Properties

Label 9702.2.a.m
Level $9702$
Weight $2$
Character orbit 9702.a
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 198)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} - q^{8} + q^{11} - 2 q^{13} + q^{16} - 6 q^{17} - 2 q^{19} - q^{22} - 5 q^{25} + 2 q^{26} + 6 q^{29} + 4 q^{31} - q^{32} + 6 q^{34} + 2 q^{37} + 2 q^{38} + 6 q^{41} - 10 q^{43} + q^{44} + 12 q^{47} + 5 q^{50} - 2 q^{52} + 12 q^{53} - 6 q^{58} + 12 q^{59} + 10 q^{61} - 4 q^{62} + q^{64} + 8 q^{67} - 6 q^{68} - 12 q^{71} - 14 q^{73} - 2 q^{74} - 2 q^{76} + 2 q^{79} - 6 q^{82} - 12 q^{83} + 10 q^{86} - q^{88} - 12 q^{94} - 2 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 0 0 0 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9702.2.a.m 1
3.b odd 2 1 9702.2.a.bm 1
7.b odd 2 1 198.2.a.b 1
21.c even 2 1 198.2.a.d yes 1
28.d even 2 1 1584.2.a.i 1
35.c odd 2 1 4950.2.a.bd 1
35.f even 4 2 4950.2.c.x 2
56.e even 2 1 6336.2.a.bd 1
56.h odd 2 1 6336.2.a.bh 1
63.l odd 6 2 1782.2.e.r 2
63.o even 6 2 1782.2.e.g 2
77.b even 2 1 2178.2.a.h 1
84.h odd 2 1 1584.2.a.k 1
105.g even 2 1 4950.2.a.d 1
105.k odd 4 2 4950.2.c.c 2
168.e odd 2 1 6336.2.a.z 1
168.i even 2 1 6336.2.a.bm 1
231.h odd 2 1 2178.2.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
198.2.a.b 1 7.b odd 2 1
198.2.a.d yes 1 21.c even 2 1
1584.2.a.i 1 28.d even 2 1
1584.2.a.k 1 84.h odd 2 1
1782.2.e.g 2 63.o even 6 2
1782.2.e.r 2 63.l odd 6 2
2178.2.a.a 1 231.h odd 2 1
2178.2.a.h 1 77.b even 2 1
4950.2.a.d 1 105.g even 2 1
4950.2.a.bd 1 35.c odd 2 1
4950.2.c.c 2 105.k odd 4 2
4950.2.c.x 2 35.f even 4 2
6336.2.a.z 1 168.e odd 2 1
6336.2.a.bd 1 56.e even 2 1
6336.2.a.bh 1 56.h odd 2 1
6336.2.a.bm 1 168.i even 2 1
9702.2.a.m 1 1.a even 1 1 trivial
9702.2.a.bm 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9702))\):

\( T_{5} \)
\( T_{13} + 2 \)
\( T_{17} + 6 \)
\( T_{19} + 2 \)
\( T_{23} \)
\( T_{29} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( -1 + T \)
$13$ \( 2 + T \)
$17$ \( 6 + T \)
$19$ \( 2 + T \)
$23$ \( T \)
$29$ \( -6 + T \)
$31$ \( -4 + T \)
$37$ \( -2 + T \)
$41$ \( -6 + T \)
$43$ \( 10 + T \)
$47$ \( -12 + T \)
$53$ \( -12 + T \)
$59$ \( -12 + T \)
$61$ \( -10 + T \)
$67$ \( -8 + T \)
$71$ \( 12 + T \)
$73$ \( 14 + T \)
$79$ \( -2 + T \)
$83$ \( 12 + T \)
$89$ \( T \)
$97$ \( 2 + T \)
show more
show less