Properties

Label 9702.2.a.ec.1.3
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.14336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3234)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.60804\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.27411 q^{5} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.27411 q^{5} +1.00000 q^{8} +2.27411 q^{10} +1.00000 q^{11} -4.63029 q^{13} +1.00000 q^{16} -0.554318 q^{17} +4.07597 q^{19} +2.27411 q^{20} +1.00000 q^{22} +6.93587 q^{23} +0.171573 q^{25} -4.63029 q^{26} +2.82843 q^{29} +7.68832 q^{31} +1.00000 q^{32} -0.554318 q^{34} +10.8729 q^{37} +4.07597 q^{38} +2.27411 q^{40} +0.554318 q^{41} -8.59272 q^{43} +1.00000 q^{44} +6.93587 q^{46} -10.9044 q^{47} +0.171573 q^{50} -4.63029 q^{52} +0.440778 q^{53} +2.27411 q^{55} +2.82843 q^{58} -5.17157 q^{59} +2.19814 q^{61} +7.68832 q^{62} +1.00000 q^{64} -10.5298 q^{65} -11.1409 q^{67} -0.554318 q^{68} -3.60373 q^{71} +14.3631 q^{73} +10.8729 q^{74} +4.07597 q^{76} +15.7014 q^{79} +2.27411 q^{80} +0.554318 q^{82} +6.51675 q^{83} -1.26058 q^{85} -8.59272 q^{86} +1.00000 q^{88} +4.23401 q^{89} +6.93587 q^{92} -10.9044 q^{94} +9.26921 q^{95} +3.84637 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 4 q^{11} + 4 q^{16} + 4 q^{22} + 8 q^{23} + 12 q^{25} + 16 q^{31} + 4 q^{32} + 8 q^{37} + 8 q^{43} + 4 q^{44} + 8 q^{46} - 16 q^{47} + 12 q^{50} - 8 q^{53} - 32 q^{59} + 16 q^{61} + 16 q^{62} + 4 q^{64} + 16 q^{65} + 16 q^{67} + 8 q^{74} + 16 q^{79} + 32 q^{85} + 8 q^{86} + 4 q^{88} - 16 q^{89} + 8 q^{92} - 16 q^{94} + 16 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.27411 1.01701 0.508506 0.861058i \(-0.330198\pi\)
0.508506 + 0.861058i \(0.330198\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.27411 0.719136
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.63029 −1.28421 −0.642106 0.766616i \(-0.721939\pi\)
−0.642106 + 0.766616i \(0.721939\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.554318 −0.134442 −0.0672209 0.997738i \(-0.521413\pi\)
−0.0672209 + 0.997738i \(0.521413\pi\)
\(18\) 0 0
\(19\) 4.07597 0.935092 0.467546 0.883969i \(-0.345138\pi\)
0.467546 + 0.883969i \(0.345138\pi\)
\(20\) 2.27411 0.508506
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 6.93587 1.44623 0.723114 0.690729i \(-0.242710\pi\)
0.723114 + 0.690729i \(0.242710\pi\)
\(24\) 0 0
\(25\) 0.171573 0.0343146
\(26\) −4.63029 −0.908075
\(27\) 0 0
\(28\) 0 0
\(29\) 2.82843 0.525226 0.262613 0.964901i \(-0.415416\pi\)
0.262613 + 0.964901i \(0.415416\pi\)
\(30\) 0 0
\(31\) 7.68832 1.38086 0.690432 0.723398i \(-0.257421\pi\)
0.690432 + 0.723398i \(0.257421\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.554318 −0.0950647
\(35\) 0 0
\(36\) 0 0
\(37\) 10.8729 1.78750 0.893749 0.448567i \(-0.148065\pi\)
0.893749 + 0.448567i \(0.148065\pi\)
\(38\) 4.07597 0.661210
\(39\) 0 0
\(40\) 2.27411 0.359568
\(41\) 0.554318 0.0865699 0.0432850 0.999063i \(-0.486218\pi\)
0.0432850 + 0.999063i \(0.486218\pi\)
\(42\) 0 0
\(43\) −8.59272 −1.31038 −0.655189 0.755465i \(-0.727411\pi\)
−0.655189 + 0.755465i \(0.727411\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 6.93587 1.02264
\(47\) −10.9044 −1.59057 −0.795285 0.606236i \(-0.792679\pi\)
−0.795285 + 0.606236i \(0.792679\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.171573 0.0242641
\(51\) 0 0
\(52\) −4.63029 −0.642106
\(53\) 0.440778 0.0605455 0.0302728 0.999542i \(-0.490362\pi\)
0.0302728 + 0.999542i \(0.490362\pi\)
\(54\) 0 0
\(55\) 2.27411 0.306641
\(56\) 0 0
\(57\) 0 0
\(58\) 2.82843 0.371391
\(59\) −5.17157 −0.673281 −0.336641 0.941633i \(-0.609291\pi\)
−0.336641 + 0.941633i \(0.609291\pi\)
\(60\) 0 0
\(61\) 2.19814 0.281443 0.140721 0.990049i \(-0.455058\pi\)
0.140721 + 0.990049i \(0.455058\pi\)
\(62\) 7.68832 0.976418
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −10.5298 −1.30606
\(66\) 0 0
\(67\) −11.1409 −1.36108 −0.680541 0.732710i \(-0.738255\pi\)
−0.680541 + 0.732710i \(0.738255\pi\)
\(68\) −0.554318 −0.0672209
\(69\) 0 0
\(70\) 0 0
\(71\) −3.60373 −0.427683 −0.213842 0.976868i \(-0.568598\pi\)
−0.213842 + 0.976868i \(0.568598\pi\)
\(72\) 0 0
\(73\) 14.3631 1.68108 0.840538 0.541753i \(-0.182239\pi\)
0.840538 + 0.541753i \(0.182239\pi\)
\(74\) 10.8729 1.26395
\(75\) 0 0
\(76\) 4.07597 0.467546
\(77\) 0 0
\(78\) 0 0
