Properties

Label 9702.2.a.ec.1.1
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.14336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3234)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.32685\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.29066 q^{5} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.29066 q^{5} +1.00000 q^{8} -3.29066 q^{10} +1.00000 q^{11} -3.23948 q^{13} +1.00000 q^{16} -0.462230 q^{17} +2.77725 q^{19} -3.29066 q^{20} +1.00000 q^{22} +2.90080 q^{23} +5.82843 q^{25} -3.23948 q^{26} -2.82843 q^{29} -0.704871 q^{31} +1.00000 q^{32} -0.462230 q^{34} +0.996838 q^{37} +2.77725 q^{38} -3.29066 q^{40} +0.462230 q^{41} +6.75605 q^{43} +1.00000 q^{44} +2.90080 q^{46} -3.94882 q^{47} +5.82843 q^{50} -3.23948 q^{52} -12.3105 q^{53} -3.29066 q^{55} -2.82843 q^{58} -10.8284 q^{59} -2.06791 q^{61} -0.704871 q^{62} +1.00000 q^{64} +10.6600 q^{65} +15.3374 q^{67} -0.462230 q^{68} -12.1358 q^{71} +0.359873 q^{73} +0.996838 q^{74} +2.77725 q^{76} +0.168411 q^{79} -3.29066 q^{80} +0.462230 q^{82} -7.53330 q^{83} +1.52104 q^{85} +6.75605 q^{86} +1.00000 q^{88} +11.3753 q^{89} +2.90080 q^{92} -3.94882 q^{94} -9.13897 q^{95} +3.89317 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} + 4 q^{11} + 4 q^{16} + 4 q^{22} + 8 q^{23} + 12 q^{25} + 16 q^{31} + 4 q^{32} + 8 q^{37} + 8 q^{43} + 4 q^{44} + 8 q^{46} - 16 q^{47} + 12 q^{50} - 8 q^{53} - 32 q^{59} + 16 q^{61} + 16 q^{62} + 4 q^{64} + 16 q^{65} + 16 q^{67} + 8 q^{74} + 16 q^{79} + 32 q^{85} + 8 q^{86} + 4 q^{88} - 16 q^{89} + 8 q^{92} - 16 q^{94} + 16 q^{95} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.29066 −1.47163 −0.735813 0.677184i \(-0.763200\pi\)
−0.735813 + 0.677184i \(0.763200\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.29066 −1.04060
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −3.23948 −0.898470 −0.449235 0.893414i \(-0.648303\pi\)
−0.449235 + 0.893414i \(0.648303\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.462230 −0.112107 −0.0560537 0.998428i \(-0.517852\pi\)
−0.0560537 + 0.998428i \(0.517852\pi\)
\(18\) 0 0
\(19\) 2.77725 0.637145 0.318572 0.947899i \(-0.396797\pi\)
0.318572 + 0.947899i \(0.396797\pi\)
\(20\) −3.29066 −0.735813
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 2.90080 0.604860 0.302430 0.953172i \(-0.402202\pi\)
0.302430 + 0.953172i \(0.402202\pi\)
\(24\) 0 0
\(25\) 5.82843 1.16569
\(26\) −3.23948 −0.635314
\(27\) 0 0
\(28\) 0 0
\(29\) −2.82843 −0.525226 −0.262613 0.964901i \(-0.584584\pi\)
−0.262613 + 0.964901i \(0.584584\pi\)
\(30\) 0 0
\(31\) −0.704871 −0.126599 −0.0632993 0.997995i \(-0.520162\pi\)
−0.0632993 + 0.997995i \(0.520162\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.462230 −0.0792719
\(35\) 0 0
\(36\) 0 0
\(37\) 0.996838 0.163879 0.0819396 0.996637i \(-0.473889\pi\)
0.0819396 + 0.996637i \(0.473889\pi\)
\(38\) 2.77725 0.450529
\(39\) 0 0
\(40\) −3.29066 −0.520299
\(41\) 0.462230 0.0721883 0.0360941 0.999348i \(-0.488508\pi\)
0.0360941 + 0.999348i \(0.488508\pi\)
\(42\) 0 0
\(43\) 6.75605 1.03029 0.515144 0.857104i \(-0.327738\pi\)
0.515144 + 0.857104i \(0.327738\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 2.90080 0.427700
\(47\) −3.94882 −0.575995 −0.287997 0.957631i \(-0.592989\pi\)
−0.287997 + 0.957631i \(0.592989\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.82843 0.824264
\(51\) 0 0
\(52\) −3.23948 −0.449235
\(53\) −12.3105 −1.69098 −0.845492 0.533988i \(-0.820693\pi\)
−0.845492 + 0.533988i \(0.820693\pi\)
\(54\) 0 0
\(55\) −3.29066 −0.443712
\(56\) 0 0
\(57\) 0 0
\(58\) −2.82843 −0.371391
\(59\) −10.8284 −1.40974 −0.704871 0.709336i \(-0.748995\pi\)
−0.704871 + 0.709336i \(0.748995\pi\)
\(60\) 0 0
\(61\) −2.06791 −0.264768 −0.132384 0.991198i \(-0.542263\pi\)
−0.132384 + 0.991198i \(0.542263\pi\)
\(62\) −0.704871 −0.0895187
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 10.6600 1.32221
\(66\) 0 0
\(67\) 15.3374 1.87376 0.936879 0.349655i \(-0.113701\pi\)
0.936879 + 0.349655i \(0.113701\pi\)
\(68\) −0.462230 −0.0560537
\(69\) 0 0
\(70\) 0 0
\(71\) −12.1358 −1.44026 −0.720128 0.693841i \(-0.755917\pi\)
−0.720128 + 0.693841i \(0.755917\pi\)
\(72\) 0 0
\(73\) 0.359873 0.0421200 0.0210600 0.999778i \(-0.493296\pi\)
0.0210600 + 0.999778i \(0.493296\pi\)
\(74\) 0.996838 0.115880
\(75\) 0 0
\(76\) 2.77725 0.318572
