\)
−0.198460 + 0.980109i \(0.563594\pi\)
\(398\) 11.7255i 0.587744i
\(399\) 4.11975 7.13562i 0.206246 0.357228i
\(400\) 0 0
\(401\) −0.453829 0.786055i −0.0226631 0.0392537i 0.854471 0.519498i \(-0.173881\pi\)
−0.877135 + 0.480245i \(0.840548\pi\)
\(402\) 7.87310i 0.392675i
\(403\) 18.8314 + 2.81656i 0.938061 + 0.140303i
\(404\) 6.48886 0.322833
\(405\) 0 0
\(406\) 8.77854 + 15.2049i 0.435671 + 0.754605i
\(407\) 23.9134 + 13.8064i 1.18534 + 0.684359i
\(408\) 7.18421i 0.355671i
\(409\) −16.7881 + 29.0779i −0.830120 + 1.43781i 0.0678223 + 0.997697i \(0.478395\pi\)
−0.897942 + 0.440113i \(0.854938\pi\)
\(410\) 0 0
\(411\) 4.73483 0.233552
\(412\) 6.14600 + 3.54839i 0.302792 + 0.174817i
\(413\) −33.1417 + 19.1344i −1.63080 + 0.941540i
\(414\) −6.90321 11.9567i −0.339274 0.587640i
\(415\) 0 0
\(416\) −19.8938 15.8280i −0.975376 0.776029i
\(417\) 11.0415i 0.540704i
\(418\) −23.9134 + 13.8064i −1.16964 + 0.675294i
\(419\) 11.4763 + 19.8775i 0.560652 + 0.971078i 0.997440 + 0.0715136i \(0.0227829\pi\)
−0.436787 + 0.899565i \(0.643884\pi\)
\(420\) 0 0
\(421\) −31.0874 −1.51511 −0.757554 0.652772i \(-0.773606\pi\)
−0.757554 + 0.652772i \(0.773606\pi\)
\(422\) −15.3233 8.84691i −0.745926 0.430661i
\(423\) 1.91766 + 1.10716i 0.0932397 + 0.0538320i
\(424\) 1.63158 0.0792367
\(425\) 0 0
\(426\) 6.35482 + 11.0069i 0.307892 + 0.533284i
\(427\) −17.5463 + 10.1304i −0.849125 + 0.490243i
\(428\) 4.79706i 0.231874i
\(429\) 16.3827 + 13.0344i 0.790965 + 0.629308i
\(430\) 0 0
\(431\) −8.52543 14.7665i −0.410655 0.711276i 0.584306 0.811533i \(-0.301367\pi\)
−0.994962 + 0.100257i \(0.968033\pi\)
\(432\) 1.19320 0.688892i 0.0574077 0.0331443i
\(433\) −2.24483 1.29605i −0.107880 0.0622843i 0.445089 0.895486i \(-0.353172\pi\)
−0.552969 + 0.833202i \(0.686505\pi\)
\(434\) −44.8637 −2.15353
\(435\) 0 0
\(436\) 3.79283 6.56937i 0.181643 0.314616i
\(437\) 13.3907i 0.640564i
\(438\) 5.34198 + 3.08419i 0.255250 + 0.147368i
\(439\) −6.88493 11.9250i −0.328600 0.569151i 0.653635 0.756810i \(-0.273243\pi\)
−0.982234 + 0.187659i \(0.939910\pi\)
\(440\) 0 0
\(441\) 7.71900 0.367572
\(442\) −28.3633 4.24221i −1.34910 0.201781i
\(443\) 4.71609i 0.224068i −0.993704 0.112034i \(-0.964263\pi\)
0.993704 0.112034i \(-0.0357366\pi\)
\(444\) 6.90321 + 11.9567i 0.327612 + 0.567441i
\(445\) 0 0
\(446\) 10.3827 17.9834i 0.491635 0.851537i
\(447\) 2.00000i 0.0945968i
\(448\) 42.7188 + 24.6637i 2.01827 + 1.16525i
\(449\) −5.16839 + 8.95191i −0.243911 + 0.422467i −0.961825 0.273665i \(-0.911764\pi\)
0.717914 + 0.696132i \(0.245097\pi\)
\(450\) 0 0
\(451\) 32.2766 55.9046i 1.51984 2.63245i
\(452\) 6.10622 3.52543i 0.287212 0.165822i
\(453\) 7.63085 4.40567i 0.358529 0.206997i
\(454\) −31.9037 −1.49731
\(455\) 0 0
\(456\) −4.29529 −0.201145
\(457\) −16.9989 + 9.81433i −0.795176 + 0.459095i −0.841782 0.539818i \(-0.818493\pi\)
0.0466054 + 0.998913i \(0.485160\pi\)
\(458\) 34.4297 19.8780i 1.60880 0.928839i
\(459\) 1.79605 3.11085i 0.0838325 0.145202i
\(460\) 0 0
\(461\) −12.6003 + 21.8243i −0.586852 + 1.01646i 0.407789 + 0.913076i \(0.366300\pi\)
−0.994642 + 0.103382i \(0.967034\pi\)
\(462\) −42.7188 24.6637i −1.98746 1.14746i
\(463\) 28.8129i 1.33905i −0.742790 0.669524i \(-0.766498\pi\)
0.742790 0.669524i \(-0.233502\pi\)
\(464\) −1.42372 + 2.46595i −0.0660944 + 0.114479i
\(465\) 0 0
\(466\) −30.4701 52.7758i −1.41150 2.44479i
\(467\) 32.3575i 1.49733i −0.662950 0.748664i \(-0.730696\pi\)
0.662950 0.748664i \(-0.269304\pi\)
\(468\) 3.83531 + 9.73975i 0.177287 + 0.450220i
\(469\) −13.6410 −0.629881
\(470\) 0 0
\(471\) −1.36987 2.37269i −0.0631204 0.109328i
