Properties

Label 9702.2.a.dz.1.1
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4352.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3234)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.68554\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.79793 q^{5} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.79793 q^{5} -1.00000 q^{8} +3.79793 q^{10} -1.00000 q^{11} +0.361009 q^{13} +1.00000 q^{16} +4.11582 q^{17} +4.15894 q^{19} -3.79793 q^{20} +1.00000 q^{22} -0.542661 q^{23} +9.42429 q^{25} -0.361009 q^{26} -0.767438 q^{29} -8.80801 q^{31} -1.00000 q^{32} -4.11582 q^{34} +2.28577 q^{37} -4.15894 q^{38} +3.79793 q^{40} -9.13690 q^{41} -10.1995 q^{43} -1.00000 q^{44} +0.542661 q^{46} +2.98737 q^{47} -9.42429 q^{50} +0.361009 q^{52} +12.4564 q^{53} +3.79793 q^{55} +0.767438 q^{58} -2.25689 q^{59} +12.2748 q^{61} +8.80801 q^{62} +1.00000 q^{64} -1.37109 q^{65} +0.603650 q^{67} +4.11582 q^{68} +6.87385 q^{71} +9.45479 q^{73} -2.28577 q^{74} +4.15894 q^{76} +0.0321169 q^{79} -3.79793 q^{80} +9.13690 q^{82} -10.8690 q^{83} -15.6316 q^{85} +10.1995 q^{86} +1.00000 q^{88} +1.29585 q^{89} -0.542661 q^{92} -2.98737 q^{94} -15.7954 q^{95} -18.2628 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 4 q^{4} - 4 q^{5} - 4 q^{8} + 4 q^{10} - 4 q^{11} + 8 q^{13} + 4 q^{16} - 4 q^{17} + 12 q^{19} - 4 q^{20} + 4 q^{22} + 8 q^{23} + 4 q^{25} - 8 q^{26} + 8 q^{29} + 4 q^{31} - 4 q^{32} + 4 q^{34} + 8 q^{37} - 12 q^{38} + 4 q^{40} - 12 q^{41} - 8 q^{43} - 4 q^{44} - 8 q^{46} - 4 q^{47} - 4 q^{50} + 8 q^{52} + 8 q^{53} + 4 q^{55} - 8 q^{58} + 24 q^{61} - 4 q^{62} + 4 q^{64} + 16 q^{65} - 8 q^{67} - 4 q^{68} - 8 q^{71} + 4 q^{73} - 8 q^{74} + 12 q^{76} - 8 q^{79} - 4 q^{80} + 12 q^{82} - 4 q^{83} - 8 q^{85} + 8 q^{86} + 4 q^{88} - 24 q^{89} + 8 q^{92} + 4 q^{94} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.79793 −1.69849 −0.849244 0.528001i \(-0.822942\pi\)
−0.849244 + 0.528001i \(0.822942\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.79793 1.20101
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 0.361009 0.100126 0.0500629 0.998746i \(-0.484058\pi\)
0.0500629 + 0.998746i \(0.484058\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.11582 0.998232 0.499116 0.866535i \(-0.333658\pi\)
0.499116 + 0.866535i \(0.333658\pi\)
\(18\) 0 0
\(19\) 4.15894 0.954127 0.477063 0.878869i \(-0.341701\pi\)
0.477063 + 0.878869i \(0.341701\pi\)
\(20\) −3.79793 −0.849244
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −0.542661 −0.113153 −0.0565763 0.998398i \(-0.518018\pi\)
−0.0565763 + 0.998398i \(0.518018\pi\)
\(24\) 0 0
\(25\) 9.42429 1.88486
\(26\) −0.361009 −0.0707997
\(27\) 0 0
\(28\) 0 0
\(29\) −0.767438 −0.142510 −0.0712548 0.997458i \(-0.522700\pi\)
−0.0712548 + 0.997458i \(0.522700\pi\)
\(30\) 0 0
\(31\) −8.80801 −1.58197 −0.790983 0.611838i \(-0.790430\pi\)
−0.790983 + 0.611838i \(0.790430\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −4.11582 −0.705857
\(35\) 0 0
\(36\) 0 0
\(37\) 2.28577 0.375778 0.187889 0.982190i \(-0.439836\pi\)
0.187889 + 0.982190i \(0.439836\pi\)
\(38\) −4.15894 −0.674669
\(39\) 0 0
\(40\) 3.79793 0.600506
\(41\) −9.13690 −1.42694 −0.713472 0.700683i \(-0.752879\pi\)
−0.713472 + 0.700683i \(0.752879\pi\)
\(42\) 0 0
\(43\) −10.1995 −1.55541 −0.777706 0.628629i \(-0.783617\pi\)
−0.777706 + 0.628629i \(0.783617\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 0.542661 0.0800110
\(47\) 2.98737 0.435753 0.217876 0.975976i \(-0.430087\pi\)
0.217876 + 0.975976i \(0.430087\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −9.42429 −1.33280
\(51\) 0 0
\(52\) 0.361009 0.0500629
\(53\) 12.4564 1.71102 0.855510 0.517787i \(-0.173244\pi\)
0.855510 + 0.517787i \(0.173244\pi\)
\(54\) 0 0
\(55\) 3.79793 0.512113
\(56\) 0 0
\(57\) 0 0
\(58\) 0.767438 0.100770
\(59\) −2.25689 −0.293823 −0.146911 0.989150i \(-0.546933\pi\)
−0.146911 + 0.989150i \(0.546933\pi\)
\(60\) 0 0
\(61\) 12.2748 1.57162 0.785811 0.618467i \(-0.212246\pi\)
0.785811 + 0.618467i \(0.212246\pi\)
\(62\) 8.80801 1.11862
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.37109 −0.170063
\(66\) 0 0
\(67\) 0.603650 0.0737475 0.0368738 0.999320i \(-0.488260\pi\)
0.0368738 + 0.999320i \(0.488260\pi\)
\(68\) 4.11582 0.499116
\(69\) 0 0
\(70\) 0 0
\(71\) 6.87385 0.815776 0.407888 0.913032i \(-0.366265\pi\)
0.407888 + 0.913032i \(0.366265\pi\)