\(77\) 0 0
\(78\) 0 0
\(79\) 0.168411 0.0189477 0.00947387 0.999955i \(-0.496984\pi\)
0.00947387 + 0.999955i \(0.496984\pi\)
\(80\) −3.29066 −0.367907
\(81\) 0 0
\(82\) 0.462230 0.0510448
\(83\) −7.53330 −0.826887 −0.413443 0.910530i \(-0.635674\pi\)
−0.413443 + 0.910530i \(0.635674\pi\)
\(84\) 0 0
\(85\) 1.52104 0.164980
\(86\) 6.75605 0.728524
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 11.3753 1.20578 0.602889 0.797825i \(-0.294016\pi\)
0.602889 + 0.797825i \(0.294016\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.90080 0.302430
\(93\) 0 0
\(94\) −3.94882 −0.407290
\(95\) −9.13897 −0.937639
\(96\) 0 0
\(97\) 3.89317 0.395292 0.197646 0.980273i \(-0.436670\pi\)
0.197646 + 0.980273i \(0.436670\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.82843 0.582843
\(101\) −10.9687 −1.09143 −0.545714 0.837972i \(-0.683741\pi\)
−0.545714 + 0.837972i \(0.683741\pi\)
\(102\) 0 0
\(103\) 12.8072 1.26193 0.630967 0.775810i \(-0.282658\pi\)
0.630967 + 0.775810i \(0.282658\pi\)
\(104\) −3.23948 −0.317657
\(105\) 0 0
\(106\) −12.3105 −1.19571
\(107\) 11.9611 1.15632 0.578161 0.815923i \(-0.303771\pi\)
0.578161 + 0.815923i \(0.303771\pi\)
\(108\) 0 0
\(109\) 12.9642 1.24175 0.620874 0.783910i \(-0.286778\pi\)
0.620874 + 0.783910i \(0.286778\pi\)
\(110\) −3.29066 −0.313752
\(111\) 0 0
\(112\) 0 0
\(113\) 13.4097 1.26148 0.630741 0.775993i \(-0.282751\pi\)
0.630741 + 0.775993i \(0.282751\pi\)
\(114\) 0 0
\(115\) −9.54555 −0.890128
\(116\) −2.82843 −0.262613
\(117\) 0 0
\(118\) −10.8284 −0.996838
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −2.06791 −0.187219
\(123\) 0 0
\(124\) −0.704871 −0.0632993
\(125\) −2.72607 −0.243827
\(126\) 0 0
\(127\) −22.3016 −1.97895 −0.989474 0.144713i \(-0.953774\pi\)
−0.989474 + 0.144713i \(0.953774\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 10.6600 0.934945
\(131\) 3.53330 0.308706 0.154353 0.988016i \(-0.450671\pi\)
0.154353 + 0.988016i \(0.450671\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 15.3374 1.32495
\(135\) 0 0
\(136\) −0.462230 −0.0396359
\(137\) 10.1358 0.865961 0.432980 0.901403i \(-0.357462\pi\)
0.432980 + 0.901403i \(0.357462\pi\)
\(138\) 0 0
\(139\) 6.63249 0.562561 0.281280 0.959626i \(-0.409241\pi\)
0.281280 + 0.959626i \(0.409241\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −12.1358 −1.01841
\(143\) −3.23948 −0.270899
\(144\) 0 0
\(145\) 9.30739 0.772936
\(146\) 0.359873 0.0297833
\(147\) 0 0
\(148\) 0.996838 0.0819396
\(149\) 20.8132 1.70508 0.852540 0.522662i \(-0.175061\pi\)
0.852540 + 0.522662i \(0.175061\pi\)
\(150\) 0 0
\(151\) 0.144755 0.0117800 0.00588999 0.999983i \(-0.498125\pi\)
0.00588999 + 0.999983i \(0.498125\pi\)
\(152\) 2.77725 0.225265
\(153\) 0 0
\(154\) 0 0
\(155\) 2.31949 0.186306
\(156\) 0 0
\(157\) 6.94119 0.553967 0.276984 0.960875i \(-0.410665\pi\)
0.276984 + 0.960875i \(0.410665\pi\)
\(158\) 0.168411 0.0133981
\(159\) 0 0
\(160\) −3.29066 −0.260149
\(161\) 0 0
\(162\) 0 0
\(163\) 2.34315 0.183529 0.0917647 0.995781i \(-0.470749\pi\)
0.0917647 + 0.995781i \(0.470749\pi\)
\(164\) 0.462230 0.0360941
\(165\) 0 0
\(166\) −7.53330 −0.584697
\(167\) 17.4432 1.34980 0.674898 0.737911i \(-0.264188\pi\)
0.674898 + 0.737911i \(0.264188\pi\)
\(168\) 0 0
\(169\) −2.50578 −0.192752
\(170\) 1.52104 0.116659
\(171\) 0 0
\(172\) 6.75605 0.515144
\(173\) 15.7484 1.19733 0.598665 0.801000i \(-0.295698\pi\)
0.598665 + 0.801000i \(0.295698\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 11.3753 0.852614
\(179\) 17.3310 1.29538 0.647691 0.761903i \(-0.275735\pi\)
0.647691 + 0.761903i \(0.275735\pi\)
\(180\) 0 0
\(181\) 23.9207 1.77801 0.889006 0.457896i \(-0.151397\pi\)
0.889006 + 0.457896i \(0.151397\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.90080 0.213850
\(185\) −3.28025 −0.241169
\(186\) 0 0
\(187\) −0.462230 −0.0338016
\(188\) −3.94882 −0.287997
\(189\) 0 0
\(190\) −9.13897 −0.663011
\(191\) 7.10552 0.514137 0.257069 0.966393i \(-0.417243\pi\)
0.257069 + 0.966393i \(0.417243\pi\)
\(192\) 0 0
\(193\) −5.50578 −0.396314 −0.198157 0.980170i \(-0.563496\pi\)
−0.198157 + 0.980170i \(0.563496\pi\)
\(194\) 3.89317 0.279513
\(195\) 0 0
\(196\) 0 0
\(197\) 1.86419 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(198\) 0 0
\(199\) 8.95198 0.634589 0.317295 0.948327i \(-0.397226\pi\)
0.317295 + 0.948327i \(0.397226\pi\)
