Properties

Label 9702.2.a.du.1.3
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 462)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.14510\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.74657 q^{5} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.74657 q^{5} -1.00000 q^{8} -2.74657 q^{10} -1.00000 q^{11} -5.49314 q^{13} +1.00000 q^{16} +1.00000 q^{17} +8.03677 q^{19} +2.74657 q^{20} +1.00000 q^{22} +1.29021 q^{23} +2.54364 q^{25} +5.49314 q^{26} -4.54364 q^{29} -5.08727 q^{31} -1.00000 q^{32} -1.00000 q^{34} -4.03677 q^{37} -8.03677 q^{38} -2.74657 q^{40} +5.54364 q^{41} -4.03677 q^{43} -1.00000 q^{44} -1.29021 q^{46} -9.29021 q^{47} -2.54364 q^{50} -5.49314 q^{52} -5.49314 q^{53} -2.74657 q^{55} +4.54364 q^{58} -9.52991 q^{59} +1.65929 q^{61} +5.08727 q^{62} +1.00000 q^{64} -15.0873 q^{65} +3.54364 q^{67} +1.00000 q^{68} -2.54364 q^{71} +8.58041 q^{73} +4.03677 q^{74} +8.03677 q^{76} +12.2397 q^{79} +2.74657 q^{80} -5.54364 q^{82} -14.5299 q^{83} +2.74657 q^{85} +4.03677 q^{86} +1.00000 q^{88} -6.50686 q^{89} +1.29021 q^{92} +9.29021 q^{94} +22.0735 q^{95} +0.0872743 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{8} - 3 q^{11} + 3 q^{16} + 3 q^{17} + 3 q^{19} + 3 q^{22} - 9 q^{23} + 3 q^{25} - 9 q^{29} - 6 q^{31} - 3 q^{32} - 3 q^{34} + 9 q^{37} - 3 q^{38} + 12 q^{41} + 9 q^{43} - 3 q^{44} + 9 q^{46} - 15 q^{47} - 3 q^{50} + 9 q^{58} + 9 q^{59} + 6 q^{61} + 6 q^{62} + 3 q^{64} - 36 q^{65} + 6 q^{67} + 3 q^{68} - 3 q^{71} - 9 q^{74} + 3 q^{76} + 12 q^{79} - 12 q^{82} - 6 q^{83} - 9 q^{86} + 3 q^{88} - 36 q^{89} - 9 q^{92} + 15 q^{94} + 24 q^{95} - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.74657 1.22830 0.614151 0.789188i \(-0.289498\pi\)
0.614151 + 0.789188i \(0.289498\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.74657 −0.868541
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −5.49314 −1.52352 −0.761761 0.647858i \(-0.775665\pi\)
−0.761761 + 0.647858i \(0.775665\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(18\) 0 0
\(19\) 8.03677 1.84376 0.921881 0.387473i \(-0.126652\pi\)
0.921881 + 0.387473i \(0.126652\pi\)
\(20\) 2.74657 0.614151
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 1.29021 0.269026 0.134513 0.990912i \(-0.457053\pi\)
0.134513 + 0.990912i \(0.457053\pi\)
\(24\) 0 0
\(25\) 2.54364 0.508727
\(26\) 5.49314 1.07729
\(27\) 0 0
\(28\) 0 0
\(29\) −4.54364 −0.843732 −0.421866 0.906658i \(-0.638625\pi\)
−0.421866 + 0.906658i \(0.638625\pi\)
\(30\) 0 0
\(31\) −5.08727 −0.913701 −0.456851 0.889543i \(-0.651023\pi\)
−0.456851 + 0.889543i \(0.651023\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) 0 0
\(37\) −4.03677 −0.663641 −0.331821 0.943342i \(-0.607663\pi\)
−0.331821 + 0.943342i \(0.607663\pi\)
\(38\) −8.03677 −1.30374
\(39\) 0 0
\(40\) −2.74657 −0.434271
\(41\) 5.54364 0.865771 0.432885 0.901449i \(-0.357495\pi\)
0.432885 + 0.901449i \(0.357495\pi\)
\(42\) 0 0
\(43\) −4.03677 −0.615602 −0.307801 0.951451i \(-0.599593\pi\)
−0.307801 + 0.951451i \(0.599593\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −1.29021 −0.190230
\(47\) −9.29021 −1.35512 −0.677558 0.735469i \(-0.736962\pi\)
−0.677558 + 0.735469i \(0.736962\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.54364 −0.359725
\(51\) 0 0
\(52\) −5.49314 −0.761761
\(53\) −5.49314 −0.754540 −0.377270 0.926103i \(-0.623137\pi\)
−0.377270 + 0.926103i \(0.623137\pi\)
\(54\) 0 0
\(55\) −2.74657 −0.370347
\(56\) 0 0