\(72\) 0 0
\(73\) 9.45479 1.10660 0.553300 0.832982i \(-0.313368\pi\)
0.553300 + 0.832982i \(0.313368\pi\)
\(74\) −2.28577 −0.265715
\(75\) 0 0
\(76\) 4.15894 0.477063
\(77\) 0 0
\(78\) 0 0
\(79\) 0.0321169 0.00361344 0.00180672 0.999998i \(-0.499425\pi\)
0.00180672 + 0.999998i \(0.499425\pi\)
\(80\) −3.79793 −0.424622
\(81\) 0 0
\(82\) 9.13690 1.00900
\(83\) −10.8690 −1.19303 −0.596514 0.802603i \(-0.703448\pi\)
−0.596514 + 0.802603i \(0.703448\pi\)
\(84\) 0 0
\(85\) −15.6316 −1.69548
\(86\) 10.1995 1.09984
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) 1.29585 0.137359 0.0686797 0.997639i \(-0.478121\pi\)
0.0686797 + 0.997639i \(0.478121\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.542661 −0.0565763
\(93\) 0 0
\(94\) −2.98737 −0.308124
\(95\) −15.7954 −1.62057
\(96\) 0 0
\(97\) −18.2628 −1.85431 −0.927153 0.374683i \(-0.877752\pi\)
−0.927153 + 0.374683i \(0.877752\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 9.42429 0.942429
\(101\) −2.26790 −0.225665 −0.112832 0.993614i \(-0.535992\pi\)
−0.112832 + 0.993614i \(0.535992\pi\)
\(102\) 0 0
\(103\) −13.4438 −1.32465 −0.662327 0.749215i \(-0.730431\pi\)
−0.662327 + 0.749215i \(0.730431\pi\)
\(104\) −0.361009 −0.0353998
\(105\) 0 0
\(106\) −12.4564 −1.20987
\(107\) 6.79956 0.657338 0.328669 0.944445i \(-0.393400\pi\)
0.328669 + 0.944445i \(0.393400\pi\)
\(108\) 0 0
\(109\) 3.20730 0.307204 0.153602 0.988133i \(-0.450913\pi\)
0.153602 + 0.988133i \(0.450913\pi\)
\(110\) −3.79793 −0.362119
\(111\) 0 0
\(112\) 0 0
\(113\) 6.37887 0.600074 0.300037 0.953928i \(-0.403001\pi\)
0.300037 + 0.953928i \(0.403001\pi\)
\(114\) 0 0
\(115\) 2.06099 0.192188
\(116\) −0.767438 −0.0712548
\(117\) 0 0
\(118\) 2.25689 0.207764
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −12.2748 −1.11130
\(123\) 0 0
\(124\) −8.80801 −0.790983
\(125\) −16.8032 −1.50292
\(126\) 0 0
\(127\) −10.7101 −0.950364 −0.475182 0.879888i \(-0.657618\pi\)
−0.475182 + 0.879888i \(0.657618\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 1.37109 0.120252
\(131\) −11.8732 −1.03736 −0.518682 0.854967i \(-0.673577\pi\)
−0.518682 + 0.854967i \(0.673577\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −0.603650 −0.0521474
\(135\) 0 0
\(136\) −4.11582 −0.352928
\(137\) 3.21699 0.274846 0.137423 0.990512i \(-0.456118\pi\)
0.137423 + 0.990512i \(0.456118\pi\)
\(138\) 0 0
\(139\) 0.608497 0.0516120 0.0258060 0.999667i \(-0.491785\pi\)
0.0258060 + 0.999667i \(0.491785\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.87385 −0.576840
\(143\) −0.361009 −0.0301891
\(144\) 0 0
\(145\) 2.91468 0.242051
\(146\) −9.45479 −0.782484
\(147\) 0 0
\(148\) 2.28577 0.187889
\(149\) 14.1064 1.15564 0.577821 0.816163i \(-0.303903\pi\)
0.577821 + 0.816163i \(0.303903\pi\)
\(150\) 0 0
\(151\) −3.42847 −0.279005 −0.139502 0.990222i \(-0.544550\pi\)
−0.139502 + 0.990222i \(0.544550\pi\)
\(152\) −4.15894 −0.337335
\(153\) 0 0
\(154\) 0 0
\(155\) 33.4522 2.68695
\(156\) 0 0
\(157\) −16.8833 −1.34743 −0.673715 0.738991i \(-0.735303\pi\)
−0.673715 + 0.738991i \(0.735303\pi\)
\(158\) −0.0321169 −0.00255508
\(159\) 0 0
\(160\) 3.79793 0.300253
\(161\) 0 0
\(162\) 0 0
\(163\) −15.8275 −1.23971 −0.619853 0.784718i \(-0.712808\pi\)
−0.619853 + 0.784718i \(0.712808\pi\)
\(164\) −9.13690 −0.713472
\(165\) 0 0
\(166\) 10.8690 0.843598
\(167\) −25.3981 −1.96536 −0.982682 0.185300i \(-0.940674\pi\)
−0.982682 + 0.185300i \(0.940674\pi\)
\(168\) 0 0
\(169\) −12.8697 −0.989975
\(170\) 15.6316 1.19889
\(171\) 0 0
\(172\) −10.1995 −0.777706
\(173\) −12.1207 −0.921517 −0.460758 0.887526i \(-0.652423\pi\)
−0.460758 + 0.887526i \(0.652423\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −1.29585 −0.0971277
\(179\) −22.5376 −1.68454 −0.842268 0.539059i \(-0.818780\pi\)
−0.842268 + 0.539059i \(0.818780\pi\)
\(180\) 0 0
\(181\) −21.4905 −1.59738 −0.798689 0.601745i \(-0.794473\pi\)
−0.798689 + 0.601745i \(0.794473\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.542661 0.0400055
\(185\) −8.68119 −0.638254
\(186\) 0 0
\(187\) −4.11582 −0.300978
\(188\) 2.98737 0.217876
\(189\) 0 0
\(190\) 15.7954 1.14592
\(191\) 5.80049 0.419708 0.209854 0.977733i \(-0.432701\pi\)
0.209854 + 0.977733i \(0.432701\pi\)
\(192\) 0 0
\(193\) 26.1623 1.88320 0.941602 0.336729i \(-0.109321\pi\)
0.941602 + 0.336729i \(0.109321\pi\)
\(194\) 18.2628 1.31119