\(200\) 5.82843 0.412132
\(201\) 0 0
\(202\) −10.9687 −0.771756
\(203\) 0 0
\(204\) 0 0
\(205\) −1.52104 −0.106234
\(206\) 12.8072 0.892322
\(207\) 0 0
\(208\) −3.23948 −0.224617
\(209\) 2.77725 0.192106
\(210\) 0 0
\(211\) 16.0634 1.10585 0.552926 0.833230i \(-0.313511\pi\)
0.552926 + 0.833230i \(0.313511\pi\)
\(212\) −12.3105 −0.845492
\(213\) 0 0
\(214\) 11.9611 0.817642
\(215\) −22.2318 −1.51620
\(216\) 0 0
\(217\) 0 0
\(218\) 12.9642 0.878049
\(219\) 0 0
\(220\) −3.29066 −0.221856
\(221\) 1.49739 0.100725
\(222\) 0 0
\(223\) −15.3196 −1.02588 −0.512940 0.858425i \(-0.671443\pi\)
−0.512940 + 0.858425i \(0.671443\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 13.4097 0.892003
\(227\) −11.3885 −0.755884 −0.377942 0.925829i \(-0.623368\pi\)
−0.377942 + 0.925829i \(0.623368\pi\)
\(228\) 0 0
\(229\) −0.462230 −0.0305450 −0.0152725 0.999883i \(-0.504862\pi\)
−0.0152725 + 0.999883i \(0.504862\pi\)
\(230\) −9.54555 −0.629415
\(231\) 0 0
\(232\) −2.82843 −0.185695
\(233\) 11.6569 0.763666 0.381833 0.924231i \(-0.375293\pi\)
0.381833 + 0.924231i \(0.375293\pi\)
\(234\) 0 0
\(235\) 12.9942 0.847649
\(236\) −10.8284 −0.704871
\(237\) 0 0
\(238\) 0 0
\(239\) 2.69261 0.174171 0.0870854 0.996201i \(-0.472245\pi\)
0.0870854 + 0.996201i \(0.472245\pi\)
\(240\) 0 0
\(241\) −10.7491 −0.692412 −0.346206 0.938159i \(-0.612530\pi\)
−0.346206 + 0.938159i \(0.612530\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −2.06791 −0.132384
\(245\) 0 0
\(246\) 0 0
\(247\) −8.99684 −0.572455
\(248\) −0.704871 −0.0447594
\(249\) 0 0
\(250\) −2.72607 −0.172412
\(251\) 1.75921 0.111040 0.0555202 0.998458i \(-0.482318\pi\)
0.0555202 + 0.998458i \(0.482318\pi\)
\(252\) 0 0
\(253\) 2.90080 0.182372
\(254\) −22.3016 −1.39933
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 26.5442 1.65578 0.827892 0.560887i \(-0.189540\pi\)
0.827892 + 0.560887i \(0.189540\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.6600 0.661106
\(261\) 0 0
\(262\) 3.53330 0.218288
\(263\) −3.68683 −0.227340 −0.113670 0.993519i \(-0.536261\pi\)
−0.113670 + 0.993519i \(0.536261\pi\)
\(264\) 0 0
\(265\) 40.5098 2.48850
\(266\) 0 0
\(267\) 0 0
\(268\) 15.3374 0.936879
\(269\) −0.471173 −0.0287279 −0.0143640 0.999897i \(-0.504572\pi\)
−0.0143640 + 0.999897i \(0.504572\pi\)
\(270\) 0 0
\(271\) 29.7927 1.80978 0.904888 0.425650i \(-0.139955\pi\)
0.904888 + 0.425650i \(0.139955\pi\)
\(272\) −0.462230 −0.0280268
\(273\) 0 0
\(274\) 10.1358 0.612327
\(275\) 5.82843 0.351467
\(276\) 0 0
\(277\) −32.3650 −1.94463 −0.972313 0.233681i \(-0.924923\pi\)
−0.972313 + 0.233681i \(0.924923\pi\)
\(278\) 6.63249 0.397791
\(279\) 0 0
\(280\) 0 0
\(281\) 30.6211 1.82670 0.913351 0.407174i \(-0.133486\pi\)
0.913351 + 0.407174i \(0.133486\pi\)
\(282\) 0 0
\(283\) −18.3381 −1.09009 −0.545043 0.838408i \(-0.683486\pi\)
−0.545043 + 0.838408i \(0.683486\pi\)
\(284\) −12.1358 −0.720128
\(285\) 0 0
\(286\) −3.23948 −0.191554
\(287\) 0 0
\(288\) 0 0
\(289\) −16.7863 −0.987432
\(290\) 9.30739 0.546548
\(291\) 0 0
\(292\) 0.359873 0.0210600
\(293\) 6.09156 0.355873 0.177936 0.984042i \(-0.443058\pi\)
0.177936 + 0.984042i \(0.443058\pi\)
\(294\) 0 0
\(295\) 35.6326 2.07461
\(296\) 0.996838 0.0579400
\(297\) 0 0
\(298\) 20.8132 1.20567
\(299\) −9.39710 −0.543448
\(300\) 0 0
\(301\) 0 0
\(302\) 0.144755 0.00832971
\(303\) 0 0
\(304\) 2.77725 0.159286
\(305\) 6.80477 0.389640
\(306\) 0 0
\(307\) −9.32511 −0.532212 −0.266106 0.963944i \(-0.585737\pi\)
−0.266106 + 0.963944i \(0.585737\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.31949 0.131738
\(311\) −25.0641 −1.42126 −0.710628 0.703567i \(-0.751589\pi\)
−0.710628 + 0.703567i \(0.751589\pi\)
\(312\) 0 0
\(313\) 19.1734 1.08375 0.541873 0.840460i \(-0.317715\pi\)
0.541873 + 0.840460i \(0.317715\pi\)
\(314\) 6.94119 0.391714
\(315\) 0 0
\(316\) 0.168411 0.00947387
\(317\) −28.1658 −1.58195 −0.790974 0.611849i \(-0.790426\pi\)
−0.790974 + 0.611849i \(0.790426\pi\)
\(318\) 0 0
\(319\) −2.82843 −0.158362
\(320\) −3.29066 −0.183953
\(321\) 0 0
\(322\) 0 0
\(323\) −1.28373 −0.0714286
\(324\) 0 0
\(325\) −18.8811 −1.04733
\(326\) 2.34315 0.129775
\(327\) 0 0
\(328\) 0.462230 0.0255224
\(329\) 0 0
\(330\) 0 0
\(331\) 5.13897 0.282464 0.141232 0.989977i \(-0.454894\pi\)
0.141232 + 0.989977i \(0.454894\pi\)
\(332\) −7.53330 −0.413443