\(472\) 17.2769 + 9.97481i 0.795233 + 0.459128i
\(473\) 55.1338i 2.53506i
\(474\) −13.6533 + 23.6483i −0.627118 + 1.08620i
\(475\) 0 0
\(476\) 40.0098 1.83385
\(477\) 0.706496 + 0.407896i 0.0323482 + 0.0186763i
\(478\) 36.4971 21.0716i 1.66934 0.963792i
\(479\) 2.96666 + 5.13841i 0.135550 + 0.234780i 0.925808 0.377995i \(-0.123386\pi\)
−0.790257 + 0.612775i \(0.790053\pi\)
\(480\) 0 0
\(481\) 15.9541 6.28239i 0.727443 0.286452i
\(482\) 51.5526i 2.34816i
\(483\) 20.7162 11.9605i 0.942621 0.544223i
\(484\) 32.9726 + 57.1102i 1.49875 + 2.59592i
\(485\) 0 0
\(486\) −2.21432 −0.100444
\(487\) 4.19415 + 2.42149i 0.190055 + 0.109728i 0.592008 0.805932i \(-0.298335\pi\)
−0.401953 + 0.915660i \(0.631669\pi\)
\(488\) 9.14695 + 5.28100i 0.414063 + 0.239059i
\(489\) −24.6938 −1.11669
\(490\) 0 0
\(491\) −0.0382604 0.0662690i −0.00172667 0.00299068i 0.865161 0.501495i \(-0.167216\pi\)
−0.866887 + 0.498504i \(0.833883\pi\)
\(492\) 27.9523 16.1383i 1.26019 0.727570i
\(493\) 7.42372i 0.334347i
\(494\) −2.53633 + 16.9578i −0.114115 + 0.762968i
\(495\) 0 0
\(496\) −3.63804 6.30127i −0.163353 0.282935i
\(497\) −19.0705 + 11.0104i −0.855430 + 0.493883i
\(498\) −1.19320 0.688892i −0.0534684 0.0308700i
\(499\) −38.0687 −1.70419 −0.852094 0.523388i \(-0.824668\pi\)
−0.852094 + 0.523388i \(0.824668\pi\)
\(500\) 0 0
\(501\) 3.95407 6.84865i 0.176655 0.305975i
\(502\) 59.1753i 2.64112i
\(503\) 11.4785 + 6.62714i 0.511803 + 0.295489i 0.733574 0.679609i \(-0.237851\pi\)
−0.221772 + 0.975099i \(0.571184\pi\)
\(504\) −3.83654 6.64507i −0.170893 0.295995i
\(505\) 0 0
\(506\) −80.1659 −3.56381
\(507\) 12.6675 2.92149i 0.562582 0.129748i
\(508\) 55.9037i 2.48033i
\(509\) −14.2351 24.6559i −0.630958 1.09285i −0.987356 0.158517i \(-0.949329\pi\)
0.356398 0.934334i \(-0.384005\pi\)
\(510\) 0 0
\(511\) −5.34368 + 9.25553i −0.236391 + 0.409440i
\(512\) 15.2257i 0.672887i
\(513\) −1.85991 1.07382i −0.0821172 0.0474104i
\(514\) −13.1963 + 22.8566i −0.582063 + 1.00816i
\(515\) 0 0
\(516\) −13.7835 + 23.8736i −0.606783 + 1.05098i
\(517\) 11.1347 6.42864i 0.489705 0.282731i
\(518\) −34.9875 + 20.2000i −1.53726 + 0.887538i
\(519\) −3.65233 −0.160319
\(520\) 0 0
\(521\) 17.1175 0.749933 0.374966 0.927038i \(-0.377654\pi\)
0.374966 + 0.927038i \(0.377654\pi\)
\(522\) 3.96318 2.28814i 0.173464 0.100149i
\(523\) −0.115487 + 0.0666765i −0.00504990 + 0.00291556i −0.502523 0.864564i \(-0.667595\pi\)
0.497473 + 0.867480i \(0.334261\pi\)
\(524\) 19.4701 33.7232i 0.850556 1.47321i
\(525\) 0 0
\(526\) −17.6358 + 30.5461i −0.768958 + 1.33187i
\(527\) −16.4284 9.48494i −0.715633 0.413171i
\(528\) 8.00000i 0.348155i
\(529\) 7.93801 13.7490i 0.345131 0.597784i
\(530\) 0 0
\(531\) 4.98741 + 8.63844i 0.216435 + 0.374876i
\(532\) 23.9210i 1.03711i
\(533\) −14.6869 37.2973i −0.636161 1.61553i
\(534\) −35.8020 −1.54930
\(535\) 0 0
\(536\) 3.55554 + 6.15837i 0.153576 + 0.266001i
\(537\) −5.05885 2.92073i −0.218306 0.126039i
\(538\) 21.2301i 0.915296i
\(539\) 22.4099 38.8151i 0.965263 1.67188i
\(540\) 0 0
\(541\) −26.3876 −1.13449 −0.567246 0.823548i \(-0.691991\pi\)
−0.567246 + 0.823548i \(0.691991\pi\)
\(542\) −26.3178 15.1946i −1.13045 0.652663i
\(543\) 8.73596 5.04371i 0.374896 0.216446i
\(544\) 12.6637 + 21.9342i 0.542952 + 0.940420i
\(545\) 0 0
\(546\) −28.5002 + 11.2228i −1.21970 + 0.480292i
\(547\) 0.0573086i 0.00245034i −0.999999 0.00122517i \(-0.999610\pi\)
0.999999 0.00122517i \(-0.000389984\pi\)
\(548\) 11.9046 6.87310i 0.508538 0.293604i
\(549\) 2.64050 + 4.57348i 0.112694 + 0.195191i
\(550\) 0 0
\(551\) 4.43848 0.189086
\(552\) −10.7994 6.23506i −0.459655 0.265382i
\(553\) −40.9730 23.6558i −1.74235 1.00595i