\(195\) 0 0
\(196\) 0 0
\(197\) 16.9958 1.21090 0.605451 0.795882i \(-0.292993\pi\)
0.605451 + 0.795882i \(0.292993\pi\)
\(198\) 0 0
\(199\) 25.9745 1.84128 0.920641 0.390410i \(-0.127667\pi\)
0.920641 + 0.390410i \(0.127667\pi\)
\(200\) −9.42429 −0.666398
\(201\) 0 0
\(202\) 2.26790 0.159569
\(203\) 0 0
\(204\) 0 0
\(205\) 34.7013 2.42365
\(206\) 13.4438 0.936672
\(207\) 0 0
\(208\) 0.361009 0.0250315
\(209\) −4.15894 −0.287680
\(210\) 0 0
\(211\) 12.7555 0.878123 0.439062 0.898457i \(-0.355311\pi\)
0.439062 + 0.898457i \(0.355311\pi\)
\(212\) 12.4564 0.855510
\(213\) 0 0
\(214\) −6.79956 −0.464808
\(215\) 38.7371 2.64185
\(216\) 0 0
\(217\) 0 0
\(218\) −3.20730 −0.217226
\(219\) 0 0
\(220\) 3.79793 0.256057
\(221\) 1.48585 0.0999489
\(222\) 0 0
\(223\) −10.0658 −0.674058 −0.337029 0.941494i \(-0.609422\pi\)
−0.337029 + 0.941494i \(0.609422\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6.37887 −0.424316
\(227\) 1.58055 0.104905 0.0524525 0.998623i \(-0.483296\pi\)
0.0524525 + 0.998623i \(0.483296\pi\)
\(228\) 0 0
\(229\) 23.5969 1.55933 0.779664 0.626198i \(-0.215390\pi\)
0.779664 + 0.626198i \(0.215390\pi\)
\(230\) −2.06099 −0.135898
\(231\) 0 0
\(232\) 0.767438 0.0503848
\(233\) 6.75774 0.442715 0.221357 0.975193i \(-0.428951\pi\)
0.221357 + 0.975193i \(0.428951\pi\)
\(234\) 0 0
\(235\) −11.3458 −0.740120
\(236\) −2.25689 −0.146911
\(237\) 0 0
\(238\) 0 0
\(239\) 10.8642 0.702744 0.351372 0.936236i \(-0.385715\pi\)
0.351372 + 0.936236i \(0.385715\pi\)
\(240\) 0 0
\(241\) 10.8988 0.702055 0.351027 0.936365i \(-0.385832\pi\)
0.351027 + 0.936365i \(0.385832\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 12.2748 0.785811
\(245\) 0 0
\(246\) 0 0
\(247\) 1.50142 0.0955328
\(248\) 8.80801 0.559309
\(249\) 0 0
\(250\) 16.8032 1.06273
\(251\) 14.4885 0.914508 0.457254 0.889336i \(-0.348833\pi\)
0.457254 + 0.889336i \(0.348833\pi\)
\(252\) 0 0
\(253\) 0.542661 0.0341168
\(254\) 10.7101 0.672009
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −21.6591 −1.35106 −0.675530 0.737332i \(-0.736085\pi\)
−0.675530 + 0.737332i \(0.736085\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.37109 −0.0850313
\(261\) 0 0
\(262\) 11.8732 0.733527
\(263\) 13.6890 0.844098 0.422049 0.906573i \(-0.361311\pi\)
0.422049 + 0.906573i \(0.361311\pi\)
\(264\) 0 0
\(265\) −47.3086 −2.90614
\(266\) 0 0
\(267\) 0 0
\(268\) 0.603650 0.0368738
\(269\) −9.45479 −0.576469 −0.288234 0.957560i \(-0.593068\pi\)
−0.288234 + 0.957560i \(0.593068\pi\)
\(270\) 0 0
\(271\) 0.363303 0.0220691 0.0110346 0.999939i \(-0.496488\pi\)
0.0110346 + 0.999939i \(0.496488\pi\)
\(272\) 4.11582 0.249558
\(273\) 0 0
\(274\) −3.21699 −0.194346
\(275\) −9.42429 −0.568306
\(276\) 0 0
\(277\) 20.4445 1.22839 0.614194 0.789155i \(-0.289481\pi\)
0.614194 + 0.789155i \(0.289481\pi\)
\(278\) −0.608497 −0.0364952
\(279\) 0 0
\(280\) 0 0
\(281\) 9.55045 0.569732 0.284866 0.958567i \(-0.408051\pi\)
0.284866 + 0.958567i \(0.408051\pi\)
\(282\) 0 0
\(283\) −1.73465 −0.103114 −0.0515571 0.998670i \(-0.516418\pi\)
−0.0515571 + 0.998670i \(0.516418\pi\)
\(284\) 6.87385 0.407888
\(285\) 0 0
\(286\) 0.361009 0.0213469
\(287\) 0 0
\(288\) 0 0
\(289\) −0.0600590 −0.00353288
\(290\) −2.91468 −0.171156
\(291\) 0 0
\(292\) 9.45479 0.553300
\(293\) 28.7922 1.68206 0.841028 0.540992i \(-0.181951\pi\)
0.841028 + 0.540992i \(0.181951\pi\)
\(294\) 0 0
\(295\) 8.57153 0.499054
\(296\) −2.28577 −0.132857
\(297\) 0 0
\(298\) −14.1064 −0.817162
\(299\) −0.195905 −0.0113295
\(300\) 0 0
\(301\) 0 0
\(302\) 3.42847 0.197286
\(303\) 0 0
\(304\) 4.15894 0.238532
\(305\) −46.6187 −2.66938
\(306\) 0 0
\(307\) −21.4066 −1.22174 −0.610868 0.791732i \(-0.709180\pi\)
−0.610868 + 0.791732i \(0.709180\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −33.4522 −1.89996
\(311\) 8.88096 0.503593 0.251797 0.967780i \(-0.418979\pi\)
0.251797 + 0.967780i \(0.418979\pi\)
\(312\) 0 0
\(313\) 17.1100 0.967117 0.483558 0.875312i \(-0.339344\pi\)
0.483558 + 0.875312i \(0.339344\pi\)
\(314\) 16.8833 0.952777
\(315\) 0 0
\(316\) 0.0321169 0.00180672
\(317\) −25.9408 −1.45698 −0.728489 0.685057i \(-0.759777\pi\)
−0.728489 + 0.685057i \(0.759777\pi\)
\(318\) 0 0
\(319\) 0.767438 0.0429683
\(320\) −3.79793 −0.212311
\(321\) 0 0
\(322\) 0 0
\(323\) 17.1174 0.952440
\(324\) 0 0
\(325\) 3.40225 0.188723
\(326\) 15.8275 0.876604
\(327\) 0 0