\(333\) 0 0
\(334\) 17.4432 0.954449
\(335\) −50.4700 −2.75747
\(336\) 0 0
\(337\) 19.8163 1.07946 0.539732 0.841837i \(-0.318526\pi\)
0.539732 + 0.841837i \(0.318526\pi\)
\(338\) −2.50578 −0.136296
\(339\) 0 0
\(340\) 1.52104 0.0824901
\(341\) −0.704871 −0.0381709
\(342\) 0 0
\(343\) 0 0
\(344\) 6.75605 0.364262
\(345\) 0 0
\(346\) 15.7484 0.846640
\(347\) −4.10583 −0.220413 −0.110206 0.993909i \(-0.535151\pi\)
−0.110206 + 0.993909i \(0.535151\pi\)
\(348\) 0 0
\(349\) 20.9897 1.12356 0.561778 0.827288i \(-0.310118\pi\)
0.561778 + 0.827288i \(0.310118\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 10.7453 0.571912 0.285956 0.958243i \(-0.407689\pi\)
0.285956 + 0.958243i \(0.407689\pi\)
\(354\) 0 0
\(355\) 39.9348 2.11952
\(356\) 11.3753 0.602889
\(357\) 0 0
\(358\) 17.3310 0.915974
\(359\) 26.5911 1.40343 0.701713 0.712460i \(-0.252419\pi\)
0.701713 + 0.712460i \(0.252419\pi\)
\(360\) 0 0
\(361\) −11.2869 −0.594047
\(362\) 23.9207 1.25724
\(363\) 0 0
\(364\) 0 0
\(365\) −1.18422 −0.0619849
\(366\) 0 0
\(367\) 20.5601 1.07323 0.536615 0.843827i \(-0.319703\pi\)
0.536615 + 0.843827i \(0.319703\pi\)
\(368\) 2.90080 0.151215
\(369\) 0 0
\(370\) −3.28025 −0.170532
\(371\) 0 0
\(372\) 0 0
\(373\) −29.4495 −1.52484 −0.762419 0.647083i \(-0.775989\pi\)
−0.762419 + 0.647083i \(0.775989\pi\)
\(374\) −0.462230 −0.0239014
\(375\) 0 0
\(376\) −3.94882 −0.203645
\(377\) 9.16263 0.471899
\(378\) 0 0
\(379\) 1.86157 0.0956224 0.0478112 0.998856i \(-0.484775\pi\)
0.0478112 + 0.998856i \(0.484775\pi\)
\(380\) −9.13897 −0.468819
\(381\) 0 0
\(382\) 7.10552 0.363550
\(383\) −9.55063 −0.488014 −0.244007 0.969773i \(-0.578462\pi\)
−0.244007 + 0.969773i \(0.578462\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5.50578 −0.280237
\(387\) 0 0
\(388\) 3.89317 0.197646
\(389\) 3.01788 0.153012 0.0765062 0.997069i \(-0.475624\pi\)
0.0765062 + 0.997069i \(0.475624\pi\)
\(390\) 0 0
\(391\) −1.34084 −0.0678092
\(392\) 0 0
\(393\) 0 0
\(394\) 1.86419 0.0939164
\(395\) −0.554183 −0.0278840
\(396\) 0 0
\(397\) −34.8425 −1.74870 −0.874348 0.485299i \(-0.838711\pi\)
−0.874348 + 0.485299i \(0.838711\pi\)
\(398\) 8.95198 0.448722
\(399\) 0 0
\(400\) 5.82843 0.291421
\(401\) −9.44952 −0.471887 −0.235943 0.971767i \(-0.575818\pi\)
−0.235943 + 0.971767i \(0.575818\pi\)
\(402\) 0 0
\(403\) 2.28342 0.113745
\(404\) −10.9687 −0.545714
\(405\) 0 0
\(406\) 0 0
\(407\) 0.996838 0.0494114
\(408\) 0 0
\(409\) 29.0372 1.43580 0.717899 0.696147i \(-0.245104\pi\)
0.717899 + 0.696147i \(0.245104\pi\)
\(410\) −1.52104 −0.0751189
\(411\) 0 0
\(412\) 12.8072 0.630967
\(413\) 0 0
\(414\) 0 0
\(415\) 24.7895 1.21687
\(416\) −3.23948 −0.158829
\(417\) 0 0
\(418\) 2.77725 0.135840
\(419\) −18.2318 −0.890684 −0.445342 0.895361i \(-0.646918\pi\)
−0.445342 + 0.895361i \(0.646918\pi\)
\(420\) 0 0
\(421\) 1.79529 0.0874969 0.0437484 0.999043i \(-0.486070\pi\)
0.0437484 + 0.999043i \(0.486070\pi\)
\(422\) 16.0634 0.781956
\(423\) 0 0
\(424\) −12.3105 −0.597853
\(425\) −2.69408 −0.130682
\(426\) 0 0
\(427\) 0 0
\(428\) 11.9611 0.578161
\(429\) 0 0
\(430\) −22.2318 −1.07211
\(431\) 12.9942 0.625910 0.312955 0.949768i \(-0.398681\pi\)
0.312955 + 0.949768i \(0.398681\pi\)
\(432\) 0 0
\(433\) −0.387396 −0.0186170 −0.00930852 0.999957i \(-0.502963\pi\)
−0.00930852 + 0.999957i \(0.502963\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.9642 0.620874
\(437\) 8.05626 0.385383
\(438\) 0 0
\(439\) −6.82843 −0.325903 −0.162952 0.986634i \(-0.552101\pi\)
−0.162952 + 0.986634i \(0.552101\pi\)
\(440\) −3.29066 −0.156876
\(441\) 0 0
\(442\) 1.49739 0.0712234
\(443\) −18.5911 −0.883290 −0.441645 0.897190i \(-0.645605\pi\)
−0.441645 + 0.897190i \(0.645605\pi\)
\(444\) 0 0
\(445\) −37.4322 −1.77446
\(446\) −15.3196 −0.725406
\(447\) 0 0
\(448\) 0 0
\(449\) −6.10868 −0.288286 −0.144143 0.989557i \(-0.546043\pi\)
−0.144143 + 0.989557i \(0.546043\pi\)
\(450\) 0 0
\(451\) 0.462230 0.0217656
\(452\) 13.4097 0.630741
\(453\) 0 0
\(454\) −11.3885 −0.534491
\(455\) 0 0
\(456\) 0 0
\(457\) 29.9348 1.40029 0.700145 0.714000i \(-0.253118\pi\)
0.700145 + 0.714000i \(0.253118\pi\)
\(458\) −0.462230 −0.0215986
\(459\) 0 0
\(460\) −9.54555 −0.445064
\(461\) −5.65238 −0.263258 −0.131629 0.991299i \(-0.542021\pi\)
−0.131629 + 0.991299i \(0.542021\pi\)
\(462\) 0 0