\(79\) 15.7014 1.76654 0.883270 0.468864i \(-0.155337\pi\)
0.883270 + 0.468864i \(0.155337\pi\)
\(80\) 2.27411 0.254253
\(81\) 0 0
\(82\) 0.554318 0.0612142
\(83\) 6.51675 0.715306 0.357653 0.933855i \(-0.383577\pi\)
0.357653 + 0.933855i \(0.383577\pi\)
\(84\) 0 0
\(85\) −1.26058 −0.136729
\(86\) −8.59272 −0.926577
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 4.23401 0.448805 0.224402 0.974497i \(-0.427957\pi\)
0.224402 + 0.974497i \(0.427957\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.93587 0.723114
\(93\) 0 0
\(94\) −10.9044 −1.12470
\(95\) 9.26921 0.951000
\(96\) 0 0
\(97\) 3.84637 0.390539 0.195270 0.980750i \(-0.437442\pi\)
0.195270 + 0.980750i \(0.437442\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0.171573 0.0171573
\(101\) −10.7377 −1.06844 −0.534222 0.845344i \(-0.679395\pi\)
−0.534222 + 0.845344i \(0.679395\pi\)
\(102\) 0 0
\(103\) −9.49712 −0.935779 −0.467890 0.883787i \(-0.654985\pi\)
−0.467890 + 0.883787i \(0.654985\pi\)
\(104\) −4.63029 −0.454037
\(105\) 0 0
\(106\) 0.440778 0.0428122
\(107\) 7.64823 0.739382 0.369691 0.929155i \(-0.379464\pi\)
0.369691 + 0.929155i \(0.379464\pi\)
\(108\) 0 0
\(109\) −1.22470 −0.117305 −0.0586526 0.998278i \(-0.518680\pi\)
−0.0586526 + 0.998278i \(0.518680\pi\)
\(110\) 2.27411 0.216828
\(111\) 0 0
\(112\) 0 0
\(113\) −3.37665 −0.317648 −0.158824 0.987307i \(-0.550770\pi\)
−0.158824 + 0.987307i \(0.550770\pi\)
\(114\) 0 0
\(115\) 15.7729 1.47083
\(116\) 2.82843 0.262613
\(117\) 0 0
\(118\) −5.17157 −0.476082
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 2.19814 0.199010
\(123\) 0 0
\(124\) 7.68832 0.690432
\(125\) −10.9804 −0.982114
\(126\) 0 0
\(127\) 18.3656 1.62969 0.814844 0.579681i \(-0.196823\pi\)
0.814844 + 0.579681i \(0.196823\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −10.5298 −0.923523
\(131\) −10.5167 −0.918853 −0.459426 0.888216i \(-0.651945\pi\)
−0.459426 + 0.888216i \(0.651945\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.1409 −0.962431
\(135\) 0 0
\(136\) −0.554318 −0.0475324
\(137\) 1.60373 0.137015 0.0685077 0.997651i \(-0.478176\pi\)
0.0685077 + 0.997651i \(0.478176\pi\)
\(138\) 0 0
\(139\) −11.4526 −0.971398 −0.485699 0.874126i \(-0.661435\pi\)
−0.485699 + 0.874126i \(0.661435\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.60373 −0.302418
\(143\) −4.63029 −0.387204
\(144\) 0 0
\(145\) 6.43215 0.534161
\(146\) 14.3631 1.18870
\(147\) 0 0
\(148\) 10.8729 0.893749
\(149\) 6.99257 0.572854 0.286427 0.958102i \(-0.407532\pi\)
0.286427 + 0.958102i \(0.407532\pi\)
\(150\) 0 0
\(151\) 19.5286 1.58921 0.794607 0.607124i \(-0.207677\pi\)
0.794607 + 0.607124i \(0.207677\pi\)
\(152\) 4.07597 0.330605
\(153\) 0 0
\(154\) 0 0
\(155\) 17.4841 1.40436
\(156\) 0 0
\(157\) 9.81490 0.783314 0.391657 0.920111i \(-0.371902\pi\)
0.391657 + 0.920111i \(0.371902\pi\)
\(158\) 15.7014 1.24913
\(159\) 0 0
\(160\) 2.27411 0.179784
\(161\) 0 0
\(162\) 0 0
\(163\) 13.6569 1.06969 0.534844 0.844951i \(-0.320370\pi\)
0.534844 + 0.844951i \(0.320370\pi\)
\(164\) 0.554318 0.0432850
\(165\) 0 0
\(166\) 6.51675 0.505798
\(167\) 6.03588 0.467070 0.233535 0.972348i \(-0.424971\pi\)
0.233535 + 0.972348i \(0.424971\pi\)
\(168\) 0 0
\(169\) 8.43958 0.649199
\(170\) −1.26058 −0.0966820
\(171\) 0 0
\(172\) −8.59272 −0.655189
\(173\) −3.68222 −0.279954 −0.139977 0.990155i \(-0.544703\pi\)
−0.139977 + 0.990155i \(0.544703\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 4.23401 0.317353
\(179\) 10.6049 0.792649 0.396324 0.918111i \(-0.370286\pi\)
0.396324 + 0.918111i \(0.370286\pi\)
\(180\) 0 0
\(181\) 20.7692 1.54376 0.771881 0.635767i \(-0.219316\pi\)
0.771881 + 0.635767i \(0.219316\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.93587 0.511319
\(185\) 24.7262 1.81791
\(186\) 0 0
\(187\) −0.554318 −0.0405357
\(188\) −10.9044 −0.795285
\(189\) 0 0
\(190\) 9.26921 0.672459
\(191\) −16.6817 −1.20705 −0.603524 0.797345i \(-0.706237\pi\)
−0.603524 + 0.797345i \(0.706237\pi\)
\(192\) 0 0
\(193\) 5.43958 0.391550 0.195775 0.980649i \(-0.437278\pi\)
0.195775 + 0.980649i \(0.437278\pi\)
\(194\) 3.84637 0.276153
\(195\) 0 0
\(196\) 0 0
\(197\) 10.3963 0.740704 0.370352 0.928892i \(-0.379237\pi\)
0.370352 + 0.928892i \(0.379237\pi\)
\(198\) 0 0
\(199\) 6.03147 0.427559 0.213780 0.976882i \(-0.431423\pi\)
0.213780 + 0.976882i \(0.431423\pi\)