\(328\) 9.13690 0.504501
\(329\) 0 0
\(330\) 0 0
\(331\) −26.0880 −1.43393 −0.716963 0.697111i \(-0.754468\pi\)
−0.716963 + 0.697111i \(0.754468\pi\)
\(332\) −10.8690 −0.596514
\(333\) 0 0
\(334\) 25.3981 1.38972
\(335\) −2.29262 −0.125259
\(336\) 0 0
\(337\) 19.8206 1.07970 0.539850 0.841761i \(-0.318481\pi\)
0.539850 + 0.841761i \(0.318481\pi\)
\(338\) 12.8697 0.700018
\(339\) 0 0
\(340\) −15.6316 −0.847742
\(341\) 8.80801 0.476981
\(342\) 0 0
\(343\) 0 0
\(344\) 10.1995 0.549921
\(345\) 0 0
\(346\) 12.1207 0.651611
\(347\) 25.3050 1.35844 0.679222 0.733933i \(-0.262318\pi\)
0.679222 + 0.733933i \(0.262318\pi\)
\(348\) 0 0
\(349\) 0.556914 0.0298109 0.0149055 0.999889i \(-0.495255\pi\)
0.0149055 + 0.999889i \(0.495255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −8.84629 −0.470841 −0.235420 0.971894i \(-0.575647\pi\)
−0.235420 + 0.971894i \(0.575647\pi\)
\(354\) 0 0
\(355\) −26.1064 −1.38558
\(356\) 1.29585 0.0686797
\(357\) 0 0
\(358\) 22.5376 1.19115
\(359\) −2.49724 −0.131799 −0.0658997 0.997826i \(-0.520992\pi\)
−0.0658997 + 0.997826i \(0.520992\pi\)
\(360\) 0 0
\(361\) −1.70320 −0.0896423
\(362\) 21.4905 1.12952
\(363\) 0 0
\(364\) 0 0
\(365\) −35.9086 −1.87954
\(366\) 0 0
\(367\) 5.25757 0.274443 0.137221 0.990540i \(-0.456183\pi\)
0.137221 + 0.990540i \(0.456183\pi\)
\(368\) −0.542661 −0.0282881
\(369\) 0 0
\(370\) 8.68119 0.451313
\(371\) 0 0
\(372\) 0 0
\(373\) −6.95365 −0.360046 −0.180023 0.983662i \(-0.557617\pi\)
−0.180023 + 0.983662i \(0.557617\pi\)
\(374\) 4.11582 0.212824
\(375\) 0 0
\(376\) −2.98737 −0.154062
\(377\) −0.277052 −0.0142689
\(378\) 0 0
\(379\) 36.7981 1.89019 0.945095 0.326797i \(-0.105969\pi\)
0.945095 + 0.326797i \(0.105969\pi\)
\(380\) −15.7954 −0.810286
\(381\) 0 0
\(382\) −5.80049 −0.296779
\(383\) 23.1190 1.18133 0.590664 0.806918i \(-0.298866\pi\)
0.590664 + 0.806918i \(0.298866\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −26.1623 −1.33163
\(387\) 0 0
\(388\) −18.2628 −0.927153
\(389\) 14.5715 0.738806 0.369403 0.929269i \(-0.379562\pi\)
0.369403 + 0.929269i \(0.379562\pi\)
\(390\) 0 0
\(391\) −2.23349 −0.112953
\(392\) 0 0
\(393\) 0 0
\(394\) −16.9958 −0.856237
\(395\) −0.121978 −0.00613737
\(396\) 0 0
\(397\) 14.7075 0.738149 0.369074 0.929400i \(-0.379675\pi\)
0.369074 + 0.929400i \(0.379675\pi\)
\(398\) −25.9745 −1.30198
\(399\) 0 0
\(400\) 9.42429 0.471215
\(401\) 4.09672 0.204580 0.102290 0.994755i \(-0.467383\pi\)
0.102290 + 0.994755i \(0.467383\pi\)
\(402\) 0 0
\(403\) −3.17977 −0.158396
\(404\) −2.26790 −0.112832
\(405\) 0 0
\(406\) 0 0
\(407\) −2.28577 −0.113301
\(408\) 0 0
\(409\) −5.41396 −0.267703 −0.133851 0.991001i \(-0.542734\pi\)
−0.133851 + 0.991001i \(0.542734\pi\)
\(410\) −34.7013 −1.71378
\(411\) 0 0
\(412\) −13.4438 −0.662327
\(413\) 0 0
\(414\) 0 0
\(415\) 41.2797 2.02634
\(416\) −0.361009 −0.0176999
\(417\) 0 0
\(418\) 4.15894 0.203420
\(419\) 20.1097 0.982421 0.491210 0.871041i \(-0.336555\pi\)
0.491210 + 0.871041i \(0.336555\pi\)
\(420\) 0 0
\(421\) 33.0192 1.60926 0.804629 0.593777i \(-0.202364\pi\)
0.804629 + 0.593777i \(0.202364\pi\)
\(422\) −12.7555 −0.620927
\(423\) 0 0
\(424\) −12.4564 −0.604937
\(425\) 38.7887 1.88153
\(426\) 0 0
\(427\) 0 0
\(428\) 6.79956 0.328669
\(429\) 0 0
\(430\) −38.7371 −1.86807
\(431\) −26.1385 −1.25905 −0.629524 0.776981i \(-0.716750\pi\)
−0.629524 + 0.776981i \(0.716750\pi\)
\(432\) 0 0
\(433\) 34.7124 1.66817 0.834085 0.551637i \(-0.185996\pi\)
0.834085 + 0.551637i \(0.185996\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3.20730 0.153602
\(437\) −2.25689 −0.107962
\(438\) 0 0
\(439\) 15.4000 0.735000 0.367500 0.930024i \(-0.380214\pi\)
0.367500 + 0.930024i \(0.380214\pi\)
\(440\) −3.79793 −0.181059
\(441\) 0 0
\(442\) −1.48585 −0.0706745
\(443\) −1.75321 −0.0832973 −0.0416486 0.999132i \(-0.513261\pi\)
−0.0416486 + 0.999132i \(0.513261\pi\)
\(444\) 0 0
\(445\) −4.92153 −0.233303
\(446\) 10.0658 0.476631
\(447\) 0 0
\(448\) 0 0
\(449\) −0.549515 −0.0259332 −0.0129666 0.999916i \(-0.504128\pi\)
−0.0129666 + 0.999916i \(0.504128\pi\)
\(450\) 0 0
\(451\) 9.13690 0.430240
\(452\) 6.37887 0.300037
\(453\) 0 0
\(454\) −1.58055 −0.0741791
\(455\) 0 0
\(456\) 0 0
\(457\) −11.9339 −0.558245 −0.279122 0.960256i \(-0.590043\pi\)
−0.279122 + 0.960256i \(0.590043\pi\)
\(458\) −23.5969 −1.10261
\(459\) 0 0
\(460\) 2.06099 0.0960941