\(554\) −26.1432 −1.11072
\(555\) 0 0
\(556\) 16.0279 + 27.7611i 0.679734 + 1.17733i
\(557\) 35.5434 20.5210i 1.50602 0.869502i 0.506046 0.862507i \(-0.331107\pi\)
0.999976 0.00699538i \(-0.00222672\pi\)
\(558\) 11.6938i 0.495039i
\(559\) 26.7908 + 21.3154i 1.13313 + 0.901543i
\(560\) 0 0
\(561\) −10.4286 18.0629i −0.440298 0.762618i
\(562\) −20.6927 + 11.9469i −0.872868 + 0.503950i
\(563\) 18.3820 + 10.6128i 0.774709 + 0.447278i 0.834552 0.550930i \(-0.185727\pi\)
−0.0598432 + 0.998208i \(0.519060\pi\)
\(564\) 6.42864 0.270695
\(565\) 0 0
\(566\) 34.5385 59.8224i 1.45176 2.51452i
\(567\) 3.83654i 0.161119i
\(568\) 9.94153 + 5.73975i 0.417137 + 0.240834i
\(569\) 8.18098 + 14.1699i 0.342965 + 0.594032i 0.984982 0.172658i \(-0.0552356\pi\)
−0.642017 + 0.766690i \(0.721902\pi\)
\(570\) 0 0
\(571\) −37.7101 −1.57812 −0.789060 0.614317i \(-0.789432\pi\)
−0.789060 + 0.614317i \(0.789432\pi\)
\(572\) 60.1112 + 8.99063i 2.51337 + 0.375917i
\(573\) 15.9748i 0.667357i
\(574\) 47.2235 + 81.7935i 1.97107 + 3.41399i
\(575\) 0 0
\(576\) 6.42864 11.1347i 0.267860 0.463947i
\(577\) 42.7150i 1.77825i 0.457664 + 0.889125i \(0.348686\pi\)
−0.457664 + 0.889125i \(0.651314\pi\)
\(578\) −7.85623 4.53580i −0.326776 0.188664i
\(579\) 1.85159 3.20705i 0.0769495 0.133280i
\(580\) 0 0
\(581\) 1.19358 2.06733i 0.0495179 0.0857675i
\(582\) −8.15174 + 4.70641i −0.337900 + 0.195087i
\(583\) 4.10222 2.36842i 0.169896 0.0980898i
\(584\) 5.57136 0.230545
\(585\) 0 0
\(586\) 13.1066 0.541430
\(587\) 8.33441 4.81187i 0.343998 0.198607i −0.318041 0.948077i \(-0.603025\pi\)
0.662039 + 0.749470i \(0.269692\pi\)
\(588\) 19.4075 11.2050i 0.800354 0.462084i
\(589\) −5.67085 + 9.82220i −0.233663 + 0.404717i
\(590\) 0 0
\(591\) 8.19850 14.2002i 0.337241 0.584119i
\(592\) −5.67433 3.27607i −0.233213 0.134646i
\(593\) 24.5018i 1.00617i 0.864238 + 0.503084i \(0.167801\pi\)
−0.864238 + 0.503084i \(0.832199\pi\)
\(594\) −6.42864 + 11.1347i −0.263770 + 0.456864i
\(595\) 0 0
\(596\) 2.90321 + 5.02851i 0.118920 + 0.205976i
\(597\) 5.29529i 0.216722i
\(598\) −30.9930 + 38.9545i −1.26740 + 1.59297i
\(599\) 16.9654 0.693189 0.346595 0.938015i \(-0.387338\pi\)
0.346595 + 0.938015i \(0.387338\pi\)
\(600\) 0 0
\(601\) 10.7835 + 18.6775i 0.439866 + 0.761871i 0.997679 0.0680961i \(-0.0216925\pi\)
−0.557812 + 0.829967i \(0.688359\pi\)
\(602\) −69.8586 40.3329i −2.84722 1.64384i
\(603\) 3.55554i 0.144793i
\(604\) 12.7906 22.1540i 0.520442 0.901432i
\(605\) 0 0
\(606\) 4.94914 0.201045
\(607\) 17.3081 + 9.99285i 0.702515 + 0.405597i 0.808284 0.588793i \(-0.200397\pi\)
−0.105768 + 0.994391i \(0.533730\pi\)
\(608\) 13.1140 7.57136i 0.531842 0.307059i
\(609\) 3.96444 + 6.86661i 0.160647 + 0.278249i
\(610\) 0 0
\(611\) 1.18098 7.89601i 0.0477774 0.319439i
\(612\) 10.4286i 0.421553i
\(613\) −9.69951 + 5.60001i −0.391760 + 0.226182i −0.682922 0.730491i \(-0.739291\pi\)
0.291163 + 0.956674i \(0.405958\pi\)
\(614\) 16.1509 + 27.9741i 0.651796 + 1.12894i
\(615\) 0 0
\(616\) −44.5531 −1.79510
\(617\) −0.511451 0.295286i −0.0205902 0.0118878i 0.489670 0.871908i \(-0.337117\pi\)
−0.510260 + 0.860020i \(0.670451\pi\)
\(618\) 4.68764 + 2.70641i 0.188564 + 0.108868i
\(619\) 12.2573 0.492664 0.246332 0.969186i \(-0.420775\pi\)
0.246332 + 0.969186i \(0.420775\pi\)
\(620\) 0 0
\(621\) −3.11753 5.39972i −0.125102 0.216683i
\(622\) 34.4695 19.9010i 1.38210 0.797957i
\(623\) 62.0306i 2.48520i
\(624\) −3.88739 3.09289i −0.155620 0.123815i
\(625\) 0 0
\(626\) 6.41112 + 11.1044i 0.256240 + 0.443821i
\(627\) −10.7994 + 6.23506i −0.431288 + 0.249004i
\(628\) −6.88842 3.97703i −0.274878 0.158701i