\(57\) 0 0
\(58\) 4.54364 0.596609
\(59\) −9.52991 −1.24069 −0.620344 0.784330i \(-0.713007\pi\)
−0.620344 + 0.784330i \(0.713007\pi\)
\(60\) 0 0
\(61\) 1.65929 0.212451 0.106225 0.994342i \(-0.466123\pi\)
0.106225 + 0.994342i \(0.466123\pi\)
\(62\) 5.08727 0.646084
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −15.0873 −1.87135
\(66\) 0 0
\(67\) 3.54364 0.432924 0.216462 0.976291i \(-0.430548\pi\)
0.216462 + 0.976291i \(0.430548\pi\)
\(68\) 1.00000 0.121268
\(69\) 0 0
\(70\) 0 0
\(71\) −2.54364 −0.301874 −0.150937 0.988543i \(-0.548229\pi\)
−0.150937 + 0.988543i \(0.548229\pi\)
\(72\) 0 0
\(73\) 8.58041 1.00426 0.502131 0.864792i \(-0.332550\pi\)
0.502131 + 0.864792i \(0.332550\pi\)
\(74\) 4.03677 0.469265
\(75\) 0 0
\(76\) 8.03677 0.921881
\(77\) 0 0
\(78\) 0 0
\(79\) 12.2397 1.37707 0.688537 0.725201i \(-0.258253\pi\)
0.688537 + 0.725201i \(0.258253\pi\)
\(80\) 2.74657 0.307076
\(81\) 0 0
\(82\) −5.54364 −0.612192
\(83\) −14.5299 −1.59486 −0.797432 0.603408i \(-0.793809\pi\)
−0.797432 + 0.603408i \(0.793809\pi\)
\(84\) 0 0
\(85\) 2.74657 0.297907
\(86\) 4.03677 0.435296
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −6.50686 −0.689726 −0.344863 0.938653i \(-0.612075\pi\)
−0.344863 + 0.938653i \(0.612075\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.29021 0.134513
\(93\) 0 0
\(94\) 9.29021 0.958212
\(95\) 22.0735 2.26470
\(96\) 0 0
\(97\) 0.0872743 0.00886136 0.00443068 0.999990i \(-0.498590\pi\)
0.00443068 + 0.999990i \(0.498590\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.54364 0.254364
\(101\) 13.0230 1.29584 0.647921 0.761708i \(-0.275639\pi\)
0.647921 + 0.761708i \(0.275639\pi\)
\(102\) 0 0
\(103\) 18.0735 1.78084 0.890420 0.455140i \(-0.150411\pi\)
0.890420 + 0.455140i \(0.150411\pi\)
\(104\) 5.49314 0.538646
\(105\) 0 0
\(106\) 5.49314 0.533541
\(107\) −17.4426 −1.68624 −0.843122 0.537723i \(-0.819285\pi\)
−0.843122 + 0.537723i \(0.819285\pi\)
\(108\) 0 0
\(109\) 1.65929 0.158932 0.0794658 0.996838i \(-0.474679\pi\)
0.0794658 + 0.996838i \(0.474679\pi\)
\(110\) 2.74657 0.261875
\(111\) 0 0
\(112\) 0 0
\(113\) 7.08727 0.666715 0.333357 0.942801i \(-0.391818\pi\)
0.333357 + 0.942801i \(0.391818\pi\)
\(114\) 0 0
\(115\) 3.54364 0.330446
\(116\) −4.54364 −0.421866
\(117\) 0 0
\(118\) 9.52991 0.877299
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.65929 −0.150225
\(123\) 0 0
\(124\) −5.08727 −0.456851
\(125\) −6.74657 −0.603431
\(126\) 0 0
\(127\) −6.78334 −0.601924 −0.300962 0.953636i \(-0.597308\pi\)
−0.300962 + 0.953636i \(0.597308\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 15.0873 1.32324
\(131\) −13.8990 −1.21436 −0.607181 0.794564i \(-0.707700\pi\)
−0.607181 + 0.794564i \(0.707700\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.54364 −0.306124
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) −5.49314 −0.469310 −0.234655 0.972079i \(-0.575396\pi\)
−0.234655 + 0.972079i \(0.575396\pi\)
\(138\) 0 0
\(139\) −13.6309 −1.15616 −0.578079 0.815981i \(-0.696198\pi\)
−0.578079 + 0.815981i \(0.696198\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.54364 0.213457
\(143\) 5.49314 0.459359
\(144\) 0 0
\(145\) −12.4794 −1.03636
\(146\) −8.58041 −0.710120
\(147\) 0 0
\(148\) −4.03677 −0.331821
\(149\) −16.0368 −1.31378 −0.656892 0.753985i \(-0.728129\pi\)
−0.656892 + 0.753985i \(0.728129\pi\)
\(150\) 0 0
\(151\) −5.69607 −0.463539 −0.231770 0.972771i \(-0.574452\pi\)