\(200\) 0.171573 0.0121320
\(201\) 0 0
\(202\) −10.7377 −0.755504
\(203\) 0 0
\(204\) 0 0
\(205\) 1.26058 0.0880427
\(206\) −9.49712 −0.661696
\(207\) 0 0
\(208\) −4.63029 −0.321053
\(209\) 4.07597 0.281941
\(210\) 0 0
\(211\) −2.16057 −0.148740 −0.0743699 0.997231i \(-0.523695\pi\)
−0.0743699 + 0.997231i \(0.523695\pi\)
\(212\) 0.440778 0.0302728
\(213\) 0 0
\(214\) 7.64823 0.522822
\(215\) −19.5408 −1.33267
\(216\) 0 0
\(217\) 0 0
\(218\) −1.22470 −0.0829473
\(219\) 0 0
\(220\) 2.27411 0.153320
\(221\) 2.56665 0.172652
\(222\) 0 0
\(223\) −1.17598 −0.0787496 −0.0393748 0.999225i \(-0.512537\pi\)
−0.0393748 + 0.999225i \(0.512537\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3.37665 −0.224611
\(227\) 22.0453 1.46320 0.731600 0.681734i \(-0.238774\pi\)
0.731600 + 0.681734i \(0.238774\pi\)
\(228\) 0 0
\(229\) −0.554318 −0.0366304 −0.0183152 0.999832i \(-0.505830\pi\)
−0.0183152 + 0.999832i \(0.505830\pi\)
\(230\) 15.7729 1.04004
\(231\) 0 0
\(232\) 2.82843 0.185695
\(233\) 0.343146 0.0224802 0.0112401 0.999937i \(-0.496422\pi\)
0.0112401 + 0.999937i \(0.496422\pi\)
\(234\) 0 0
\(235\) −24.7978 −1.61763
\(236\) −5.17157 −0.336641
\(237\) 0 0
\(238\) 0 0
\(239\) 5.56785 0.360154 0.180077 0.983653i \(-0.442365\pi\)
0.180077 + 0.983653i \(0.442365\pi\)
\(240\) 0 0
\(241\) −1.94077 −0.125016 −0.0625080 0.998044i \(-0.519910\pi\)
−0.0625080 + 0.998044i \(0.519910\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) 2.19814 0.140721
\(245\) 0 0
\(246\) 0 0
\(247\) −18.8729 −1.20086
\(248\) 7.68832 0.488209
\(249\) 0 0
\(250\) −10.9804 −0.694460
\(251\) −23.4657 −1.48114 −0.740569 0.671980i \(-0.765444\pi\)
−0.740569 + 0.671980i \(0.765444\pi\)
\(252\) 0 0
\(253\) 6.93587 0.436054
\(254\) 18.3656 1.15236
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −22.6083 −1.41027 −0.705133 0.709075i \(-0.749113\pi\)
−0.705133 + 0.709075i \(0.749113\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −10.5298 −0.653030
\(261\) 0 0
\(262\) −10.5167 −0.649727
\(263\) 31.2299 1.92572 0.962861 0.269999i \(-0.0870235\pi\)
0.962861 + 0.269999i \(0.0870235\pi\)
\(264\) 0 0
\(265\) 1.00238 0.0615756
\(266\) 0 0
\(267\) 0 0
\(268\) −11.1409 −0.680541
\(269\) −28.4792 −1.73641 −0.868203 0.496209i \(-0.834725\pi\)
−0.868203 + 0.496209i \(0.834725\pi\)
\(270\) 0 0
\(271\) 9.94687 0.604229 0.302115 0.953272i \(-0.402307\pi\)
0.302115 + 0.953272i \(0.402307\pi\)
\(272\) −0.554318 −0.0336105
\(273\) 0 0
\(274\) 1.60373 0.0968846
\(275\) 0.171573 0.0103462
\(276\) 0 0
\(277\) 26.5262 1.59381 0.796903 0.604108i \(-0.206470\pi\)
0.796903 + 0.604108i \(0.206470\pi\)
\(278\) −11.4526 −0.686882
\(279\) 0 0
\(280\) 0 0
\(281\) 5.11844 0.305341 0.152670 0.988277i \(-0.451213\pi\)
0.152670 + 0.988277i \(0.451213\pi\)
\(282\) 0 0
\(283\) −2.48205 −0.147543 −0.0737714 0.997275i \(-0.523504\pi\)
−0.0737714 + 0.997275i \(0.523504\pi\)
\(284\) −3.60373 −0.213842
\(285\) 0 0
\(286\) −4.63029 −0.273795
\(287\) 0 0
\(288\) 0 0
\(289\) −16.6927 −0.981925
\(290\) 6.43215 0.377709
\(291\) 0 0
\(292\) 14.3631 0.840538
\(293\) −2.02537 −0.118323 −0.0591617 0.998248i \(-0.518843\pi\)
−0.0591617 + 0.998248i \(0.518843\pi\)
\(294\) 0 0
\(295\) −11.7607 −0.684736
\(296\) 10.8729 0.631976
\(297\) 0 0
\(298\) 6.99257 0.405069
\(299\) −32.1151 −1.85726
\(300\) 0 0
\(301\) 0 0
\(302\) 19.5286 1.12374
\(303\) 0 0
\(304\) 4.07597 0.233773
\(305\) 4.99880 0.286231
\(306\) 0 0
\(307\) 5.88477 0.335862 0.167931 0.985799i \(-0.446291\pi\)
0.167931 + 0.985799i \(0.446291\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 17.4841 0.993029
\(311\) −17.4624 −0.990203 −0.495102 0.868835i \(-0.664869\pi\)
−0.495102 + 0.868835i \(0.664869\pi\)
\(312\) 0 0
\(313\) −8.87987 −0.501920 −0.250960 0.967997i \(-0.580746\pi\)
−0.250960 + 0.967997i \(0.580746\pi\)
\(314\) 9.81490 0.553887
\(315\) 0 0
\(316\) 15.7014 0.883270
\(317\) 3.96937 0.222942 0.111471 0.993768i \(-0.464444\pi\)
0.111471 + 0.993768i \(0.464444\pi\)
\(318\) 0 0
\(319\) 2.82843 0.158362
\(320\) 2.27411 0.127127
\(321\) 0 0
\(322\) 0 0
\(323\) −2.25938 −0.125715
\(324\) 0 0
\(325\) −0.794432 −0.0440672
\(326\) 13.6569 0.756383
\(327\) 0 0
\(328\) 0.554318 0.0306071
\(329\) 0 0
\(330\) 0 0
\(331\) −13.2692 −0.729341 −0.364671 0.931137i \(-0.618818\pi\)
−0.364671 + 0.931137i \(0.618818\pi\)
