Properties

Label 9702.2.a.i
Level $9702$
Weight $2$
Character orbit 9702.a
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - 2q^{5} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} - 2q^{5} - q^{8} + 2q^{10} + q^{11} - 7q^{13} + q^{16} - 2q^{17} - 2q^{20} - q^{22} + 8q^{23} - q^{25} + 7q^{26} + 5q^{29} + 4q^{31} - q^{32} + 2q^{34} + 4q^{37} + 2q^{40} - 4q^{41} - 8q^{43} + q^{44} - 8q^{46} - 2q^{47} + q^{50} - 7q^{52} + 6q^{53} - 2q^{55} - 5q^{58} - 3q^{59} + q^{61} - 4q^{62} + q^{64} + 14q^{65} + 9q^{67} - 2q^{68} + 2q^{71} + 4q^{73} - 4q^{74} + 9q^{79} - 2q^{80} + 4q^{82} - 6q^{83} + 4q^{85} + 8q^{86} - q^{88} - 6q^{89} + 8q^{92} + 2q^{94} + 7q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 −2.00000 0 0 −1.00000 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9702.2.a.i 1
3.b odd 2 1 1078.2.a.m 1
7.b odd 2 1 9702.2.a.y 1
7.c even 3 2 1386.2.k.o 2
12.b even 2 1 8624.2.a.b 1
21.c even 2 1 1078.2.a.g 1
21.g even 6 2 1078.2.e.f 2
21.h odd 6 2 154.2.e.a 2
84.h odd 2 1 8624.2.a.be 1
84.n even 6 2 1232.2.q.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.e.a 2 21.h odd 6 2
1078.2.a.g 1 21.c even 2 1
1078.2.a.m 1 3.b odd 2 1
1078.2.e.f 2 21.g even 6 2
1232.2.q.e 2 84.n even 6 2
1386.2.k.o 2 7.c even 3 2
8624.2.a.b 1 12.b even 2 1
8624.2.a.be 1 84.h odd 2 1
9702.2.a.i 1 1.a even 1 1 trivial
9702.2.a.y 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9702))\):

\( T_{5} + 2 \)
\( T_{13} + 7 \)
\( T_{17} + 2 \)
\( T_{19} \)
\( T_{23} - 8 \)
\( T_{29} - 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( T \)
$5$ \( 2 + T \)
$7$ \( T \)
$11$ \( -1 + T \)
$13$ \( 7 + T \)
$17$ \( 2 + T \)
$19$ \( T \)
$23$ \( -8 + T \)
$29$ \( -5 + T \)
$31$ \( -4 + T \)
$37$ \( -4 + T \)
$41$ \( 4 + T \)
$43$ \( 8 + T \)
$47$ \( 2 + T \)
$53$ \( -6 + T \)
$59$ \( 3 + T \)
$61$ \( -1 + T \)
$67$ \( -9 + T \)
$71$ \( -2 + T \)
$73$ \( -4 + T \)
$79$ \( -9 + T \)
$83$ \( 6 + T \)
$89$ \( 6 + T \)
$97$ \( -7 + T \)
show more
show less