\(463\) 7.79529 0.362278 0.181139 0.983458i \(-0.442022\pi\)
0.181139 + 0.983458i \(0.442022\pi\)
\(464\) −2.82843 −0.131306
\(465\) 0 0
\(466\) 11.6569 0.539993
\(467\) 34.9464 1.61712 0.808562 0.588411i \(-0.200246\pi\)
0.808562 + 0.588411i \(0.200246\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 12.9942 0.599379
\(471\) 0 0
\(472\) −10.8284 −0.498419
\(473\) 6.75605 0.310643
\(474\) 0 0
\(475\) 16.1870 0.742710
\(476\) 0 0
\(477\) 0 0
\(478\) 2.69261 0.123157
\(479\) −38.5035 −1.75927 −0.879634 0.475651i \(-0.842213\pi\)
−0.879634 + 0.475651i \(0.842213\pi\)
\(480\) 0 0
\(481\) −3.22924 −0.147241
\(482\) −10.7491 −0.489609
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −12.8111 −0.581722
\(486\) 0 0
\(487\) −18.7137 −0.847997 −0.423998 0.905663i \(-0.639374\pi\)
−0.423998 + 0.905663i \(0.639374\pi\)
\(488\) −2.06791 −0.0936097
\(489\) 0 0
\(490\) 0 0
\(491\) 31.3137 1.41317 0.706584 0.707629i \(-0.250235\pi\)
0.706584 + 0.707629i \(0.250235\pi\)
\(492\) 0 0
\(493\) 1.30739 0.0588817
\(494\) −8.99684 −0.404787
\(495\) 0 0
\(496\) −0.704871 −0.0316496
\(497\) 0 0
\(498\) 0 0
\(499\) −31.4169 −1.40641 −0.703207 0.710985i \(-0.748249\pi\)
−0.703207 + 0.710985i \(0.748249\pi\)
\(500\) −2.72607 −0.121914
\(501\) 0 0
\(502\) 1.75921 0.0785174
\(503\) 43.2921 1.93030 0.965150 0.261697i \(-0.0842821\pi\)
0.965150 + 0.261697i \(0.0842821\pi\)
\(504\) 0 0
\(505\) 36.0943 1.60617
\(506\) 2.90080 0.128956
\(507\) 0 0
\(508\) −22.3016 −0.989474
\(509\) 38.1562 1.69125 0.845623 0.533781i \(-0.179229\pi\)
0.845623 + 0.533781i \(0.179229\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 26.5442 1.17082
\(515\) −42.1442 −1.85710
\(516\) 0 0
\(517\) −3.94882 −0.173669
\(518\) 0 0
\(519\) 0 0
\(520\) 10.6600 0.467473
\(521\) 3.79366 0.166203 0.0831017 0.996541i \(-0.473517\pi\)
0.0831017 + 0.996541i \(0.473517\pi\)
\(522\) 0 0
\(523\) −8.27670 −0.361915 −0.180957 0.983491i \(-0.557920\pi\)
−0.180957 + 0.983491i \(0.557920\pi\)
\(524\) 3.53330 0.154353
\(525\) 0 0
\(526\) −3.68683 −0.160754
\(527\) 0.325813 0.0141926
\(528\) 0 0
\(529\) −14.5853 −0.634145
\(530\) 40.5098 1.75963
\(531\) 0 0
\(532\) 0 0
\(533\) −1.49739 −0.0648590
\(534\) 0 0
\(535\) −39.3598 −1.70167
\(536\) 15.3374 0.662473
\(537\) 0 0
\(538\) −0.471173 −0.0203137
\(539\) 0 0
\(540\) 0 0
\(541\) 16.4916 0.709029 0.354515 0.935050i \(-0.384646\pi\)
0.354515 + 0.935050i \(0.384646\pi\)
\(542\) 29.7927 1.27970
\(543\) 0 0
\(544\) −0.462230 −0.0198180
\(545\) −42.6609 −1.82739
\(546\) 0 0
\(547\) 4.00894 0.171410 0.0857050 0.996321i \(-0.472686\pi\)
0.0857050 + 0.996321i \(0.472686\pi\)
\(548\) 10.1358 0.432980
\(549\) 0 0
\(550\) 5.82843 0.248525
\(551\) −7.85525 −0.334645
\(552\) 0 0
\(553\) 0 0
\(554\) −32.3650 −1.37506
\(555\) 0 0
\(556\) 6.63249 0.281280
\(557\) −19.7800 −0.838106 −0.419053 0.907962i \(-0.637638\pi\)
−0.419053 + 0.907962i \(0.637638\pi\)
\(558\) 0 0
\(559\) −21.8861 −0.925683
\(560\) 0 0
\(561\) 0 0
\(562\) 30.6211 1.29167
\(563\) −39.9199 −1.68242 −0.841212 0.540705i \(-0.818157\pi\)
−0.841212 + 0.540705i \(0.818157\pi\)
\(564\) 0 0
\(565\) −44.1269 −1.85643
\(566\) −18.3381 −0.770807
\(567\) 0 0
\(568\) −12.1358 −0.509207
\(569\) −35.7238 −1.49762 −0.748809 0.662786i \(-0.769374\pi\)
−0.748809 + 0.662786i \(0.769374\pi\)
\(570\) 0 0
\(571\) 1.44320 0.0603959 0.0301980 0.999544i \(-0.490386\pi\)
0.0301980 + 0.999544i \(0.490386\pi\)
\(572\) −3.23948 −0.135449
\(573\) 0 0
\(574\) 0 0
\(575\) 16.9071 0.705076
\(576\) 0 0
\(577\) 7.64606 0.318310 0.159155 0.987254i \(-0.449123\pi\)
0.159155 + 0.987254i \(0.449123\pi\)
\(578\) −16.7863 −0.698220
\(579\) 0 0
\(580\) 9.30739 0.386468
\(581\) 0 0
\(582\) 0 0
\(583\) −12.3105 −0.509851
\(584\) 0.359873 0.0148917
\(585\) 0 0
\(586\) 6.09156 0.251640
\(587\) −19.3382 −0.798174 −0.399087 0.916913i \(-0.630673\pi\)
−0.399087 + 0.916913i \(0.630673\pi\)
\(588\) 0 0
\(589\) −1.95760 −0.0806616
\(590\) 35.6326 1.46697
\(591\) 0 0
\(592\) 0.996838 0.0409698
\(593\) 30.1191 1.23684 0.618421 0.785847i \(-0.287773\pi\)
0.618421 + 0.785847i \(0.287773\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.8132 0.852540
\(597\) 0 0
\(598\) −9.39710 −0.384276
\(599\) 30.9080 1.26287 0.631433 0.775430i \(-0.282467\pi\)
0.631433 + 0.775430i \(0.282467\pi\)
\(600\) 0 0
\(601\) 24.3970 0.995176 0.497588 0.867414i \(-0.334219\pi\)