\(332\) 6.51675 0.357653
\(333\) 0 0
\(334\) 6.03588 0.330269
\(335\) −25.3357 −1.38424
\(336\) 0 0
\(337\) −3.88036 −0.211377 −0.105688 0.994399i \(-0.533705\pi\)
−0.105688 + 0.994399i \(0.533705\pi\)
\(338\) 8.43958 0.459053
\(339\) 0 0
\(340\) −1.26058 −0.0683645
\(341\) 7.68832 0.416346
\(342\) 0 0
\(343\) 0 0
\(344\) −8.59272 −0.463289
\(345\) 0 0
\(346\) −3.68222 −0.197958
\(347\) −19.1768 −1.02947 −0.514733 0.857351i \(-0.672109\pi\)
−0.514733 + 0.857351i \(0.672109\pi\)
\(348\) 0 0
\(349\) −30.7602 −1.64656 −0.823279 0.567638i \(-0.807858\pi\)
−0.823279 + 0.567638i \(0.807858\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 1.19071 0.0633749 0.0316875 0.999498i \(-0.489912\pi\)
0.0316875 + 0.999498i \(0.489912\pi\)
\(354\) 0 0
\(355\) −8.19526 −0.434959
\(356\) 4.23401 0.224402
\(357\) 0 0
\(358\) 10.6049 0.560487
\(359\) 24.6915 1.30317 0.651585 0.758576i \(-0.274105\pi\)
0.651585 + 0.758576i \(0.274105\pi\)
\(360\) 0 0
\(361\) −2.38645 −0.125603
\(362\) 20.7692 1.09160
\(363\) 0 0
\(364\) 0 0
\(365\) 32.6633 1.70967
\(366\) 0 0
\(367\) −7.21691 −0.376720 −0.188360 0.982100i \(-0.560317\pi\)
−0.188360 + 0.982100i \(0.560317\pi\)
\(368\) 6.93587 0.361557
\(369\) 0 0
\(370\) 24.7262 1.28546
\(371\) 0 0
\(372\) 0 0
\(373\) 1.70998 0.0885396 0.0442698 0.999020i \(-0.485904\pi\)
0.0442698 + 0.999020i \(0.485904\pi\)
\(374\) −0.554318 −0.0286631
\(375\) 0 0
\(376\) −10.9044 −0.562351
\(377\) −13.0964 −0.674501
\(378\) 0 0
\(379\) −37.2745 −1.91466 −0.957330 0.288997i \(-0.906678\pi\)
−0.957330 + 0.288997i \(0.906678\pi\)
\(380\) 9.26921 0.475500
\(381\) 0 0
\(382\) −16.6817 −0.853511
\(383\) −11.4019 −0.582609 −0.291304 0.956630i \(-0.594089\pi\)
−0.291304 + 0.956630i \(0.594089\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 5.43958 0.276867
\(387\) 0 0
\(388\) 3.84637 0.195270
\(389\) −38.6250 −1.95837 −0.979183 0.202978i \(-0.934938\pi\)
−0.979183 + 0.202978i \(0.934938\pi\)
\(390\) 0 0
\(391\) −3.84468 −0.194434
\(392\) 0 0
\(393\) 0 0
\(394\) 10.3963 0.523757
\(395\) 35.7066 1.79659
\(396\) 0 0
\(397\) 15.7929 0.792622 0.396311 0.918116i \(-0.370290\pi\)
0.396311 + 0.918116i \(0.370290\pi\)
\(398\) 6.03147 0.302330
\(399\) 0 0
\(400\) 0.171573 0.00857864
\(401\) 21.7100 1.08414 0.542072 0.840332i \(-0.317640\pi\)
0.542072 + 0.840332i \(0.317640\pi\)
\(402\) 0 0
\(403\) −35.5992 −1.77332
\(404\) −10.7377 −0.534222
\(405\) 0 0
\(406\) 0 0
\(407\) 10.8729 0.538951
\(408\) 0 0
\(409\) 37.7520 1.86671 0.933357 0.358949i \(-0.116865\pi\)
0.933357 + 0.358949i \(0.116865\pi\)
\(410\) 1.26058 0.0622556
\(411\) 0 0
\(412\) −9.49712 −0.467890
\(413\) 0 0
\(414\) 0 0
\(415\) 14.8198 0.727475
\(416\) −4.63029 −0.227019
\(417\) 0 0
\(418\) 4.07597 0.199362
\(419\) −15.5408 −0.759217 −0.379609 0.925147i \(-0.623941\pi\)
−0.379609 + 0.925147i \(0.623941\pi\)
\(420\) 0 0
\(421\) 29.6176 1.44347 0.721737 0.692168i \(-0.243344\pi\)
0.721737 + 0.692168i \(0.243344\pi\)
\(422\) −2.16057 −0.105175
\(423\) 0 0
\(424\) 0.440778 0.0214061
\(425\) −0.0951059 −0.00461331
\(426\) 0 0
\(427\) 0 0
\(428\) 7.64823 0.369691
\(429\) 0 0
\(430\) −19.5408 −0.942340
\(431\) −24.7978 −1.19447 −0.597234 0.802067i \(-0.703734\pi\)
−0.597234 + 0.802067i \(0.703734\pi\)
\(432\) 0 0
\(433\) −11.2859 −0.542368 −0.271184 0.962528i \(-0.587415\pi\)
−0.271184 + 0.962528i \(0.587415\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.22470 −0.0586526
\(437\) 28.2704 1.35236
\(438\) 0 0
\(439\) −1.17157 −0.0559161 −0.0279581 0.999609i \(-0.508900\pi\)
−0.0279581 + 0.999609i \(0.508900\pi\)
\(440\) 2.27411 0.108414
\(441\) 0 0
\(442\) 2.56665 0.122083
\(443\) −16.6915 −0.793039 −0.396519 0.918026i \(-0.629782\pi\)
−0.396519 + 0.918026i \(0.629782\pi\)
\(444\) 0 0
\(445\) 9.62861 0.456440
\(446\) −1.17598 −0.0556844
\(447\) 0 0
\(448\) 0 0
\(449\) 27.5547 1.30038 0.650192 0.759770i \(-0.274688\pi\)
0.650192 + 0.759770i \(0.274688\pi\)
\(450\) 0 0
\(451\) 0.554318 0.0261018
\(452\) −3.37665 −0.158824
\(453\) 0 0
\(454\) 22.0453 1.03464
\(455\) 0 0
\(456\) 0 0
\(457\) −18.1953 −0.851139 −0.425569 0.904926i \(-0.639926\pi\)
−0.425569 + 0.904926i \(0.639926\pi\)
\(458\) −0.554318 −0.0259016
\(459\) 0 0
\(460\) 15.7729 0.735416
\(461\) 19.6193 0.913761 0.456881 0.889528i \(-0.348967\pi\)
0.456881 + 0.889528i \(0.348967\pi\)
\(462\) 0 0