\(629\) −17.0825 −0.681124
\(630\) 0 0
\(631\) −18.3200 + 31.7312i −0.729309 + 1.26320i 0.227867 + 0.973692i \(0.426825\pi\)
−0.957176 + 0.289507i \(0.906509\pi\)
\(632\) 24.6637i 0.981069i
\(633\) −6.92009 3.99532i −0.275049 0.158800i
\(634\) 5.29682 + 9.17436i 0.210364 + 0.364360i
\(635\) 0 0
\(636\) 2.36842 0.0939138
\(637\) −10.1973 25.8959i −0.404030 1.02603i
\(638\) 26.5718i 1.05199i
\(639\) 2.86987 + 4.97077i 0.113530 + 0.196641i
\(640\) 0 0
\(641\) 10.5827 18.3298i 0.417993 0.723985i −0.577745 0.816218i \(-0.696067\pi\)
0.995737 + 0.0922326i \(0.0294003\pi\)
\(642\) 3.65878i 0.144401i
\(643\) 10.5586 + 6.09602i 0.416391 + 0.240404i 0.693532 0.720426i \(-0.256054\pi\)
−0.277141 + 0.960829i \(0.589387\pi\)
\(644\) 34.7239 60.1436i 1.36831 2.36999i
\(645\) 0 0
\(646\) 8.54125 14.7939i 0.336051 0.582057i
\(647\) 8.19326 4.73038i 0.322110 0.185970i −0.330223 0.943903i \(-0.607124\pi\)
0.652333 + 0.757933i \(0.273790\pi\)
\(648\) −1.73205 + 1.00000i −0.0680414 + 0.0392837i
\(649\) 57.9180 2.27348
\(650\) 0 0
\(651\) −20.2607 −0.794081
\(652\) −62.0866 + 35.8457i −2.43150 + 1.40383i
\(653\) −17.6661 + 10.1995i −0.691326 + 0.399137i −0.804109 0.594482i \(-0.797357\pi\)
0.112782 + 0.993620i \(0.464024\pi\)
\(654\) 2.89284 5.01055i 0.113119 0.195928i
\(655\) 0 0
\(656\) −7.65878 + 13.2654i −0.299025 + 0.517927i
\(657\) 2.41247 + 1.39284i 0.0941194 + 0.0543399i
\(658\) 18.8113i 0.733343i
\(659\) 17.4859 30.2866i 0.681156 1.17980i −0.293473 0.955967i \(-0.594811\pi\)
0.974628 0.223829i \(-0.0718557\pi\)
\(660\) 0 0
\(661\) 9.73014 + 16.8531i 0.378459 + 0.655510i 0.990838 0.135054i \(-0.0431209\pi\)
−0.612380 + 0.790564i \(0.709788\pi\)
\(662\) 5.91903i 0.230050i
\(663\) −12.8090 1.91581i −0.497462 0.0744038i
\(664\) −1.24443 −0.0482933
\(665\) 0 0
\(666\) 5.26517 + 9.11955i 0.204021 + 0.353375i
\(667\) 11.1595 + 6.44293i 0.432097 + 0.249471i
\(668\) 22.9590i 0.888310i
\(669\) 4.68889 8.12140i 0.181283 0.313991i
\(670\) 0 0
\(671\) 30.6637 1.18376
\(672\) 23.4267 + 13.5254i 0.903706 + 0.521755i
\(673\) −12.3540 + 7.13259i −0.476212 + 0.274941i −0.718836 0.695179i \(-0.755325\pi\)
0.242625 + 0.970120i \(0.421992\pi\)
\(674\) −32.1464 55.6792i −1.23823 2.14468i
\(675\) 0 0
\(676\) 27.6084 25.7336i 1.06186 0.989752i
\(677\) 34.0415i 1.30832i −0.756356 0.654160i \(-0.773022\pi\)
0.756356 0.654160i \(-0.226978\pi\)
\(678\) 4.65730 2.68889i 0.178862 0.103266i
\(679\) −8.15433 14.1237i −0.312935 0.542019i
\(680\) 0 0
\(681\) −14.4079 −0.552112
\(682\) 58.8025 + 33.9496i 2.25166 + 1.30000i
\(683\) 25.4077 + 14.6692i 0.972199 + 0.561300i 0.899906 0.436084i \(-0.143635\pi\)
0.0722933 + 0.997383i \(0.476968\pi\)
\(684\) −6.23506 −0.238404
\(685\) 0 0
\(686\) 3.05408 + 5.28982i 0.116605 + 0.201966i
\(687\) 15.5487 8.97703i 0.593219 0.342495i
\(688\) 13.0825i 0.498766i
\(689\) 0.435093 2.90902i 0.0165757 0.110825i
\(690\) 0 0
\(691\) −1.59457 2.76187i −0.0606601 0.105066i 0.834101 0.551612i \(-0.185987\pi\)
−0.894761 + 0.446546i \(0.852654\pi\)
\(692\) −9.18288 + 5.30174i −0.349081 + 0.201542i
\(693\) −19.2921 11.1383i −0.732845 0.423108i
\(694\) −62.6834 −2.37943
\(695\) 0 0
\(696\) 2.06668 3.57959i 0.0783372 0.135684i
\(697\) 39.9353i 1.51266i
\(698\) −61.4540 35.4805i −2.32607 1.34296i
\(699\) −13.7605 23.8339i −0.520470 0.901480i
\(700\) 0 0
\(701\) 2.44738 0.0924361 0.0462180 0.998931i \(-0.485283\pi\)
0.0462180 + 0.998931i \(0.485283\pi\)
\(702\) 2.92525 + 7.42864i 0.110406 + 0.280376i
\(703\) 10.2133i 0.385201i
\(704\) −37.3274 64.6530i −1.40683 2.43670i
\(705\) 0 0
\(706\) 16.0415 27.7847i 0.603729 1.04569i
\(707\) 8.57490i 0.322492i
