# Properties

 Label 9702.2.a.dv Level $9702$ Weight $2$ Character orbit 9702.a Self dual yes Analytic conductor $77.471$ Analytic rank $1$ Dimension $3$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9702.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$77.4708600410$$ Analytic rank: $$1$$ Dimension: $$3$$ Coefficient field: 3.3.2700.1 Defining polynomial: $$x^{3} - 15 x - 20$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 462) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{4} -\beta_{1} q^{5} - q^{8} +O(q^{10})$$ $$q - q^{2} + q^{4} -\beta_{1} q^{5} - q^{8} + \beta_{1} q^{10} + q^{11} + q^{16} + ( -1 - 2 \beta_{2} ) q^{17} + ( -3 - \beta_{2} ) q^{19} -\beta_{1} q^{20} - q^{22} + ( -1 - \beta_{1} + \beta_{2} ) q^{23} + ( 5 + 2 \beta_{1} + \beta_{2} ) q^{25} + ( -3 + 2 \beta_{1} + \beta_{2} ) q^{29} + ( -2 - 2 \beta_{2} ) q^{31} - q^{32} + ( 1 + 2 \beta_{2} ) q^{34} + ( 7 + \beta_{2} ) q^{37} + ( 3 + \beta_{2} ) q^{38} + \beta_{1} q^{40} + ( -4 - 2 \beta_{1} + \beta_{2} ) q^{41} + ( 1 + 3 \beta_{2} ) q^{43} + q^{44} + ( 1 + \beta_{1} - \beta_{2} ) q^{46} + ( -1 + \beta_{1} + \beta_{2} ) q^{47} + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{50} -8 q^{53} -\beta_{1} q^{55} + ( 3 - 2 \beta_{1} - \beta_{2} ) q^{58} + ( 3 + 2 \beta_{1} + \beta_{2} ) q^{59} + ( -2 + \beta_{1} + 2 \beta_{2} ) q^{61} + ( 2 + 2 \beta_{2} ) q^{62} + q^{64} + ( 2 + 2 \beta_{1} - \beta_{2} ) q^{67} + ( -1 - 2 \beta_{2} ) q^{68} + ( -3 + 3 \beta_{2} ) q^{71} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{73} + ( -7 - \beta_{2} ) q^{74} + ( -3 - \beta_{2} ) q^{76} + ( 4 - \beta_{1} ) q^{79} -\beta_{1} q^{80} + ( 4 + 2 \beta_{1} - \beta_{2} ) q^{82} + ( -6 + 2 \beta_{1} - \beta_{2} ) q^{83} + ( 3 \beta_{1} - 4 \beta_{2} ) q^{85} + ( -1 - 3 \beta_{2} ) q^{86} - q^{88} + ( 4 + 2 \beta_{1} ) q^{89} + ( -1 - \beta_{1} + \beta_{2} ) q^{92} + ( 1 - \beta_{1} - \beta_{2} ) q^{94} + ( 4 \beta_{1} - 2 \beta_{2} ) q^{95} + 7 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q - 3 q^{2} + 3 q^{4} - 3 q^{8} + O(q^{10})$$ $$3 q - 3 q^{2} + 3 q^{4} - 3 q^{8} + 3 q^{11} + 3 q^{16} - 3 q^{17} - 9 q^{19} - 3 q^{22} - 3 q^{23} + 15 q^{25} - 9 q^{29} - 6 q^{31} - 3 q^{32} + 3 q^{34} + 21 q^{37} + 9 q^{38} - 12 q^{41} + 3 q^{43} + 3 q^{44} + 3 q^{46} - 3 q^{47} - 15 q^{50} - 24 q^{53} + 9 q^{58} + 9 q^{59} - 6 q^{61} + 6 q^{62} + 3 q^{64} + 6 q^{67} - 3 q^{68} - 9 q^{71} - 21 q^{74} - 9 q^{76} + 12 q^{79} + 12 q^{82} - 18 q^{83} - 3 q^{86} - 3 q^{88} + 12 q^{89} - 3 q^{92} + 3 q^{94} + 21 q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - 15 x - 20$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} - 2 \nu - 10$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} + 2 \beta_{1} + 10$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 4.41883 −1.61323 −2.80560
−1.00000 0 1.00000 −4.41883 0 0 −1.00000 0 4.41883
1.2 −1.00000 0 1.00000 1.61323 0 0 −1.00000 0 −1.61323
1.3 −1.00000 0 1.00000 2.80560 0 0 −1.00000 0 −2.80560
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$7$$ $$1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9702.2.a.dv 3
3.b odd 2 1 3234.2.a.bf 3
7.b odd 2 1 9702.2.a.dw 3
7.c even 3 2 1386.2.k.v 6
21.c even 2 1 3234.2.a.bh 3
21.h odd 6 2 462.2.i.g 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.i.g 6 21.h odd 6 2
1386.2.k.v 6 7.c even 3 2
3234.2.a.bf 3 3.b odd 2 1
3234.2.a.bh 3 21.c even 2 1
9702.2.a.dv 3 1.a even 1 1 trivial
9702.2.a.dw 3 7.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(9702))$$:

 $$T_{5}^{3} - 15 T_{5} + 20$$ $$T_{13}$$ $$T_{17}^{3} + 3 T_{17}^{2} - 57 T_{17} - 139$$ $$T_{19}^{3} + 9 T_{19}^{2} + 12 T_{19} - 28$$ $$T_{23}^{3} + 3 T_{23}^{2} - 27 T_{23} - 89$$ $$T_{29}^{3} + 9 T_{29}^{2} - 48 T_{29} - 348$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 1 + T )^{3}$$
$3$ $$T^{3}$$
$5$ $$20 - 15 T + T^{3}$$
$7$ $$T^{3}$$
$11$ $$( -1 + T )^{3}$$
$13$ $$T^{3}$$
$17$ $$-139 - 57 T + 3 T^{2} + T^{3}$$
$19$ $$-28 + 12 T + 9 T^{2} + T^{3}$$
$23$ $$-89 - 27 T + 3 T^{2} + T^{3}$$
$29$ $$-348 - 48 T + 9 T^{2} + T^{3}$$
$31$ $$-192 - 48 T + 6 T^{2} + T^{3}$$
$37$ $$-228 + 132 T - 21 T^{2} + T^{3}$$
$41$ $$-306 - 27 T + 12 T^{2} + T^{3}$$
$43$ $$404 - 132 T - 3 T^{2} + T^{3}$$
$47$ $$-9 - 27 T + 3 T^{2} + T^{3}$$
$53$ $$( 8 + T )^{3}$$
$59$ $$48 - 48 T - 9 T^{2} + T^{3}$$
$61$ $$98 - 63 T + 6 T^{2} + T^{3}$$
$67$ $$212 - 63 T - 6 T^{2} + T^{3}$$
$71$ $$-108 - 108 T + 9 T^{2} + T^{3}$$
$73$ $$-480 - 120 T + T^{3}$$
$79$ $$16 + 33 T - 12 T^{2} + T^{3}$$
$83$ $$-164 + 33 T + 18 T^{2} + T^{3}$$
$89$ $$16 - 12 T - 12 T^{2} + T^{3}$$
$97$ $$( -7 + T )^{3}$$