0.497588 + 0.867414i \(0.334219\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0.144755 0.00588999
\(605\) −3.29066 −0.133784
\(606\) 0 0
\(607\) 39.9348 1.62090 0.810452 0.585805i \(-0.199222\pi\)
0.810452 + 0.585805i \(0.199222\pi\)
\(608\) 2.77725 0.112632
\(609\) 0 0
\(610\) 6.80477 0.275517
\(611\) 12.7921 0.517514
\(612\) 0 0
\(613\) 23.4034 0.945255 0.472628 0.881262i \(-0.343306\pi\)
0.472628 + 0.881262i \(0.343306\pi\)
\(614\) −9.32511 −0.376331
\(615\) 0 0
\(616\) 0 0
\(617\) 35.7439 1.43900 0.719499 0.694494i \(-0.244372\pi\)
0.719499 + 0.694494i \(0.244372\pi\)
\(618\) 0 0
\(619\) −12.2382 −0.491894 −0.245947 0.969283i \(-0.579099\pi\)
−0.245947 + 0.969283i \(0.579099\pi\)
\(620\) 2.31949 0.0931529
\(621\) 0 0
\(622\) −25.0641 −1.00498
\(623\) 0 0
\(624\) 0 0
\(625\) −20.1716 −0.806863
\(626\) 19.1734 0.766324
\(627\) 0 0
\(628\) 6.94119 0.276984
\(629\) −0.460769 −0.0183721
\(630\) 0 0
\(631\) −13.8100 −0.549767 −0.274884 0.961477i \(-0.588639\pi\)
−0.274884 + 0.961477i \(0.588639\pi\)
\(632\) 0.168411 0.00669904
\(633\) 0 0
\(634\) −28.1658 −1.11861
\(635\) 73.3869 2.91227
\(636\) 0 0
\(637\) 0 0
\(638\) −2.82843 −0.111979
\(639\) 0 0
\(640\) −3.29066 −0.130075
\(641\) 47.6188 1.88083 0.940415 0.340030i \(-0.110437\pi\)
0.940415 + 0.340030i \(0.110437\pi\)
\(642\) 0 0
\(643\) 23.2921 0.918552 0.459276 0.888294i \(-0.348109\pi\)
0.459276 + 0.888294i \(0.348109\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.28373 −0.0505076
\(647\) −41.0463 −1.61369 −0.806847 0.590760i \(-0.798828\pi\)
−0.806847 + 0.590760i \(0.798828\pi\)
\(648\) 0 0
\(649\) −10.8284 −0.425053
\(650\) −18.8811 −0.740576
\(651\) 0 0
\(652\) 2.34315 0.0917647
\(653\) 33.9348 1.32797 0.663986 0.747745i \(-0.268864\pi\)
0.663986 + 0.747745i \(0.268864\pi\)
\(654\) 0 0
\(655\) −11.6269 −0.454300
\(656\) 0.462230 0.0180471
\(657\) 0 0
\(658\) 0 0
\(659\) −30.1721 −1.17534 −0.587669 0.809101i \(-0.699954\pi\)
−0.587669 + 0.809101i \(0.699954\pi\)
\(660\) 0 0
\(661\) −7.82728 −0.304446 −0.152223 0.988346i \(-0.548643\pi\)
−0.152223 + 0.988346i \(0.548643\pi\)
\(662\) 5.13897 0.199732
\(663\) 0 0
\(664\) −7.53330 −0.292349
\(665\) 0 0
\(666\) 0 0
\(667\) −8.20471 −0.317688
\(668\) 17.4432 0.674898
\(669\) 0 0
\(670\) −50.4700 −1.94983
\(671\) −2.06791 −0.0798306
\(672\) 0 0
\(673\) 22.1721 0.854672 0.427336 0.904093i \(-0.359452\pi\)
0.427336 + 0.904093i \(0.359452\pi\)
\(674\) 19.8163 0.763296
\(675\) 0 0
\(676\) −2.50578 −0.0963760
\(677\) −0.494668 −0.0190116 −0.00950581 0.999955i \(-0.503026\pi\)
−0.00950581 + 0.999955i \(0.503026\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 1.52104 0.0583293
\(681\) 0 0
\(682\) −0.704871 −0.0269909
\(683\) 2.51156 0.0961021 0.0480510 0.998845i \(-0.484699\pi\)
0.0480510 + 0.998845i \(0.484699\pi\)
\(684\) 0 0
\(685\) −33.3535 −1.27437
\(686\) 0 0
\(687\) 0 0
\(688\) 6.75605 0.257572
\(689\) 39.8798 1.51930
\(690\) 0 0
\(691\) −23.2587 −0.884801 −0.442401 0.896818i \(-0.645873\pi\)
−0.442401 + 0.896818i \(0.645873\pi\)
\(692\) 15.7484 0.598665
\(693\) 0 0
\(694\) −4.10583 −0.155855
\(695\) −21.8253 −0.827880
\(696\) 0 0
\(697\) −0.213657 −0.00809283
\(698\) 20.9897 0.794474
\(699\) 0 0
\(700\) 0 0
\(701\) −20.3253 −0.767674 −0.383837 0.923401i \(-0.625398\pi\)
−0.383837 + 0.923401i \(0.625398\pi\)
\(702\) 0 0
\(703\) 2.76847 0.104415
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 10.7453 0.404403
\(707\) 0 0
\(708\) 0 0
\(709\) 24.7869 0.930891 0.465446 0.885077i \(-0.345894\pi\)
0.465446 + 0.885077i \(0.345894\pi\)
\(710\) 39.9348 1.49873
\(711\) 0 0
\(712\) 11.3753 0.426307
\(713\) −2.04469 −0.0765744
\(714\) 0 0
\(715\) 10.6600 0.398662
\(716\) 17.3310 0.647691
\(717\) 0 0
\(718\) 26.5911 0.992372
\(719\) 38.5212 1.43660 0.718299 0.695734i \(-0.244921\pi\)
0.718299 + 0.695734i \(0.244921\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −11.2869 −0.420055
\(723\) 0 0
\(724\) 23.9207 0.889006
\(725\) −16.4853 −0.612248
\(726\) 0 0
\(727\) 28.2657 1.04832 0.524158 0.851621i \(-0.324380\pi\)
0.524158 + 0.851621i \(0.324380\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.18422 −0.0438299
\(731\) −3.12285 −0.115503
\(732\) 0 0
\(733\) −4.28418 −0.158240 −0.0791199 0.996865i \(-0.525211\pi\)
−0.0791199 + 0.996865i \(0.525211\pi\)
\(734\) 20.5601 0.758888
\(735\) 0 0