\(708\) 25.0792 + 14.4795i 0.942535 + 0.544173i
\(709\) −0.301502 + 0.522216i −0.0113231 + 0.0196122i −0.871631 0.490162i \(-0.836938\pi\)
0.860308 + 0.509774i \(0.170271\pi\)
\(710\) 0 0
\(711\) −6.16593 + 10.6797i −0.231240 + 0.400520i
\(712\) −28.0045 + 16.1684i −1.04951 + 0.605936i
\(713\) −28.5159 + 16.4637i −1.06793 + 0.616569i
\(714\) 30.5161 1.14203
\(715\) 0 0
\(716\) −16.9590 −0.633787
\(717\) 16.4823 9.51606i 0.615543 0.355384i
\(718\) 46.5417 26.8709i 1.73692 1.00281i
\(719\) 21.7988 37.7565i 0.812956 1.40808i −0.0978299 0.995203i \(-0.531190\pi\)
0.910786 0.412878i \(-0.135477\pi\)
\(720\) 0 0
\(721\) −4.68913 + 8.12181i −0.174632 + 0.302472i
\(722\) 27.5905 + 15.9294i 1.02681 + 0.592831i
\(723\) 23.2815i 0.865847i
\(724\) 14.6430 25.3623i 0.544201 0.942584i
\(725\) 0 0
\(726\) 25.1486 + 43.5587i 0.933354 + 1.61662i
\(727\) 32.8642i 1.21887i 0.792838 + 0.609433i \(0.208603\pi\)
−0.792838 + 0.609433i \(0.791397\pi\)
\(728\) −17.2247 + 21.6494i −0.638391 + 0.802381i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −17.0541 29.5385i −0.630768 1.09252i
\(732\) 13.2778 + 7.66593i 0.490761 + 0.283341i
\(733\) 17.4035i 0.642811i −0.946942 0.321406i \(-0.895845\pi\)
0.946942 0.321406i \(-0.104155\pi\)
\(734\) −2.47780 + 4.29167i −0.0914572 + 0.158409i
\(735\) 0 0
\(736\) 43.9625 1.62048
\(737\) 17.8791 + 10.3225i 0.658584 + 0.380234i
\(738\) 21.3196 12.3089i 0.784786 0.453096i
\(739\) 21.2924 + 36.8795i 0.783253 + 1.35663i 0.930037 + 0.367465i \(0.119774\pi\)
−0.146785 + 0.989168i \(0.546893\pi\)
\(740\) 0 0
\(741\) −1.14542 + 7.65825i −0.0420781 + 0.281333i
\(742\) 6.93041i 0.254423i
\(743\) 28.4458 16.4232i 1.04358 0.602508i 0.122731 0.992440i \(-0.460835\pi\)
0.920844 + 0.389932i \(0.127501\pi\)
\(744\) 5.28100 + 9.14695i 0.193611 + 0.335344i
\(745\) 0 0
\(746\) 62.2514 2.27918
\(747\) −0.538855 0.311108i −0.0197157 0.0113828i
\(748\) −52.4405 30.2766i −1.91742 1.10702i
\(749\) 6.33921 0.231630
\(750\) 0 0
\(751\) −6.23729 10.8033i −0.227602 0.394218i 0.729495 0.683986i \(-0.239755\pi\)
−0.957097 + 0.289768i \(0.906422\pi\)
\(752\) −2.64212 + 1.52543i −0.0963481 + 0.0556266i
\(753\) 26.7239i 0.973874i
\(754\) −12.9119 10.2730i −0.470223 0.374119i
\(755\) 0 0
\(756\) −5.56914 9.64603i −0.202548 0.350823i
\(757\) −4.22155 + 2.43732i −0.153435 + 0.0885858i −0.574752 0.818328i \(-0.694901\pi\)
0.421317 + 0.906914i \(0.361568\pi\)
\(758\) −37.6202 21.7200i −1.36643 0.788906i
\(759\) −36.2034 −1.31410
\(760\) 0 0
\(761\) 2.05086 3.55219i 0.0743434 0.128767i −0.826457 0.563000i \(-0.809647\pi\)
0.900801 + 0.434233i \(0.142981\pi\)
\(762\) 42.6385i 1.54463i
\(763\) 8.68128 + 5.01214i 0.314284 + 0.181452i
\(764\) 23.1891 + 40.1648i 0.838953 + 1.45311i
\(765\) 0 0
\(766\) −43.0464 −1.55533
\(767\) 22.3917 28.1437i 0.808519 1.01621i
\(768\) 6.10171i 0.220177i
\(769\) −24.0486 41.6535i −0.867216 1.50206i −0.864830 0.502065i \(-0.832574\pi\)
−0.00238584 0.999997i \(-0.500759\pi\)
\(770\) 0 0
\(771\) −5.95952 + 10.3222i −0.214627 + 0.371744i
\(772\) 10.7511i 0.386941i
\(773\) 15.7561 + 9.09679i 0.566707 + 0.327189i 0.755833 0.654764i \(-0.227232\pi\)
−0.189126 + 0.981953i \(0.560565\pi\)
\(774\) −10.5128 + 18.2088i −0.377876 + 0.654500i
\(775\) 0 0
\(776\) −4.25088 + 7.36275i −0.152598 + 0.264307i
\(777\) −15.8006 + 9.12245i −0.566842 + 0.327266i
\(778\) 5.39972 3.11753i 0.193589 0.111769i
\(779\) 23.8765 0.855464
\(780\) 0 0
\(781\) 33.3274 1.19255
\(782\) 42.9498 24.7971i 1.53588 0.886741i
\(783\) 1.78979 1.03334i 0.0639620 0.0369285i
\(784\) −5.31756 + 9.21029i −0.189913 + 0.328939i
\(785\) 0 0
\(786\) 14.8501 25.7212i 0.529687 0.917444i