\(461\) −29.3091 −1.36506 −0.682532 0.730856i \(-0.739121\pi\)
−0.682532 + 0.730856i \(0.739121\pi\)
\(462\) 0 0
\(463\) 4.75774 0.221111 0.110556 0.993870i \(-0.464737\pi\)
0.110556 + 0.993870i \(0.464737\pi\)
\(464\) −0.767438 −0.0356274
\(465\) 0 0
\(466\) −6.75774 −0.313046
\(467\) 33.4201 1.54650 0.773249 0.634102i \(-0.218630\pi\)
0.773249 + 0.634102i \(0.218630\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 11.3458 0.523344
\(471\) 0 0
\(472\) 2.25689 0.103882
\(473\) 10.1995 0.468974
\(474\) 0 0
\(475\) 39.1951 1.79839
\(476\) 0 0
\(477\) 0 0
\(478\) −10.8642 −0.496915
\(479\) 39.8087 1.81891 0.909453 0.415808i \(-0.136501\pi\)
0.909453 + 0.415808i \(0.136501\pi\)
\(480\) 0 0
\(481\) 0.825182 0.0376251
\(482\) −10.8988 −0.496428
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 69.3609 3.14952
\(486\) 0 0
\(487\) 2.97206 0.134677 0.0673384 0.997730i \(-0.478549\pi\)
0.0673384 + 0.997730i \(0.478549\pi\)
\(488\) −12.2748 −0.555652
\(489\) 0 0
\(490\) 0 0
\(491\) 37.6972 1.70125 0.850625 0.525773i \(-0.176224\pi\)
0.850625 + 0.525773i \(0.176224\pi\)
\(492\) 0 0
\(493\) −3.15863 −0.142258
\(494\) −1.50142 −0.0675519
\(495\) 0 0
\(496\) −8.80801 −0.395491
\(497\) 0 0
\(498\) 0 0
\(499\) 44.5292 1.99340 0.996701 0.0811669i \(-0.0258647\pi\)
0.996701 + 0.0811669i \(0.0258647\pi\)
\(500\) −16.8032 −0.751460
\(501\) 0 0
\(502\) −14.4885 −0.646655
\(503\) 22.3477 0.996436 0.498218 0.867052i \(-0.333988\pi\)
0.498218 + 0.867052i \(0.333988\pi\)
\(504\) 0 0
\(505\) 8.61334 0.383289
\(506\) −0.542661 −0.0241242
\(507\) 0 0
\(508\) −10.7101 −0.475182
\(509\) −2.35390 −0.104335 −0.0521673 0.998638i \(-0.516613\pi\)
−0.0521673 + 0.998638i \(0.516613\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 21.6591 0.955344
\(515\) 51.0586 2.24991
\(516\) 0 0
\(517\) −2.98737 −0.131384
\(518\) 0 0
\(519\) 0 0
\(520\) 1.37109 0.0601262
\(521\) 2.58940 0.113443 0.0567217 0.998390i \(-0.481935\pi\)
0.0567217 + 0.998390i \(0.481935\pi\)
\(522\) 0 0
\(523\) −20.4671 −0.894965 −0.447483 0.894293i \(-0.647679\pi\)
−0.447483 + 0.894293i \(0.647679\pi\)
\(524\) −11.8732 −0.518682
\(525\) 0 0
\(526\) −13.6890 −0.596868
\(527\) −36.2522 −1.57917
\(528\) 0 0
\(529\) −22.7055 −0.987196
\(530\) 47.3086 2.05495
\(531\) 0 0
\(532\) 0 0
\(533\) −3.29850 −0.142874
\(534\) 0 0
\(535\) −25.8243 −1.11648
\(536\) −0.603650 −0.0260737
\(537\) 0 0
\(538\) 9.45479 0.407625
\(539\) 0 0
\(540\) 0 0
\(541\) 6.31788 0.271627 0.135814 0.990734i \(-0.456635\pi\)
0.135814 + 0.990734i \(0.456635\pi\)
\(542\) −0.363303 −0.0156052
\(543\) 0 0
\(544\) −4.11582 −0.176464
\(545\) −12.1811 −0.521781
\(546\) 0 0
\(547\) −10.6371 −0.454810 −0.227405 0.973800i \(-0.573024\pi\)
−0.227405 + 0.973800i \(0.573024\pi\)
\(548\) 3.21699 0.137423
\(549\) 0 0
\(550\) 9.42429 0.401853
\(551\) −3.19173 −0.135972
\(552\) 0 0
\(553\) 0 0
\(554\) −20.4445 −0.868601
\(555\) 0 0
\(556\) 0.608497 0.0258060
\(557\) 13.6316 0.577589 0.288795 0.957391i \(-0.406746\pi\)
0.288795 + 0.957391i \(0.406746\pi\)
\(558\) 0 0
\(559\) −3.68212 −0.155737
\(560\) 0 0
\(561\) 0 0
\(562\) −9.55045 −0.402861
\(563\) 37.8882 1.59680 0.798399 0.602128i \(-0.205681\pi\)
0.798399 + 0.602128i \(0.205681\pi\)
\(564\) 0 0
\(565\) −24.2265 −1.01922
\(566\) 1.73465 0.0729127
\(567\) 0 0
\(568\) −6.87385 −0.288420
\(569\) −0.799920 −0.0335344 −0.0167672 0.999859i \(-0.505337\pi\)
−0.0167672 + 0.999859i \(0.505337\pi\)
\(570\) 0 0
\(571\) −31.3949 −1.31383 −0.656917 0.753963i \(-0.728140\pi\)
−0.656917 + 0.753963i \(0.728140\pi\)
\(572\) −0.361009 −0.0150945
\(573\) 0 0
\(574\) 0 0
\(575\) −5.11419 −0.213277
\(576\) 0 0
\(577\) 35.6375 1.48361 0.741804 0.670617i \(-0.233970\pi\)
0.741804 + 0.670617i \(0.233970\pi\)
\(578\) 0.0600590 0.00249813
\(579\) 0 0
\(580\) 2.91468 0.121025
\(581\) 0 0
\(582\) 0 0
\(583\) −12.4564 −0.515892
\(584\) −9.45479 −0.391242
\(585\) 0 0
\(586\) −28.7922 −1.18939
\(587\) −28.0811 −1.15903 −0.579516 0.814961i \(-0.696759\pi\)
−0.579516 + 0.814961i \(0.696759\pi\)
\(588\) 0 0
\(589\) −36.6320 −1.50940
\(590\) −8.57153 −0.352884
\(591\) 0 0
\(592\) 2.28577 0.0939444
\(593\) −10.3370 −0.424489 −0.212245 0.977217i \(-0.568077\pi\)
−0.212245 + 0.977217i \(0.568077\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 14.1064 0.577821
\(597\) 0 0
\(598\) 0.195905 0.00801117
\(599\) −36.5949 −1.49523 −0.747614 0.664133i \(-0.768801\pi\)