\(736\) 2.90080 0.106925
\(737\) 15.3374 0.564959
\(738\) 0 0
\(739\) 20.1958 0.742913 0.371457 0.928450i \(-0.378858\pi\)
0.371457 + 0.928450i \(0.378858\pi\)
\(740\) −3.28025 −0.120585
\(741\) 0 0
\(742\) 0 0
\(743\) 32.8258 1.20426 0.602131 0.798397i \(-0.294318\pi\)
0.602131 + 0.798397i \(0.294318\pi\)
\(744\) 0 0
\(745\) −68.4890 −2.50924
\(746\) −29.4495 −1.07822
\(747\) 0 0
\(748\) −0.462230 −0.0169008
\(749\) 0 0
\(750\) 0 0
\(751\) −18.1468 −0.662187 −0.331093 0.943598i \(-0.607418\pi\)
−0.331093 + 0.943598i \(0.607418\pi\)
\(752\) −3.94882 −0.143999
\(753\) 0 0
\(754\) 9.16263 0.333683
\(755\) −0.476339 −0.0173357
\(756\) 0 0
\(757\) −10.9905 −0.399457 −0.199729 0.979851i \(-0.564006\pi\)
−0.199729 + 0.979851i \(0.564006\pi\)
\(758\) 1.86157 0.0676152
\(759\) 0 0
\(760\) −9.13897 −0.331505
\(761\) 18.4596 0.669160 0.334580 0.942367i \(-0.391405\pi\)
0.334580 + 0.942367i \(0.391405\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 7.10552 0.257069
\(765\) 0 0
\(766\) −9.55063 −0.345078
\(767\) 35.0785 1.26661
\(768\) 0 0
\(769\) −47.8567 −1.72576 −0.862878 0.505411i \(-0.831341\pi\)
−0.862878 + 0.505411i \(0.831341\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.50578 −0.198157
\(773\) 45.4201 1.63365 0.816825 0.576886i \(-0.195732\pi\)
0.816825 + 0.576886i \(0.195732\pi\)
\(774\) 0 0
\(775\) −4.10829 −0.147574
\(776\) 3.89317 0.139757
\(777\) 0 0
\(778\) 3.01788 0.108196
\(779\) 1.28373 0.0459944
\(780\) 0 0
\(781\) −12.1358 −0.434254
\(782\) −1.34084 −0.0479483
\(783\) 0 0
\(784\) 0 0
\(785\) −22.8411 −0.815233
\(786\) 0 0
\(787\) −13.5298 −0.482286 −0.241143 0.970490i \(-0.577522\pi\)
−0.241143 + 0.970490i \(0.577522\pi\)
\(788\) 1.86419 0.0664089
\(789\) 0 0
\(790\) −0.554183 −0.0197170
\(791\) 0 0
\(792\) 0 0
\(793\) 6.69894 0.237886
\(794\) −34.8425 −1.23652
\(795\) 0 0
\(796\) 8.95198 0.317295
\(797\) 13.8031 0.488930 0.244465 0.969658i \(-0.421388\pi\)
0.244465 + 0.969658i \(0.421388\pi\)
\(798\) 0 0
\(799\) 1.82527 0.0645732
\(800\) 5.82843 0.206066
\(801\) 0 0
\(802\) −9.44952 −0.333674
\(803\) 0.359873 0.0126997
\(804\) 0 0
\(805\) 0 0
\(806\) 2.28342 0.0804299
\(807\) 0 0
\(808\) −10.9687 −0.385878
\(809\) −38.0816 −1.33888 −0.669439 0.742867i \(-0.733466\pi\)
−0.669439 + 0.742867i \(0.733466\pi\)
\(810\) 0 0
\(811\) −42.0359 −1.47608 −0.738040 0.674757i \(-0.764249\pi\)
−0.738040 + 0.674757i \(0.764249\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.996838 0.0349392
\(815\) −7.71049 −0.270087
\(816\) 0 0
\(817\) 18.7632 0.656442
\(818\) 29.0372 1.01526
\(819\) 0 0
\(820\) −1.52104 −0.0531171
\(821\) −49.0974 −1.71351 −0.856756 0.515722i \(-0.827524\pi\)
−0.856756 + 0.515722i \(0.827524\pi\)
\(822\) 0 0
\(823\) −24.7073 −0.861243 −0.430622 0.902533i \(-0.641706\pi\)
−0.430622 + 0.902533i \(0.641706\pi\)
\(824\) 12.8072 0.446161
\(825\) 0 0
\(826\) 0 0
\(827\) −19.7774 −0.687728 −0.343864 0.939020i \(-0.611736\pi\)
−0.343864 + 0.939020i \(0.611736\pi\)
\(828\) 0 0
\(829\) 25.4789 0.884919 0.442459 0.896789i \(-0.354106\pi\)
0.442459 + 0.896789i \(0.354106\pi\)
\(830\) 24.7895 0.860456
\(831\) 0 0
\(832\) −3.23948 −0.112309
\(833\) 0 0
\(834\) 0 0
\(835\) −57.3996 −1.98639
\(836\) 2.77725 0.0960531
\(837\) 0 0
\(838\) −18.2318 −0.629809
\(839\) −11.9064 −0.411055 −0.205528 0.978651i \(-0.565891\pi\)
−0.205528 + 0.978651i \(0.565891\pi\)
\(840\) 0 0
\(841\) −21.0000 −0.724138
\(842\) 1.79529 0.0618696
\(843\) 0 0
\(844\) 16.0634 0.552926
\(845\) 8.24565 0.283659
\(846\) 0 0
\(847\) 0 0
\(848\) −12.3105 −0.422746
\(849\) 0 0
\(850\) −2.69408 −0.0924061
\(851\) 2.89163 0.0991239
\(852\) 0 0
\(853\) −41.2968 −1.41398 −0.706988 0.707225i \(-0.749947\pi\)
−0.706988 + 0.707225i \(0.749947\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 11.9611 0.408821
\(857\) 1.80506 0.0616598 0.0308299 0.999525i \(-0.490185\pi\)
0.0308299 + 0.999525i \(0.490185\pi\)
\(858\) 0 0
\(859\) 49.9974 1.70589 0.852944 0.522002i \(-0.174815\pi\)
0.852944 + 0.522002i \(0.174815\pi\)
\(860\) −22.2318 −0.758100
\(861\) 0 0
\(862\) 12.9942 0.442585
\(863\) −22.5640 −0.768087 −0.384043 0.923315i \(-0.625469\pi\)
−0.384043 + 0.923315i \(0.625469\pi\)
\(864\) 0 0
\(865\) −51.8226 −1.76202
\(866\) −0.387396 −0.0131642
\(867\) 0 0
\(868\) 0 0
\(869\) 0.168411 0.00571296
\(870\) 0 0
\(871\) −49.6851 −1.68351