\(787\) 25.3722 + 14.6486i 0.904421 + 0.522168i 0.878632 0.477500i \(-0.158457\pi\)
0.0257893 + 0.999667i \(0.491790\pi\)
\(788\) 47.6040i 1.69582i
\(789\) −7.96444 + 13.7948i −0.283542 + 0.491108i
\(790\) 0 0
\(791\) 4.65878 + 8.06924i 0.165647 + 0.286909i
\(792\) 11.6128i 0.412645i
\(793\) 11.8549 14.9002i 0.420981 0.529122i
\(794\) 28.0765 0.996398
\(795\) 0 0
\(796\) −7.68667 13.3137i −0.272447 0.471892i
\(797\) −23.2771 13.4390i −0.824515 0.476034i 0.0274557 0.999623i \(-0.491259\pi\)
−0.851971 + 0.523589i \(0.824593\pi\)
\(798\) 18.2449i 0.645863i
\(799\) −3.97703 + 6.88842i −0.140697 + 0.243695i
\(800\) 0 0
\(801\) −16.1684 −0.571282
\(802\) −1.74058 1.00492i −0.0614619 0.0354850i
\(803\) 14.0078 8.08742i 0.494325 0.285399i
\(804\) 5.16124 + 8.93953i 0.182023 + 0.315273i
\(805\) 0 0
\(806\) 39.2306 15.4482i 1.38184 0.544140i
\(807\) 9.58766i 0.337502i
\(808\) 3.87124 2.23506i 0.136190 0.0786293i
\(809\) −14.2286 24.6447i −0.500251 0.866461i −1.00000 0.000290180i \(-0.999908\pi\)
0.499749 0.866170i \(-0.333426\pi\)
\(810\) 0 0
\(811\) −16.6316 −0.584014 −0.292007 0.956416i \(-0.594323\pi\)
−0.292007 + 0.956416i \(0.594323\pi\)
\(812\) 19.9352 + 11.5096i 0.699589 + 0.403908i
\(813\) −11.8853 6.86196i −0.416835 0.240660i
\(814\) 61.1437 2.14308
\(815\) 0 0
\(816\) 2.47457 + 4.28609i 0.0866274 + 0.150043i
\(817\) −17.6605 + 10.1963i −0.617862 + 0.356723i
\(818\) 74.3486i 2.59954i
\(819\) −12.8709 + 5.06829i −0.449745 + 0.177100i
\(820\) 0 0
\(821\) 17.4844 + 30.2839i 0.610210 + 1.05692i 0.991205 + 0.132338i \(0.0422484\pi\)
−0.380994 + 0.924577i \(0.624418\pi\)
\(822\) 9.07977 5.24221i 0.316693 0.182843i
\(823\) 16.1632 + 9.33185i 0.563415 + 0.325288i 0.754515 0.656283i \(-0.227872\pi\)
−0.191100 + 0.981571i \(0.561205\pi\)
\(824\) 4.88892 0.170314
\(825\) 0 0
\(826\) −42.3696 + 73.3863i −1.47423 + 2.55344i
\(827\) 21.2968i 0.740563i 0.928920 + 0.370281i \(0.120739\pi\)
−0.928920 + 0.370281i \(0.879261\pi\)
\(828\) −15.6765 9.05086i −0.544797 0.314539i
\(829\) −3.59610 6.22862i −0.124898 0.216329i 0.796795 0.604249i \(-0.206527\pi\)
−0.921693 + 0.387920i \(0.873194\pi\)
\(830\) 0 0
\(831\) −11.8064 −0.409560
\(832\) −45.8476 6.85728i −1.58948 0.237733i
\(833\) 27.7275i 0.960700i
\(834\) 12.2247 + 21.1738i 0.423306 + 0.733188i
\(835\) 0 0
\(836\) −18.1017 + 31.3531i −0.626061 + 1.08437i
\(837\) 5.28100i 0.182538i
\(838\) 44.0151 + 25.4121i 1.52048 + 0.877847i
\(839\) −0.790602 + 1.36936i −0.0272946 + 0.0472757i −0.879350 0.476176i \(-0.842023\pi\)
0.852055 + 0.523452i \(0.175356\pi\)
\(840\) 0 0
\(841\) 12.3644 21.4158i 0.426359 0.738476i
\(842\) −59.6150 + 34.4187i −2.05447 + 1.18615i
\(843\) −9.34494 + 5.39530i −0.321857 + 0.185824i
\(844\) −23.1985 −0.798525
\(845\) 0 0
\(846\) 4.90321 0.168576
\(847\) −75.4700 + 43.5726i −2.59318 + 1.49717i
\(848\) −0.973400 + 0.561993i −0.0334267 + 0.0192989i
\(849\) 15.5978 27.0162i 0.535315 0.927192i
\(850\) 0 0
\(851\) −14.8256 + 25.6788i −0.508216 + 0.880256i
\(852\) 14.4312 + 8.33185i 0.494404 + 0.285445i
\(853\) 23.0207i 0.788215i 0.919064 + 0.394108i \(0.128946\pi\)
−0.919064 + 0.394108i \(0.871054\pi\)
\(854\) −22.4319 + 38.8531i −0.767603 + 1.32953i
\(855\) 0 0
\(856\) −1.65233 2.86191i −0.0564754 0.0978182i
\(857\) 47.4499i 1.62086i 0.585838 + 0.810428i \(0.300765\pi\)
−0.585838 + 0.810428i \(0.699235\pi\)
\(858\) 45.8476 + 6.85728i 1.56521 + 0.234104i
\(859\) 49.0241 1.67268 0.836341 0.548210i \(-0.184690\pi\)
0.836341 + 0.548210i \(0.184690\pi\)
\(860\) 0 0
\(861\) 21.3264 + 36.9384i 0.726802 + 1.25886i
\(862\) −32.6977 18.8780i −1.11369 0.642988i