−0.747614 + 0.664133i \(0.768801\pi\)
\(600\) 0 0
\(601\) 34.9800 1.42686 0.713431 0.700725i \(-0.247140\pi\)
0.713431 + 0.700725i \(0.247140\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.42847 −0.139502
\(605\) −3.79793 −0.154408
\(606\) 0 0
\(607\) 0.0642338 0.00260717 0.00130359 0.999999i \(-0.499585\pi\)
0.00130359 + 0.999999i \(0.499585\pi\)
\(608\) −4.15894 −0.168667
\(609\) 0 0
\(610\) 46.6187 1.88754
\(611\) 1.07847 0.0436301
\(612\) 0 0
\(613\) 1.17157 0.0473194 0.0236597 0.999720i \(-0.492468\pi\)
0.0236597 + 0.999720i \(0.492468\pi\)
\(614\) 21.4066 0.863898
\(615\) 0 0
\(616\) 0 0
\(617\) 3.40965 0.137267 0.0686337 0.997642i \(-0.478136\pi\)
0.0686337 + 0.997642i \(0.478136\pi\)
\(618\) 0 0
\(619\) 2.33804 0.0939738 0.0469869 0.998896i \(-0.485038\pi\)
0.0469869 + 0.998896i \(0.485038\pi\)
\(620\) 33.4522 1.34347
\(621\) 0 0
\(622\) −8.88096 −0.356094
\(623\) 0 0
\(624\) 0 0
\(625\) 16.6958 0.667833
\(626\) −17.1100 −0.683855
\(627\) 0 0
\(628\) −16.8833 −0.673715
\(629\) 9.40779 0.375113
\(630\) 0 0
\(631\) 11.0124 0.438396 0.219198 0.975680i \(-0.429656\pi\)
0.219198 + 0.975680i \(0.429656\pi\)
\(632\) −0.0321169 −0.00127754
\(633\) 0 0
\(634\) 25.9408 1.03024
\(635\) 40.6761 1.61418
\(636\) 0 0
\(637\) 0 0
\(638\) −0.767438 −0.0303832
\(639\) 0 0
\(640\) 3.79793 0.150126
\(641\) 7.83260 0.309369 0.154685 0.987964i \(-0.450564\pi\)
0.154685 + 0.987964i \(0.450564\pi\)
\(642\) 0 0
\(643\) −17.4486 −0.688107 −0.344053 0.938950i \(-0.611800\pi\)
−0.344053 + 0.938950i \(0.611800\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −17.1174 −0.673477
\(647\) 43.7782 1.72110 0.860550 0.509367i \(-0.170120\pi\)
0.860550 + 0.509367i \(0.170120\pi\)
\(648\) 0 0
\(649\) 2.25689 0.0885909
\(650\) −3.40225 −0.133447
\(651\) 0 0
\(652\) −15.8275 −0.619853
\(653\) 43.8119 1.71449 0.857247 0.514906i \(-0.172173\pi\)
0.857247 + 0.514906i \(0.172173\pi\)
\(654\) 0 0
\(655\) 45.0935 1.76195
\(656\) −9.13690 −0.356736
\(657\) 0 0
\(658\) 0 0
\(659\) 39.0838 1.52249 0.761245 0.648465i \(-0.224589\pi\)
0.761245 + 0.648465i \(0.224589\pi\)
\(660\) 0 0
\(661\) −12.2832 −0.477762 −0.238881 0.971049i \(-0.576781\pi\)
−0.238881 + 0.971049i \(0.576781\pi\)
\(662\) 26.0880 1.01394
\(663\) 0 0
\(664\) 10.8690 0.421799
\(665\) 0 0
\(666\) 0 0
\(667\) 0.416459 0.0161253
\(668\) −25.3981 −0.982682
\(669\) 0 0
\(670\) 2.29262 0.0885717
\(671\) −12.2748 −0.473862
\(672\) 0 0
\(673\) −4.69315 −0.180907 −0.0904537 0.995901i \(-0.528832\pi\)
−0.0904537 + 0.995901i \(0.528832\pi\)
\(674\) −19.8206 −0.763463
\(675\) 0 0
\(676\) −12.8697 −0.494987
\(677\) 43.7114 1.67997 0.839983 0.542612i \(-0.182565\pi\)
0.839983 + 0.542612i \(0.182565\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 15.6316 0.599444
\(681\) 0 0
\(682\) −8.80801 −0.337276
\(683\) 29.7156 1.13703 0.568517 0.822671i \(-0.307517\pi\)
0.568517 + 0.822671i \(0.307517\pi\)
\(684\) 0 0
\(685\) −12.2179 −0.466823
\(686\) 0 0
\(687\) 0 0
\(688\) −10.1995 −0.388853
\(689\) 4.49688 0.171317
\(690\) 0 0
\(691\) 9.23070 0.351152 0.175576 0.984466i \(-0.443821\pi\)
0.175576 + 0.984466i \(0.443821\pi\)
\(692\) −12.1207 −0.460758
\(693\) 0 0
\(694\) −25.3050 −0.960564
\(695\) −2.31103 −0.0876623
\(696\) 0 0
\(697\) −37.6058 −1.42442
\(698\) −0.556914 −0.0210795
\(699\) 0 0
\(700\) 0 0
\(701\) 15.3559 0.579984 0.289992 0.957029i \(-0.406347\pi\)
0.289992 + 0.957029i \(0.406347\pi\)
\(702\) 0 0
\(703\) 9.50637 0.358539
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 8.84629 0.332935
\(707\) 0 0
\(708\) 0 0
\(709\) −23.4425 −0.880403 −0.440202 0.897899i \(-0.645093\pi\)
−0.440202 + 0.897899i \(0.645093\pi\)
\(710\) 26.1064 0.979756
\(711\) 0 0
\(712\) −1.29585 −0.0485639
\(713\) 4.77976 0.179003
\(714\) 0 0
\(715\) 1.37109 0.0512758
\(716\) −22.5376 −0.842268
\(717\) 0 0
\(718\) 2.49724 0.0931962
\(719\) 22.1791 0.827141 0.413570 0.910472i \(-0.364282\pi\)
0.413570 + 0.910472i \(0.364282\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.70320 0.0633867
\(723\) 0 0
\(724\) −21.4905 −0.798689
\(725\) −7.23256 −0.268611
\(726\) 0 0
\(727\) 26.8736 0.996686 0.498343 0.866980i \(-0.333942\pi\)
0.498343 + 0.866980i \(0.333942\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 35.9086 1.32904
\(731\) −41.9793 −1.55266
\(732\) 0 0
\(733\) 42.2729 1.56139 0.780693 0.624915i \(-0.214867\pi\)