\(872\) 12.9642 0.439025
\(873\) 0 0
\(874\) 8.05626 0.272507
\(875\) 0 0
\(876\) 0 0
\(877\) 9.98211 0.337072 0.168536 0.985695i \(-0.446096\pi\)
0.168536 + 0.985695i \(0.446096\pi\)
\(878\) −6.82843 −0.230448
\(879\) 0 0
\(880\) −3.29066 −0.110928
\(881\) 37.6108 1.26714 0.633571 0.773685i \(-0.281589\pi\)
0.633571 + 0.773685i \(0.281589\pi\)
\(882\) 0 0
\(883\) −24.2843 −0.817231 −0.408615 0.912707i \(-0.633988\pi\)
−0.408615 + 0.912707i \(0.633988\pi\)
\(884\) 1.49739 0.0503625
\(885\) 0 0
\(886\) −18.5911 −0.624581
\(887\) 7.66318 0.257304 0.128652 0.991690i \(-0.458935\pi\)
0.128652 + 0.991690i \(0.458935\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −37.4322 −1.25473
\(891\) 0 0
\(892\) −15.3196 −0.512940
\(893\) −10.9669 −0.366992
\(894\) 0 0
\(895\) −57.0305 −1.90632
\(896\) 0 0
\(897\) 0 0
\(898\) −6.10868 −0.203849
\(899\) 1.99368 0.0664928
\(900\) 0 0
\(901\) 5.69031 0.189572
\(902\) 0.462230 0.0153906
\(903\) 0 0
\(904\) 13.4097 0.446001
\(905\) −78.7148 −2.61657
\(906\) 0 0
\(907\) 23.9458 0.795108 0.397554 0.917579i \(-0.369859\pi\)
0.397554 + 0.917579i \(0.369859\pi\)
\(908\) −11.3885 −0.377942
\(909\) 0 0
\(910\) 0 0
\(911\) 2.61129 0.0865161 0.0432580 0.999064i \(-0.486226\pi\)
0.0432580 + 0.999064i \(0.486226\pi\)
\(912\) 0 0
\(913\) −7.53330 −0.249316
\(914\) 29.9348 0.990155
\(915\) 0 0
\(916\) −0.462230 −0.0152725
\(917\) 0 0
\(918\) 0 0
\(919\) 43.9222 1.44886 0.724429 0.689349i \(-0.242103\pi\)
0.724429 + 0.689349i \(0.242103\pi\)
\(920\) −9.54555 −0.314708
\(921\) 0 0
\(922\) −5.65238 −0.186151
\(923\) 39.3137 1.29403
\(924\) 0 0
\(925\) 5.81000 0.191032
\(926\) 7.79529 0.256169
\(927\) 0 0
\(928\) −2.82843 −0.0928477
\(929\) −40.3369 −1.32341 −0.661706 0.749764i \(-0.730167\pi\)
−0.661706 + 0.749764i \(0.730167\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 11.6569 0.381833
\(933\) 0 0
\(934\) 34.9464 1.14348
\(935\) 1.52104 0.0497434
\(936\) 0 0
\(937\) −10.6378 −0.347522 −0.173761 0.984788i \(-0.555592\pi\)
−0.173761 + 0.984788i \(0.555592\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 12.9942 0.423825
\(941\) −5.45258 −0.177749 −0.0888746 0.996043i \(-0.528327\pi\)
−0.0888746 + 0.996043i \(0.528327\pi\)
\(942\) 0 0
\(943\) 1.34084 0.0436638
\(944\) −10.8284 −0.352435
\(945\) 0 0
\(946\) 6.75605 0.219658
\(947\) 11.9152 0.387192 0.193596 0.981081i \(-0.437985\pi\)
0.193596 + 0.981081i \(0.437985\pi\)
\(948\) 0 0
\(949\) −1.16580 −0.0378435
\(950\) 16.1870 0.525175
\(951\) 0 0
\(952\) 0 0
\(953\) −19.5447 −0.633115 −0.316557 0.948573i \(-0.602527\pi\)
−0.316557 + 0.948573i \(0.602527\pi\)
\(954\) 0 0
\(955\) −23.3818 −0.756618
\(956\) 2.69261 0.0870854
\(957\) 0 0
\(958\) −38.5035 −1.24399
\(959\) 0 0
\(960\) 0 0
\(961\) −30.5032 −0.983973
\(962\) −3.22924 −0.104115
\(963\) 0 0
\(964\) −10.7491 −0.346206
\(965\) 18.1176 0.583227
\(966\) 0 0
\(967\) −55.0311 −1.76968 −0.884841 0.465893i \(-0.845733\pi\)
−0.884841 + 0.465893i \(0.845733\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) −12.8111 −0.411339
\(971\) −7.36505 −0.236356 −0.118178 0.992992i \(-0.537705\pi\)
−0.118178 + 0.992992i \(0.537705\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −18.7137 −0.599624
\(975\) 0 0
\(976\) −2.06791 −0.0661921
\(977\) 32.9192 1.05318 0.526590 0.850120i \(-0.323470\pi\)
0.526590 + 0.850120i \(0.323470\pi\)
\(978\) 0 0
\(979\) 11.3753 0.363556
\(980\) 0 0
\(981\) 0 0
\(982\) 31.3137 0.999261
\(983\) 45.3957 1.44790 0.723949 0.689853i \(-0.242325\pi\)
0.723949 + 0.689853i \(0.242325\pi\)
\(984\) 0 0
\(985\) −6.13440 −0.195458
\(986\) 1.30739 0.0416356
\(987\) 0 0
\(988\) −8.99684 −0.286228
\(989\) 19.5980 0.623180
\(990\) 0 0
\(991\) −11.5657 −0.367398 −0.183699 0.982983i \(-0.558807\pi\)
−0.183699 + 0.982983i \(0.558807\pi\)
\(992\) −0.704871 −0.0223797
\(993\) 0 0
\(994\) 0 0
\(995\) −29.4579 −0.933879
\(996\) 0 0
\(997\) −2.58294 −0.0818025 −0.0409012 0.999163i \(-0.513023\pi\)
−0.0409012 + 0.999163i \(0.513023\pi\)
\(998\) −31.4169 −0.994485
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.ec.1.1 4
3.2 odd 2 3234.2.a.bk.1.4 yes 4
7.6 odd 2 9702.2.a.eb.1.4 4
21.20 even 2 3234.2.a.bj.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3234.2.a.bj.1.1 4 21.20 even 2
3234.2.a.bk.1.4 yes 4 3.2 odd 2
9702.2.a.eb.1.4 4 7.6 odd 2
9702.2.a.ec.1.1 4 1.1 even 1 trivial