\(863\) 37.3590i 1.27172i 0.771806 + 0.635858i \(0.219354\pi\)
−0.771806 + 0.635858i \(0.780646\pi\)
\(864\) 3.52543 6.10622i 0.119937 0.207738i
\(865\) 0 0
\(866\) −5.73975 −0.195045
\(867\) −3.54792 2.04839i −0.120494 0.0695671i
\(868\) −50.9406 + 29.4106i −1.72904 + 0.998261i
\(869\) 35.8020 + 62.0108i 1.21450 + 2.10357i
\(870\) 0 0
\(871\) 11.9282 4.69708i 0.404171 0.159154i
\(872\) 5.22570i 0.176964i
\(873\) −3.68137 + 2.12544i −0.124596 + 0.0719353i
\(874\) −14.8256 25.6788i −0.501485 0.868597i
\(875\) 0 0
\(876\) 8.08742 0.273249
\(877\) −18.0108 10.3985i −0.608181 0.351133i 0.164072 0.986448i \(-0.447537\pi\)
−0.772253 + 0.635315i \(0.780870\pi\)
\(878\) −26.4059 15.2454i −0.891155 0.514509i
\(879\) 5.91903 0.199644
\(880\) 0 0
\(881\) −14.8780 25.7695i −0.501253 0.868196i −0.999999 0.00144781i \(-0.999539\pi\)
0.498746 0.866748i \(-0.333794\pi\)
\(882\) 14.8024 8.54617i 0.498423 0.287765i
\(883\) 40.5975i 1.36621i 0.730318 + 0.683107i \(0.239372\pi\)
−0.730318 + 0.683107i \(0.760628\pi\)
\(884\) −34.9862 + 13.7768i −1.17671 + 0.463366i
\(885\) 0 0
\(886\) −5.22146 9.04384i −0.175419 0.303834i
\(887\) 41.9422 24.2153i 1.40828 0.813071i 0.413058 0.910705i \(-0.364461\pi\)
0.995222 + 0.0976338i \(0.0311274\pi\)
\(888\) 8.23689 + 4.75557i 0.276412 + 0.159586i
\(889\) 73.8756 2.47771
\(890\) 0 0
\(891\) −2.90321 + 5.02851i −0.0972613 + 0.168461i
\(892\) 27.2257i 0.911584i
\(893\) 4.11844 + 2.37778i 0.137818 + 0.0795695i
\(894\) 2.21432 + 3.83531i 0.0740579 + 0.128272i
\(895\) 0 0
\(896\) 55.1249 1.84159
\(897\) −13.9966 + 17.5921i −0.467334 + 0.587383i
\(898\) 22.8889i 0.763813i
\(899\) −5.45706 9.45190i −0.182003 0.315238i
\(900\) 0 0
\(901\) −1.46520 + 2.53781i −0.0488130 + 0.0845467i
\(902\) 142.941i 4.75942i
\(903\) −31.5485 18.2146i −1.04987 0.606143i
\(904\) 2.42864 4.20653i 0.0807753 0.139907i
\(905\) 0 0
\(906\) 9.75557 16.8971i 0.324107 0.561370i
\(907\) −8.91983 + 5.14987i −0.296178 + 0.170998i −0.640725 0.767771i \(-0.721366\pi\)
0.344547 + 0.938769i \(0.388033\pi\)
\(908\) −36.2251 + 20.9146i −1.20217 + 0.694075i
\(909\) 2.23506 0.0741324
\(910\) 0 0
\(911\) 7.35905 0.243816 0.121908 0.992541i \(-0.461099\pi\)
0.121908 + 0.992541i \(0.461099\pi\)
\(912\) 2.56256 1.47949i 0.0848548 0.0489910i
\(913\) −3.12882 + 1.80642i −0.103549 + 0.0597839i
\(914\) −21.7321 + 37.6411i −0.718833 + 1.24506i
\(915\) 0 0
\(916\) 26.0622 45.1411i 0.861120 1.49150i
\(917\) 44.5646 + 25.7294i 1.47165 + 0.849659i
\(918\) 7.95407i 0.262523i
\(919\) 0.391383 0.677895i 0.0129105 0.0223617i −0.859498 0.511139i \(-0.829224\pi\)
0.872408 + 0.488777i \(0.162557\pi\)
\(920\) 0 0
\(921\) 7.29383 + 12.6333i 0.240340 + 0.416281i
\(922\) 55.8020i 1.83774i
\(923\) 12.8847 16.1946i 0.424107 0.533051i
\(924\) −64.6735 −2.12760
\(925\) 0 0
\(926\) −31.9005 55.2532i −1.04831 1.81573i
\(927\) 2.11697 + 1.22223i 0.0695303 + 0.0401433i
\(928\) 14.5718i 0.478344i
\(929\) −14.2208 + 24.6311i −0.466568 + 0.808120i −0.999271 0.0381824i \(-0.987843\pi\)
0.532702 + 0.846303i \(0.321177\pi\)
\(930\) 0 0
\(931\) 16.5777 0.543311
\(932\) −69.1948 39.9496i −2.26655 1.30859i
\(933\) 15.5666 8.98741i 0.509629 0.294234i
\(934\) −35.8249 62.0506i −1.17223 2.03036i
\(935\) 0 0
\(936\) 5.64296 + 4.48966i 0.184446 + 0.146749i
\(937\) 21.3747i 0.698282i −0.937070 0.349141i \(-0.886473\pi\)
0.937070 0.349141i \(-0.113527\pi\)
\(938\) −26.1587 + 15.1027i −0.854111 + 0.493121i
\(939\) 2.89530 + 5.01481i 0.0944846 + 0.163652i
\(940\) 0 0
\(941\) −38.2830 −1.24799 −0.623995 0.781428i \(-0.714492\pi\)
−0.623995 + 0.781428i \(0.714492\pi\)
\(942\) −5.25390 3.03334i −0.171181 0.0988315i