\(463\) 35.6176 1.65529 0.827645 0.561252i \(-0.189680\pi\)
0.827645 + 0.561252i \(0.189680\pi\)
\(464\) 2.82843 0.131306
\(465\) 0 0
\(466\) 0.343146 0.0158959
\(467\) −35.0744 −1.62305 −0.811526 0.584317i \(-0.801362\pi\)
−0.811526 + 0.584317i \(0.801362\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −24.7978 −1.14384
\(471\) 0 0
\(472\) −5.17157 −0.238041
\(473\) −8.59272 −0.395094
\(474\) 0 0
\(475\) 0.699326 0.0320873
\(476\) 0 0
\(477\) 0 0
\(478\) 5.56785 0.254667
\(479\) −18.7482 −0.856629 −0.428314 0.903630i \(-0.640892\pi\)
−0.428314 + 0.903630i \(0.640892\pi\)
\(480\) 0 0
\(481\) −50.3448 −2.29553
\(482\) −1.94077 −0.0883997
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 8.74706 0.397183
\(486\) 0 0
\(487\) 29.9301 1.35626 0.678131 0.734941i \(-0.262790\pi\)
0.678131 + 0.734941i \(0.262790\pi\)
\(488\) 2.19814 0.0995050
\(489\) 0 0
\(490\) 0 0
\(491\) 8.68629 0.392007 0.196003 0.980603i \(-0.437204\pi\)
0.196003 + 0.980603i \(0.437204\pi\)
\(492\) 0 0
\(493\) −1.56785 −0.0706123
\(494\) −18.8729 −0.849133
\(495\) 0 0
\(496\) 7.68832 0.345216
\(497\) 0 0
\(498\) 0 0
\(499\) 23.8076 1.06578 0.532888 0.846186i \(-0.321107\pi\)
0.532888 + 0.846186i \(0.321107\pi\)
\(500\) −10.9804 −0.491057
\(501\) 0 0
\(502\) −23.4657 −1.04732
\(503\) 32.2531 1.43810 0.719048 0.694960i \(-0.244578\pi\)
0.719048 + 0.694960i \(0.244578\pi\)
\(504\) 0 0
\(505\) −24.4188 −1.08662
\(506\) 6.93587 0.308337
\(507\) 0 0
\(508\) 18.3656 0.814844
\(509\) −35.1066 −1.55607 −0.778036 0.628219i \(-0.783784\pi\)
−0.778036 + 0.628219i \(0.783784\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −22.6083 −0.997209
\(515\) −21.5975 −0.951699
\(516\) 0 0
\(517\) −10.9044 −0.479575
\(518\) 0 0
\(519\) 0 0
\(520\) −10.5298 −0.461762
\(521\) −31.0763 −1.36148 −0.680739 0.732526i \(-0.738341\pi\)
−0.680739 + 0.732526i \(0.738341\pi\)
\(522\) 0 0
\(523\) −18.3822 −0.803800 −0.401900 0.915684i \(-0.631650\pi\)
−0.401900 + 0.915684i \(0.631650\pi\)
\(524\) −10.5167 −0.459426
\(525\) 0 0
\(526\) 31.2299 1.36169
\(527\) −4.26177 −0.185646
\(528\) 0 0
\(529\) 25.1063 1.09158
\(530\) 1.00238 0.0435405
\(531\) 0 0
\(532\) 0 0
\(533\) −2.56665 −0.111174
\(534\) 0 0
\(535\) 17.3929 0.751961
\(536\) −11.1409 −0.481215
\(537\) 0 0
\(538\) −28.4792 −1.22782
\(539\) 0 0
\(540\) 0 0
\(541\) −20.2311 −0.869805 −0.434902 0.900478i \(-0.643217\pi\)
−0.434902 + 0.900478i \(0.643217\pi\)
\(542\) 9.94687 0.427255
\(543\) 0 0
\(544\) −0.554318 −0.0237662
\(545\) −2.78511 −0.119301
\(546\) 0 0
\(547\) 31.9249 1.36501 0.682504 0.730882i \(-0.260891\pi\)
0.682504 + 0.730882i \(0.260891\pi\)
\(548\) 1.60373 0.0685077
\(549\) 0 0
\(550\) 0.171573 0.00731589
\(551\) 11.5286 0.491134
\(552\) 0 0
\(553\) 0 0
\(554\) 26.5262 1.12699
\(555\) 0 0
\(556\) −11.4526 −0.485699
\(557\) −39.4386 −1.67107 −0.835533 0.549440i \(-0.814841\pi\)
−0.835533 + 0.549440i \(0.814841\pi\)
\(558\) 0 0
\(559\) 39.7868 1.68280
\(560\) 0 0
\(561\) 0 0
\(562\) 5.11844 0.215909
\(563\) 44.6098 1.88008 0.940040 0.341065i \(-0.110787\pi\)
0.940040 + 0.341065i \(0.110787\pi\)
\(564\) 0 0
\(565\) −7.67886 −0.323052
\(566\) −2.48205 −0.104329
\(567\) 0 0
\(568\) −3.60373 −0.151209
\(569\) −35.1682 −1.47433 −0.737164 0.675714i \(-0.763835\pi\)
−0.737164 + 0.675714i \(0.763835\pi\)
\(570\) 0 0
\(571\) −9.96412 −0.416986 −0.208493 0.978024i \(-0.566856\pi\)
−0.208493 + 0.978024i \(0.566856\pi\)
\(572\) −4.63029 −0.193602
\(573\) 0 0
\(574\) 0 0
\(575\) 1.19001 0.0496267
\(576\) 0 0
\(577\) 2.12657 0.0885305 0.0442652 0.999020i \(-0.485905\pi\)
0.0442652 + 0.999020i \(0.485905\pi\)
\(578\) −16.6927 −0.694326
\(579\) 0 0
\(580\) 6.43215 0.267081
\(581\) 0 0
\(582\) 0 0
\(583\) 0.440778 0.0182552
\(584\) 14.3631 0.594350
\(585\) 0 0
\(586\) −2.02537 −0.0836672
\(587\) 25.8260 1.06596 0.532978 0.846129i \(-0.321073\pi\)
0.532978 + 0.846129i \(0.321073\pi\)
\(588\) 0 0
\(589\) 31.3374 1.29123
\(590\) −11.7607 −0.484181
\(591\) 0 0
\(592\) 10.8729 0.446875
\(593\) 18.8975 0.776026 0.388013 0.921654i \(-0.373162\pi\)
0.388013 + 0.921654i \(0.373162\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.99257 0.286427
\(597\) 0 0
\(598\) −32.1151 −1.31328
\(599\) −3.49510 −0.142806 −0.0714030 0.997448i \(-0.522748\pi\)
−0.0714030 + 0.997448i \(0.522748\pi\)
\(600\) 0 0