0.780693 + 0.624915i \(0.214867\pi\)
\(734\) −5.25757 −0.194060
\(735\) 0 0
\(736\) 0.542661 0.0200027
\(737\) −0.603650 −0.0222357
\(738\) 0 0
\(739\) −18.5463 −0.682236 −0.341118 0.940021i \(-0.610806\pi\)
−0.341118 + 0.940021i \(0.610806\pi\)
\(740\) −8.68119 −0.319127
\(741\) 0 0
\(742\) 0 0
\(743\) −26.6917 −0.979222 −0.489611 0.871941i \(-0.662861\pi\)
−0.489611 + 0.871941i \(0.662861\pi\)
\(744\) 0 0
\(745\) −53.5752 −1.96284
\(746\) 6.95365 0.254591
\(747\) 0 0
\(748\) −4.11582 −0.150489
\(749\) 0 0
\(750\) 0 0
\(751\) −14.1638 −0.516844 −0.258422 0.966032i \(-0.583202\pi\)
−0.258422 + 0.966032i \(0.583202\pi\)
\(752\) 2.98737 0.108938
\(753\) 0 0
\(754\) 0.277052 0.0100896
\(755\) 13.0211 0.473886
\(756\) 0 0
\(757\) 23.3069 0.847102 0.423551 0.905872i \(-0.360783\pi\)
0.423551 + 0.905872i \(0.360783\pi\)
\(758\) −36.7981 −1.33657
\(759\) 0 0
\(760\) 15.7954 0.572959
\(761\) −39.2524 −1.42290 −0.711450 0.702737i \(-0.751961\pi\)
−0.711450 + 0.702737i \(0.751961\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 5.80049 0.209854
\(765\) 0 0
\(766\) −23.1190 −0.835325
\(767\) −0.814759 −0.0294192
\(768\) 0 0
\(769\) −35.6372 −1.28511 −0.642556 0.766239i \(-0.722126\pi\)
−0.642556 + 0.766239i \(0.722126\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 26.1623 0.941602
\(773\) −32.6368 −1.17386 −0.586932 0.809636i \(-0.699665\pi\)
−0.586932 + 0.809636i \(0.699665\pi\)
\(774\) 0 0
\(775\) −83.0093 −2.98178
\(776\) 18.2628 0.655596
\(777\) 0 0
\(778\) −14.5715 −0.522415
\(779\) −37.9998 −1.36149
\(780\) 0 0
\(781\) −6.87385 −0.245966
\(782\) 2.23349 0.0798695
\(783\) 0 0
\(784\) 0 0
\(785\) 64.1215 2.28859
\(786\) 0 0
\(787\) 14.0832 0.502010 0.251005 0.967986i \(-0.419239\pi\)
0.251005 + 0.967986i \(0.419239\pi\)
\(788\) 16.9958 0.605451
\(789\) 0 0
\(790\) 0.121978 0.00433978
\(791\) 0 0
\(792\) 0 0
\(793\) 4.43130 0.157360
\(794\) −14.7075 −0.521950
\(795\) 0 0
\(796\) 25.9745 0.920641
\(797\) 21.3873 0.757579 0.378789 0.925483i \(-0.376340\pi\)
0.378789 + 0.925483i \(0.376340\pi\)
\(798\) 0 0
\(799\) 12.2955 0.434982
\(800\) −9.42429 −0.333199
\(801\) 0 0
\(802\) −4.09672 −0.144660
\(803\) −9.45479 −0.333652
\(804\) 0 0
\(805\) 0 0
\(806\) 3.17977 0.112003
\(807\) 0 0
\(808\) 2.26790 0.0797846
\(809\) 8.69315 0.305635 0.152817 0.988254i \(-0.451165\pi\)
0.152817 + 0.988254i \(0.451165\pi\)
\(810\) 0 0
\(811\) −44.5886 −1.56572 −0.782859 0.622200i \(-0.786239\pi\)
−0.782859 + 0.622200i \(0.786239\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 2.28577 0.0801161
\(815\) 60.1118 2.10562
\(816\) 0 0
\(817\) −42.4192 −1.48406
\(818\) 5.41396 0.189295
\(819\) 0 0
\(820\) 34.7013 1.21182
\(821\) −49.5824 −1.73044 −0.865219 0.501394i \(-0.832821\pi\)
−0.865219 + 0.501394i \(0.832821\pi\)
\(822\) 0 0
\(823\) −24.9132 −0.868419 −0.434209 0.900812i \(-0.642972\pi\)
−0.434209 + 0.900812i \(0.642972\pi\)
\(824\) 13.4438 0.468336
\(825\) 0 0
\(826\) 0 0
\(827\) −42.7183 −1.48546 −0.742730 0.669591i \(-0.766469\pi\)
−0.742730 + 0.669591i \(0.766469\pi\)
\(828\) 0 0
\(829\) −9.29198 −0.322724 −0.161362 0.986895i \(-0.551589\pi\)
−0.161362 + 0.986895i \(0.551589\pi\)
\(830\) −41.2797 −1.43284
\(831\) 0 0
\(832\) 0.361009 0.0125157
\(833\) 0 0
\(834\) 0 0
\(835\) 96.4603 3.33815
\(836\) −4.15894 −0.143840
\(837\) 0 0
\(838\) −20.1097 −0.694676
\(839\) 14.4061 0.497355 0.248678 0.968586i \(-0.420004\pi\)
0.248678 + 0.968586i \(0.420004\pi\)
\(840\) 0 0
\(841\) −28.4110 −0.979691
\(842\) −33.0192 −1.13792
\(843\) 0 0
\(844\) 12.7555 0.439062
\(845\) 48.8781 1.68146
\(846\) 0 0
\(847\) 0 0
\(848\) 12.4564 0.427755
\(849\) 0 0
\(850\) −38.7887 −1.33044
\(851\) −1.24040 −0.0425202
\(852\) 0 0
\(853\) −32.5161 −1.11333 −0.556665 0.830737i \(-0.687919\pi\)
−0.556665 + 0.830737i \(0.687919\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.79956 −0.232404
\(857\) −49.1364 −1.67847 −0.839234 0.543771i \(-0.816996\pi\)
−0.839234 + 0.543771i \(0.816996\pi\)
\(858\) 0 0
\(859\) 13.2430 0.451846 0.225923 0.974145i \(-0.427460\pi\)
0.225923 + 0.974145i \(0.427460\pi\)
\(860\) 38.7371 1.32092
\(861\) 0 0
\(862\) 26.1385 0.890282
\(863\) 49.8617 1.69731 0.848656 0.528944i \(-0.177412\pi\)
0.848656 + 0.528944i \(0.177412\pi\)
\(864\) 0 0
\(865\) 46.0335 1.56518
\(866\) −34.7124 −1.17957
\(867\) 0 0
\(868\) 0 0
\(869\) −0.0321169 −0.00108949