\(943\) 60.0316 + 34.6593i 1.95490 + 1.12866i
\(944\) −13.7431 −0.447301
\(945\) 0 0
\(946\) 61.0420 + 105.728i 1.98465 + 3.43751i
\(947\) 6.58613 3.80251i 0.214021 0.123565i −0.389158 0.921171i \(-0.627234\pi\)
0.603179 + 0.797606i \(0.293901\pi\)
\(948\) 35.8020i 1.16279i
\(949\) 1.48571 9.93342i 0.0482282 0.322452i
\(950\) 0 0
\(951\) 2.39207 + 4.14319i 0.0775683 + 0.134352i
\(952\) 23.8698 13.7812i 0.773625 0.446652i
\(953\) −28.8871 16.6780i −0.935746 0.540253i −0.0471217 0.998889i \(-0.515005\pi\)
−0.888624 + 0.458636i \(0.848338\pi\)
\(954\) 1.80642 0.0584851
\(955\) 0 0
\(956\) 27.6271 47.8516i 0.893525 1.54763i
\(957\) 12.0000i 0.387905i
\(958\) 11.3781 + 6.56914i 0.367609 + 0.212239i
\(959\) 9.08266 + 15.7316i 0.293294 + 0.508001i
\(960\) 0 0
\(961\) −3.11108 −0.100357
\(962\) 23.6388 29.7112i 0.762146 0.957926i
\(963\) 1.65233i 0.0532455i
\(964\) 33.7955 + 58.5356i 1.08848 + 1.88530i
\(965\) 0 0
\(966\) 26.4844 45.8724i 0.852122 1.47592i
\(967\) 40.8988i 1.31522i −0.753360 0.657608i \(-0.771568\pi\)
0.753360 0.657608i \(-0.228432\pi\)
\(968\) 39.3428 + 22.7146i 1.26452 + 0.730074i
\(969\) 3.85728 6.68100i 0.123914 0.214625i
\(970\) 0 0
\(971\) 2.11753 3.66767i 0.0679548 0.117701i −0.830046 0.557695i \(-0.811686\pi\)
0.898001 + 0.439994i \(0.145019\pi\)
\(972\) −2.51426 + 1.45161i −0.0806448 + 0.0465603i
\(973\) −36.6858 + 21.1805i −1.17609 + 0.679017i
\(974\) 10.7239 0.343617
\(975\) 0 0
\(976\) −7.27607 −0.232901
\(977\) −33.5915 + 19.3941i −1.07469 + 0.620472i −0.929459 0.368926i \(-0.879725\pi\)
−0.145230 + 0.989398i \(0.546392\pi\)
\(978\) −47.3543 + 27.3400i −1.51422 + 0.874237i
\(979\) −46.9403 + 81.3029i −1.50022 + 2.59845i
\(980\) 0 0
\(981\) 1.30642 2.26279i 0.0417109 0.0722454i
\(982\) −0.146741 0.0847209i −0.00468269 0.00270355i
\(983\) 21.4479i 0.684080i −0.939685 0.342040i \(-0.888882\pi\)
0.939685 0.342040i \(-0.111118\pi\)
\(984\) 11.1175 19.2561i 0.354414 0.613863i
\(985\) 0 0
\(986\) 8.21924 + 14.2361i 0.261754 + 0.453371i
\(987\) 8.49532i 0.270409i
\(988\) 8.23689 + 20.9175i 0.262050 + 0.665474i
\(989\) −59.2039 −1.88257
\(990\) 0 0
\(991\) 5.65010 + 9.78627i 0.179481 + 0.310871i 0.941703 0.336445i \(-0.109225\pi\)
−0.762222 + 0.647316i \(0.775891\pi\)
\(992\) −32.2469 18.6178i −1.02384 0.591115i
\(993\) 2.67307i 0.0848273i
\(994\) −24.3805 + 42.2282i −0.773302 + 1.33940i
\(995\) 0 0
\(996\) −1.80642 −0.0572387
\(997\) 46.9599 + 27.1123i 1.48724 + 0.858656i 0.999894 0.0145557i \(-0.00463339\pi\)
0.487341 + 0.873212i \(0.337967\pi\)
\(998\) −73.0027 + 42.1481i −2.31086 + 1.33418i
\(999\) 2.37778 + 4.11844i 0.0752298 + 0.130302i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bb.j.874.6 12
5.2 odd 4 975.2.i.m.601.3 6
5.3 odd 4 195.2.i.e.16.1 6
5.4 even 2 inner 975.2.bb.j.874.1 12
13.9 even 3 inner 975.2.bb.j.724.1 12
15.8 even 4 585.2.j.g.406.3 6
65.3 odd 12 2535.2.a.y.1.3 3
65.9 even 6 inner 975.2.bb.j.724.6 12
65.22 odd 12 975.2.i.m.451.3 6
65.23 odd 12 2535.2.a.z.1.1 3
65.48 odd 12 195.2.i.e.61.1 yes 6
195.23 even 12 7605.2.a.bt.1.3 3
195.68 even 12 7605.2.a.bu.1.1 3
195.113 even 12 585.2.j.g.451.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.i.e.16.1 6 5.3 odd 4
195.2.i.e.61.1 yes 6 65.48 odd 12
585.2.j.g.406.3 6 15.8 even 4
585.2.j.g.451.3 6 195.113 even 12
975.2.i.m.451.3 6 65.22 odd 12
975.2.i.m.601.3 6 5.2 odd 4
975.2.bb.j.724.1 12 13.9 even 3 inner
975.2.bb.j.724.6 12 65.9 even 6 inner
975.2.bb.j.874.1 12 5.4 even 2 inner
975.2.bb.j.874.6 12 1.1 even 1 trivial
2535.2.a.y.1.3 3 65.3 odd 12
2535.2.a.z.1.1 3 65.23 odd 12
7605.2.a.bt.1.3 3 195.23 even 12
7605.2.a.bu.1.1 3 195.68 even 12