Properties

Label 975.1.x
Level $975$
Weight $1$
Character orbit 975.x
Rep. character $\chi_{975}(101,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $4$
Newform subspaces $2$
Sturm bound $140$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 975.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(140\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(975, [\chi])\).

Total New Old
Modular forms 28 16 12
Cusp forms 4 4 0
Eisenstein series 24 12 12

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q + 2 q^{4} - 2 q^{9} - 2 q^{16} - 6 q^{19} + 2 q^{36} - 2 q^{39} + 4 q^{49} + 4 q^{61} - 4 q^{64} - 6 q^{76} + 4 q^{79} - 2 q^{81} + 6 q^{84} - 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(975, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
975.1.x.a 975.x 39.h $2$ $0.487$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 975.1.x.a \(0\) \(-1\) \(0\) \(-3\) \(q-\zeta_{6}q^{3}-\zeta_{6}^{2}q^{4}+(-1-\zeta_{6})q^{7}+\cdots\)
975.1.x.b 975.x 39.h $2$ $0.487$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 975.1.x.a \(0\) \(1\) \(0\) \(3\) \(q+\zeta_{6}q^{3}-\zeta_{6}^{2}q^{4}+(1+\zeta_{6})q^{7}+\zeta_{6}^{2}q^{9}+\cdots\)