\(601\) −23.6409 −0.964334 −0.482167 0.876079i \(-0.660150\pi\)
−0.482167 + 0.876079i \(0.660150\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19.5286 0.794607
\(605\) 2.27411 0.0924557
\(606\) 0 0
\(607\) −8.19526 −0.332636 −0.166318 0.986072i \(-0.553188\pi\)
−0.166318 + 0.986072i \(0.553188\pi\)
\(608\) 4.07597 0.165302
\(609\) 0 0
\(610\) 4.99880 0.202396
\(611\) 50.4905 2.04263
\(612\) 0 0
\(613\) 26.3692 1.06504 0.532521 0.846417i \(-0.321245\pi\)
0.532521 + 0.846417i \(0.321245\pi\)
\(614\) 5.88477 0.237490
\(615\) 0 0
\(616\) 0 0
\(617\) 2.35534 0.0948226 0.0474113 0.998875i \(-0.484903\pi\)
0.0474113 + 0.998875i \(0.484903\pi\)
\(618\) 0 0
\(619\) 10.2051 0.410177 0.205088 0.978743i \(-0.434252\pi\)
0.205088 + 0.978743i \(0.434252\pi\)
\(620\) 17.4841 0.702178
\(621\) 0 0
\(622\) −17.4624 −0.700179
\(623\) 0 0
\(624\) 0 0
\(625\) −25.8284 −1.03314
\(626\) −8.87987 −0.354911
\(627\) 0 0
\(628\) 9.81490 0.391657
\(629\) −6.02706 −0.240315
\(630\) 0 0
\(631\) −9.86550 −0.392739 −0.196370 0.980530i \(-0.562915\pi\)
−0.196370 + 0.980530i \(0.562915\pi\)
\(632\) 15.7014 0.624566
\(633\) 0 0
\(634\) 3.96937 0.157644
\(635\) 41.7655 1.65741
\(636\) 0 0
\(637\) 0 0
\(638\) 2.82843 0.111979
\(639\) 0 0
\(640\) 2.27411 0.0898921
\(641\) 13.3063 0.525566 0.262783 0.964855i \(-0.415360\pi\)
0.262783 + 0.964855i \(0.415360\pi\)
\(642\) 0 0
\(643\) 12.2531 0.483217 0.241609 0.970374i \(-0.422325\pi\)
0.241609 + 0.970374i \(0.422325\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.25938 −0.0888943
\(647\) 22.3873 0.880136 0.440068 0.897965i \(-0.354954\pi\)
0.440068 + 0.897965i \(0.354954\pi\)
\(648\) 0 0
\(649\) −5.17157 −0.203002
\(650\) −0.794432 −0.0311602
\(651\) 0 0
\(652\) 13.6569 0.534844
\(653\) −14.1953 −0.555504 −0.277752 0.960653i \(-0.589589\pi\)
−0.277752 + 0.960653i \(0.589589\pi\)
\(654\) 0 0
\(655\) −23.9162 −0.934485
\(656\) 0.554318 0.0216425
\(657\) 0 0
\(658\) 0 0
\(659\) 21.7152 0.845905 0.422953 0.906152i \(-0.360994\pi\)
0.422953 + 0.906152i \(0.360994\pi\)
\(660\) 0 0
\(661\) −46.5029 −1.80875 −0.904376 0.426737i \(-0.859663\pi\)
−0.904376 + 0.426737i \(0.859663\pi\)
\(662\) −13.2692 −0.515722
\(663\) 0 0
\(664\) 6.51675 0.252899
\(665\) 0 0
\(666\) 0 0
\(667\) 19.6176 0.759596
\(668\) 6.03588 0.233535
\(669\) 0 0
\(670\) −25.3357 −0.978804
\(671\) 2.19814 0.0848582
\(672\) 0 0
\(673\) −29.7152 −1.14544 −0.572719 0.819752i \(-0.694111\pi\)
−0.572719 + 0.819752i \(0.694111\pi\)
\(674\) −3.88036 −0.149466
\(675\) 0 0
\(676\) 8.43958 0.324599
\(677\) 43.5147 1.67241 0.836203 0.548420i \(-0.184771\pi\)
0.836203 + 0.548420i \(0.184771\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.26058 −0.0483410
\(681\) 0 0
\(682\) 7.68832 0.294401
\(683\) 29.3582 1.12336 0.561680 0.827354i \(-0.310155\pi\)
0.561680 + 0.827354i \(0.310155\pi\)
\(684\) 0 0
\(685\) 3.64705 0.139346
\(686\) 0 0
\(687\) 0 0
\(688\) −8.59272 −0.327594
\(689\) −2.04093 −0.0777533
\(690\) 0 0
\(691\) −6.84063 −0.260230 −0.130115 0.991499i \(-0.541535\pi\)
−0.130115 + 0.991499i \(0.541535\pi\)
\(692\) −3.68222 −0.139977
\(693\) 0 0
\(694\) −19.1768 −0.727942
\(695\) −26.0445 −0.987924
\(696\) 0 0
\(697\) −0.307268 −0.0116386
\(698\) −30.7602 −1.16429
\(699\) 0 0
\(700\) 0 0
\(701\) 24.1929 0.913752 0.456876 0.889530i \(-0.348968\pi\)
0.456876 + 0.889530i \(0.348968\pi\)
\(702\) 0 0
\(703\) 44.3178 1.67148
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 1.19071 0.0448128
\(707\) 0 0
\(708\) 0 0
\(709\) −32.8509 −1.23374 −0.616871 0.787064i \(-0.711600\pi\)
−0.616871 + 0.787064i \(0.711600\pi\)
\(710\) −8.19526 −0.307563
\(711\) 0 0
\(712\) 4.23401 0.158676
\(713\) 53.3252 1.99704
\(714\) 0 0
\(715\) −10.5298 −0.393792
\(716\) 10.6049 0.396324
\(717\) 0 0
\(718\) 24.6915 0.921480
\(719\) 6.43132 0.239848 0.119924 0.992783i \(-0.461735\pi\)
0.119924 + 0.992783i \(0.461735\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.38645 −0.0888146
\(723\) 0 0
\(724\) 20.7692 0.771881
\(725\) 0.485281 0.0180229
\(726\) 0 0
\(727\) 2.71776 0.100796 0.0503981 0.998729i \(-0.483951\pi\)
0.0503981 + 0.998729i \(0.483951\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 32.6633 1.20892
\(731\) 4.76310 0.176170
\(732\) 0 0
\(733\) −47.7799 −1.76479 −0.882395 0.470510i \(-0.844070\pi\)
−0.882395 + 0.470510i \(0.844070\pi\)
\(734\) −7.21691 −0.266381