\(870\) 0 0
\(871\) 0.217923 0.00738404
\(872\) −3.20730 −0.108613
\(873\) 0 0
\(874\) 2.25689 0.0763406
\(875\) 0 0
\(876\) 0 0
\(877\) 48.5769 1.64033 0.820163 0.572131i \(-0.193883\pi\)
0.820163 + 0.572131i \(0.193883\pi\)
\(878\) −15.4000 −0.519723
\(879\) 0 0
\(880\) 3.79793 0.128028
\(881\) −16.1788 −0.545078 −0.272539 0.962145i \(-0.587863\pi\)
−0.272539 + 0.962145i \(0.587863\pi\)
\(882\) 0 0
\(883\) −14.4340 −0.485742 −0.242871 0.970059i \(-0.578089\pi\)
−0.242871 + 0.970059i \(0.578089\pi\)
\(884\) 1.48585 0.0499744
\(885\) 0 0
\(886\) 1.75321 0.0589001
\(887\) −6.14672 −0.206387 −0.103193 0.994661i \(-0.532906\pi\)
−0.103193 + 0.994661i \(0.532906\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 4.92153 0.164970
\(891\) 0 0
\(892\) −10.0658 −0.337029
\(893\) 12.4243 0.415763
\(894\) 0 0
\(895\) 85.5961 2.86116
\(896\) 0 0
\(897\) 0 0
\(898\) 0.549515 0.0183376
\(899\) 6.75960 0.225445
\(900\) 0 0
\(901\) 51.2683 1.70799
\(902\) −9.13690 −0.304226
\(903\) 0 0
\(904\) −6.37887 −0.212158
\(905\) 81.6195 2.71312
\(906\) 0 0
\(907\) 23.7882 0.789873 0.394936 0.918708i \(-0.370767\pi\)
0.394936 + 0.918708i \(0.370767\pi\)
\(908\) 1.58055 0.0524525
\(909\) 0 0
\(910\) 0 0
\(911\) −38.4526 −1.27399 −0.636997 0.770867i \(-0.719823\pi\)
−0.636997 + 0.770867i \(0.719823\pi\)
\(912\) 0 0
\(913\) 10.8690 0.359711
\(914\) 11.9339 0.394739
\(915\) 0 0
\(916\) 23.5969 0.779664
\(917\) 0 0
\(918\) 0 0
\(919\) 16.3276 0.538597 0.269299 0.963057i \(-0.413208\pi\)
0.269299 + 0.963057i \(0.413208\pi\)
\(920\) −2.06099 −0.0679488
\(921\) 0 0
\(922\) 29.3091 0.965245
\(923\) 2.48152 0.0816802
\(924\) 0 0
\(925\) 21.5417 0.708288
\(926\) −4.75774 −0.156349
\(927\) 0 0
\(928\) 0.767438 0.0251924
\(929\) −46.0270 −1.51010 −0.755049 0.655668i \(-0.772387\pi\)
−0.755049 + 0.655668i \(0.772387\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.75774 0.221357
\(933\) 0 0
\(934\) −33.4201 −1.09354
\(935\) 15.6316 0.511208
\(936\) 0 0
\(937\) −19.6326 −0.641371 −0.320685 0.947186i \(-0.603913\pi\)
−0.320685 + 0.947186i \(0.603913\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −11.3458 −0.370060
\(941\) 12.1279 0.395358 0.197679 0.980267i \(-0.436660\pi\)
0.197679 + 0.980267i \(0.436660\pi\)
\(942\) 0 0
\(943\) 4.95824 0.161462
\(944\) −2.25689 −0.0734557
\(945\) 0 0
\(946\) −10.1995 −0.331615
\(947\) −0.0403155 −0.00131008 −0.000655038 1.00000i \(-0.500209\pi\)
−0.000655038 1.00000i \(0.500209\pi\)
\(948\) 0 0
\(949\) 3.41326 0.110799
\(950\) −39.1951 −1.27166
\(951\) 0 0
\(952\) 0 0
\(953\) −45.7949 −1.48344 −0.741721 0.670709i \(-0.765990\pi\)
−0.741721 + 0.670709i \(0.765990\pi\)
\(954\) 0 0
\(955\) −22.0299 −0.712869
\(956\) 10.8642 0.351372
\(957\) 0 0
\(958\) −39.8087 −1.28616
\(959\) 0 0
\(960\) 0 0
\(961\) 46.5811 1.50262
\(962\) −0.825182 −0.0266049
\(963\) 0 0
\(964\) 10.8988 0.351027
\(965\) −99.3626 −3.19860
\(966\) 0 0
\(967\) 19.1340 0.615308 0.307654 0.951498i \(-0.400456\pi\)
0.307654 + 0.951498i \(0.400456\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −69.3609 −2.22704
\(971\) −58.3278 −1.87183 −0.935915 0.352227i \(-0.885425\pi\)
−0.935915 + 0.352227i \(0.885425\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2.97206 −0.0952309
\(975\) 0 0
\(976\) 12.2748 0.392905
\(977\) 32.1169 1.02751 0.513755 0.857937i \(-0.328254\pi\)
0.513755 + 0.857937i \(0.328254\pi\)
\(978\) 0 0
\(979\) −1.29585 −0.0414154
\(980\) 0 0
\(981\) 0 0
\(982\) −37.6972 −1.20297
\(983\) −14.1388 −0.450957 −0.225479 0.974248i \(-0.572395\pi\)
−0.225479 + 0.974248i \(0.572395\pi\)
\(984\) 0 0
\(985\) −64.5490 −2.05670
\(986\) 3.15863 0.100591
\(987\) 0 0
\(988\) 1.50142 0.0477664
\(989\) 5.53488 0.175999
\(990\) 0 0
\(991\) 31.0458 0.986203 0.493102 0.869972i \(-0.335863\pi\)
0.493102 + 0.869972i \(0.335863\pi\)
\(992\) 8.80801 0.279655
\(993\) 0 0
\(994\) 0 0
\(995\) −98.6493 −3.12739
\(996\) 0 0
\(997\) 12.9422 0.409885 0.204942 0.978774i \(-0.434299\pi\)
0.204942 + 0.978774i \(0.434299\pi\)
\(998\) −44.5292 −1.40955
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.dz.1.1 4
3.2 odd 2 3234.2.a.bm.1.4 yes 4
7.6 odd 2 9702.2.a.ea.1.4 4
21.20 even 2 3234.2.a.bl.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3234.2.a.bl.1.1 4 21.20 even 2
3234.2.a.bm.1.4 yes 4 3.2 odd 2
9702.2.a.dz.1.1 4 1.1 even 1 trivial
9702.2.a.ea.1.4 4 7.6 odd 2