\(735\) 0 0
\(736\) 6.93587 0.255659
\(737\) −11.1409 −0.410382
\(738\) 0 0
\(739\) −35.5425 −1.30745 −0.653725 0.756732i \(-0.726795\pi\)
−0.653725 + 0.756732i \(0.726795\pi\)
\(740\) 24.7262 0.908954
\(741\) 0 0
\(742\) 0 0
\(743\) −20.4992 −0.752041 −0.376020 0.926611i \(-0.622708\pi\)
−0.376020 + 0.926611i \(0.622708\pi\)
\(744\) 0 0
\(745\) 15.9019 0.582599
\(746\) 1.70998 0.0626069
\(747\) 0 0
\(748\) −0.554318 −0.0202679
\(749\) 0 0
\(750\) 0 0
\(751\) −45.2682 −1.65186 −0.825930 0.563772i \(-0.809350\pi\)
−0.825930 + 0.563772i \(0.809350\pi\)
\(752\) −10.9044 −0.397643
\(753\) 0 0
\(754\) −13.0964 −0.476944
\(755\) 44.4101 1.61625
\(756\) 0 0
\(757\) −40.6188 −1.47632 −0.738158 0.674628i \(-0.764304\pi\)
−0.738158 + 0.674628i \(0.764304\pi\)
\(758\) −37.2745 −1.35387
\(759\) 0 0
\(760\) 9.26921 0.336229
\(761\) −29.1164 −1.05547 −0.527734 0.849409i \(-0.676958\pi\)
−0.527734 + 0.849409i \(0.676958\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −16.6817 −0.603524
\(765\) 0 0
\(766\) −11.4019 −0.411967
\(767\) 23.9459 0.864636
\(768\) 0 0
\(769\) −22.9987 −0.829353 −0.414677 0.909969i \(-0.636105\pi\)
−0.414677 + 0.909969i \(0.636105\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.43958 0.195775
\(773\) 51.0755 1.83706 0.918529 0.395355i \(-0.129378\pi\)
0.918529 + 0.395355i \(0.129378\pi\)
\(774\) 0 0
\(775\) 1.31911 0.0473837
\(776\) 3.84637 0.138076
\(777\) 0 0
\(778\) −38.6250 −1.38477
\(779\) 2.25938 0.0809508
\(780\) 0 0
\(781\) −3.60373 −0.128951
\(782\) −3.84468 −0.137485
\(783\) 0 0
\(784\) 0 0
\(785\) 22.3201 0.796640
\(786\) 0 0
\(787\) 29.5024 1.05165 0.525823 0.850594i \(-0.323757\pi\)
0.525823 + 0.850594i \(0.323757\pi\)
\(788\) 10.3963 0.370352
\(789\) 0 0
\(790\) 35.7066 1.27038
\(791\) 0 0
\(792\) 0 0
\(793\) −10.1780 −0.361432
\(794\) 15.7929 0.560469
\(795\) 0 0
\(796\) 6.03147 0.213780
\(797\) 16.3990 0.580882 0.290441 0.956893i \(-0.406198\pi\)
0.290441 + 0.956893i \(0.406198\pi\)
\(798\) 0 0
\(799\) 6.04450 0.213839
\(800\) 0.171573 0.00606602
\(801\) 0 0
\(802\) 21.7100 0.766606
\(803\) 14.3631 0.506863
\(804\) 0 0
\(805\) 0 0
\(806\) −35.5992 −1.25393
\(807\) 0 0
\(808\) −10.7377 −0.377752
\(809\) −17.0730 −0.600253 −0.300126 0.953899i \(-0.597029\pi\)
−0.300126 + 0.953899i \(0.597029\pi\)
\(810\) 0 0
\(811\) −26.9166 −0.945170 −0.472585 0.881285i \(-0.656679\pi\)
−0.472585 + 0.881285i \(0.656679\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 10.8729 0.381096
\(815\) 31.0572 1.08789
\(816\) 0 0
\(817\) −35.0237 −1.22532
\(818\) 37.7520 1.31997
\(819\) 0 0
\(820\) 1.26058 0.0440213
\(821\) 21.2917 0.743086 0.371543 0.928416i \(-0.378829\pi\)
0.371543 + 0.928416i \(0.378829\pi\)
\(822\) 0 0
\(823\) 4.18425 0.145854 0.0729269 0.997337i \(-0.476766\pi\)
0.0729269 + 0.997337i \(0.476766\pi\)
\(824\) −9.49712 −0.330848
\(825\) 0 0
\(826\) 0 0
\(827\) 8.23213 0.286259 0.143130 0.989704i \(-0.454283\pi\)
0.143130 + 0.989704i \(0.454283\pi\)
\(828\) 0 0
\(829\) −42.4954 −1.47593 −0.737964 0.674840i \(-0.764213\pi\)
−0.737964 + 0.674840i \(0.764213\pi\)
\(830\) 14.8198 0.514403
\(831\) 0 0
\(832\) −4.63029 −0.160526
\(833\) 0 0
\(834\) 0 0
\(835\) 13.7262 0.475016
\(836\) 4.07597 0.140970
\(837\) 0 0
\(838\) −15.5408 −0.536848
\(839\) 14.4330 0.498282 0.249141 0.968467i \(-0.419852\pi\)
0.249141 + 0.968467i \(0.419852\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 29.6176 1.02069
\(843\) 0 0
\(844\) −2.16057 −0.0743699
\(845\) 19.1925 0.660243
\(846\) 0 0
\(847\) 0 0
\(848\) 0.440778 0.0151364
\(849\) 0 0
\(850\) −0.0951059 −0.00326211
\(851\) 75.4132 2.58513
\(852\) 0 0
\(853\) 52.1866 1.78684 0.893418 0.449226i \(-0.148300\pi\)
0.893418 + 0.449226i \(0.148300\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 7.64823 0.261411
\(857\) −25.6474 −0.876098 −0.438049 0.898951i \(-0.644330\pi\)
−0.438049 + 0.898951i \(0.644330\pi\)
\(858\) 0 0
\(859\) 2.32928 0.0794738 0.0397369 0.999210i \(-0.487348\pi\)
0.0397369 + 0.999210i \(0.487348\pi\)
\(860\) −19.5408 −0.666335
\(861\) 0 0
\(862\) −24.7978 −0.844616
\(863\) 4.46685 0.152053 0.0760266 0.997106i \(-0.475777\pi\)
0.0760266 + 0.997106i \(0.475777\pi\)
\(864\) 0 0
\(865\) −8.37378 −0.284717
\(866\) −11.2859 −0.383512
\(867\) 0 0
\(868\) 0 0
\(869\) 15.7014 0.532632
\(870\) 0 0
\(871\) 51.5858 1.74792
\(872\) −1.22470 −0.0414736
\(873\) 0 0
\(874\) 28.2704 0.956261
\(875\) 0 0
\(876\) 0 0
\(877\) −45.8497 −1.54824 −0.774118 0.633042i \(-0.781806\pi\)
−0.774118 + 0.633042i \(0.781806\pi\)
\(878\) −1.17157 −0.0395387
\(879\) 0 0
\(880\) 2.27411 0.0766602
\(881\) −39.6418 −1.33557 −0.667783 0.744356i \(-0.732756\pi\)
−0.667783 + 0.744356i \(0.732756\pi\)
\(882\) 0 0
\(883\) 32.2843 1.08645 0.543226 0.839586i \(-0.317203\pi\)
0.543226 + 0.839586i \(0.317203\pi\)
\(884\) 2.56665 0.0863259
\(885\) 0 0
\(886\) −16.6915 −0.560763
\(887\) −23.4027 −0.785786 −0.392893 0.919584i \(-0.628526\pi\)
−0.392893 + 0.919584i \(0.628526\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 9.62861 0.322752
\(891\) 0 0
\(892\) −1.17598 −0.0393748
\(893\) −44.4460 −1.48733
\(894\) 0 0
\(895\) 24.1167 0.806134
\(896\) 0 0
\(897\) 0 0
\(898\) 27.5547 0.919511
\(899\) 21.7459 0.725265
\(900\) 0 0
\(901\) −0.244331 −0.00813985
\(902\) 0.554318 0.0184568
\(903\) 0 0
\(904\) −3.37665 −0.112306
\(905\) 47.2314 1.57003
\(906\) 0 0
\(907\) 11.4692 0.380829 0.190415 0.981704i \(-0.439017\pi\)
0.190415 + 0.981704i \(0.439017\pi\)
\(908\) 22.0453 0.731600
\(909\) 0 0
\(910\) 0 0
\(911\) −32.1213 −1.06423 −0.532113 0.846673i \(-0.678602\pi\)
−0.532113 + 0.846673i \(0.678602\pi\)
\(912\) 0 0
\(913\) 6.51675 0.215673
\(914\) −18.1953 −0.601846
\(915\) 0 0
\(916\) −0.554318 −0.0183152
\(917\) 0 0
\(918\) 0 0
\(919\) 35.2965 1.16432 0.582161 0.813073i \(-0.302207\pi\)
0.582161 + 0.813073i \(0.302207\pi\)
\(920\) 15.7729 0.520018
\(921\) 0 0
\(922\) 19.6193 0.646127
\(923\) 16.6863 0.549236
\(924\) 0 0
\(925\) 1.86550 0.0613373
\(926\) 35.6176 1.17047
\(927\) 0 0
\(928\) 2.82843 0.0928477
\(929\) 28.6614 0.940350 0.470175 0.882573i \(-0.344191\pi\)
0.470175 + 0.882573i \(0.344191\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.343146 0.0112401
\(933\) 0 0
\(934\) −35.0744 −1.14767
\(935\) −1.26058 −0.0412254
\(936\) 0 0
\(937\) 12.1753 0.397750 0.198875 0.980025i \(-0.436271\pi\)
0.198875 + 0.980025i \(0.436271\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −24.7978 −0.808815
\(941\) 32.9935 1.07556 0.537779 0.843086i \(-0.319263\pi\)
0.537779 + 0.843086i \(0.319263\pi\)
\(942\) 0 0
\(943\) 3.84468 0.125200
\(944\) −5.17157 −0.168320
\(945\) 0 0
\(946\) −8.59272 −0.279373
\(947\) −54.6748 −1.77669 −0.888346 0.459175i \(-0.848145\pi\)
−0.888346 + 0.459175i \(0.848145\pi\)
\(948\) 0 0
\(949\) −66.5054 −2.15886
\(950\) 0.699326 0.0226891
\(951\) 0 0
\(952\) 0 0
\(953\) −12.9122 −0.418267 −0.209133 0.977887i \(-0.567064\pi\)
−0.209133 + 0.977887i \(0.567064\pi\)
\(954\) 0 0
\(955\) −37.9361 −1.22758
\(956\) 5.56785 0.180077
\(957\) 0 0
\(958\) −18.7482 −0.605728
\(959\) 0 0
\(960\) 0 0
\(961\) 28.1103 0.906784
\(962\) −50.3448 −1.62318
\(963\) 0 0
\(964\) −1.94077 −0.0625080
\(965\) 12.3702 0.398211
\(966\) 0 0
\(967\) −51.6003 −1.65936 −0.829678 0.558243i \(-0.811476\pi\)
−0.829678 + 0.558243i \(0.811476\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 8.74706 0.280851
\(971\) −45.9485 −1.47456 −0.737279 0.675588i \(-0.763890\pi\)
−0.737279 + 0.675588i \(0.763890\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 29.9301 0.959023
\(975\) 0 0
\(976\) 2.19814 0.0703607
\(977\) −62.2328 −1.99100 −0.995502 0.0947399i \(-0.969798\pi\)
−0.995502 + 0.0947399i \(0.969798\pi\)
\(978\) 0 0
\(979\) 4.23401 0.135320
\(980\) 0 0
\(981\) 0 0
\(982\) 8.68629 0.277191
\(983\) −26.4763 −0.844463 −0.422232 0.906488i \(-0.638753\pi\)
−0.422232 + 0.906488i \(0.638753\pi\)
\(984\) 0 0
\(985\) 23.6423 0.753305
\(986\) −1.56785 −0.0499304
\(987\) 0 0
\(988\) −18.8729 −0.600428
\(989\) −59.5980 −1.89511
\(990\) 0 0
\(991\) 46.5858 1.47985 0.739923 0.672692i \(-0.234862\pi\)
0.739923 + 0.672692i \(0.234862\pi\)
\(992\) 7.68832 0.244104
\(993\) 0 0
\(994\) 0 0
\(995\) 13.7162 0.434833
\(996\) 0 0
\(997\) −54.1457 −1.71481 −0.857406 0.514641i \(-0.827925\pi\)
−0.857406 + 0.514641i \(0.827925\pi\)
\(998\) 23.8076 0.753617
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.ec.1.3 4
3.2 odd 2 3234.2.a.bk.1.2 yes 4
7.6 odd 2 9702.2.a.eb.1.2 4
21.20 even 2 3234.2.a.bj.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3234.2.a.bj.1.3 4 21.20 even 2
3234.2.a.bk.1.2 yes 4 3.2 odd 2
9702.2.a.eb.1.2 4 7.6 odd 2
9702.2.a.ec.1.3 4 1.1 even 1 trivial