−0.231770 + 0.972771i \(0.574452\pi\)
\(152\) −8.03677 −0.651868
\(153\) 0 0
\(154\) 0 0
\(155\) −13.9725 −1.12230
\(156\) 0 0
\(157\) −18.1103 −1.44536 −0.722680 0.691182i \(-0.757090\pi\)
−0.722680 + 0.691182i \(0.757090\pi\)
\(158\) −12.2397 −0.973739
\(159\) 0 0
\(160\) −2.74657 −0.217135
\(161\) 0 0
\(162\) 0 0
\(163\) −13.4426 −1.05291 −0.526454 0.850203i \(-0.676479\pi\)
−0.526454 + 0.850203i \(0.676479\pi\)
\(164\) 5.54364 0.432885
\(165\) 0 0
\(166\) 14.5299 1.12774
\(167\) 23.5667 1.82364 0.911822 0.410585i \(-0.134675\pi\)
0.911822 + 0.410585i \(0.134675\pi\)
\(168\) 0 0
\(169\) 17.1745 1.32112
\(170\) −2.74657 −0.210652
\(171\) 0 0
\(172\) −4.03677 −0.307801
\(173\) −10.9127 −0.829679 −0.414840 0.909895i \(-0.636162\pi\)
−0.414840 + 0.909895i \(0.636162\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) 6.50686 0.487710
\(179\) 12.9495 0.967891 0.483946 0.875098i \(-0.339203\pi\)
0.483946 + 0.875098i \(0.339203\pi\)
\(180\) 0 0
\(181\) −7.59414 −0.564468 −0.282234 0.959346i \(-0.591075\pi\)
−0.282234 + 0.959346i \(0.591075\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.29021 −0.0951152
\(185\) −11.0873 −0.815153
\(186\) 0 0
\(187\) −1.00000 −0.0731272
\(188\) −9.29021 −0.677558
\(189\) 0 0
\(190\) −22.0735 −1.60138
\(191\) −18.9863 −1.37380 −0.686899 0.726753i \(-0.741029\pi\)
−0.686899 + 0.726753i \(0.741029\pi\)
\(192\) 0 0
\(193\) −21.5667 −1.55240 −0.776202 0.630484i \(-0.782856\pi\)
−0.776202 + 0.630484i \(0.782856\pi\)
\(194\) −0.0872743 −0.00626593
\(195\) 0 0
\(196\) 0 0
\(197\) 3.12405 0.222579 0.111290 0.993788i \(-0.464502\pi\)
0.111290 + 0.993788i \(0.464502\pi\)
\(198\) 0 0
\(199\) 26.0735 1.84830 0.924152 0.382024i \(-0.124773\pi\)
0.924152 + 0.382024i \(0.124773\pi\)
\(200\) −2.54364 −0.179862
\(201\) 0 0
\(202\) −13.0230 −0.916298
\(203\) 0 0
\(204\) 0 0
\(205\) 15.2260 1.06343
\(206\) −18.0735 −1.25924
\(207\) 0 0
\(208\) −5.49314 −0.380880
\(209\) −8.03677 −0.555915
\(210\) 0 0
\(211\) 15.6677 1.07861 0.539304 0.842111i \(-0.318687\pi\)
0.539304 + 0.842111i \(0.318687\pi\)
\(212\) −5.49314 −0.377270
\(213\) 0 0
\(214\) 17.4426 1.19235
\(215\) −11.0873 −0.756146
\(216\) 0 0
\(217\) 0 0
\(218\) −1.65929 −0.112382
\(219\) 0 0
\(220\) −2.74657 −0.185174
\(221\) −5.49314 −0.369508
\(222\) 0 0
\(223\) −2.40586 −0.161108 −0.0805542 0.996750i \(-0.525669\pi\)
−0.0805542 + 0.996750i \(0.525669\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7.08727 −0.471438
\(227\) 2.45636 0.163035 0.0815173 0.996672i \(-0.474023\pi\)
0.0815173 + 0.996672i \(0.474023\pi\)
\(228\) 0 0
\(229\) 10.5804 0.699173 0.349587 0.936904i \(-0.386322\pi\)
0.349587 + 0.936904i \(0.386322\pi\)
\(230\) −3.54364 −0.233661
\(231\) 0 0
\(232\) 4.54364 0.298304
\(233\) 7.07355 0.463403 0.231702 0.972787i \(-0.425571\pi\)
0.231702 + 0.972787i \(0.425571\pi\)
\(234\) 0 0
\(235\) −25.5162 −1.66449
\(236\) −9.52991 −0.620344
\(237\) 0 0
\(238\) 0 0
\(239\) −7.66769 −0.495981 −0.247991 0.968762i \(-0.579770\pi\)
−0.247991 + 0.968762i \(0.579770\pi\)
\(240\) 0 0
\(241\) 25.0598 1.61424 0.807122 0.590384i \(-0.201024\pi\)
0.807122 + 0.590384i \(0.201024\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 1.65929 0.106225
\(245\) 0 0
\(246\) 0 0
\(247\) −44.1471 −2.80901
\(248\) 5.08727 0.323042
\(249\) 0 0
\(250\) 6.74657 0.426690
\(251\) −25.0230 −1.57944 −0.789720 0.613467i \(-0.789774\pi\)
−0.789720 + 0.613467i \(0.789774\pi\)
\(252\) 0 0
\(253\) −1.29021 −0.0811145
\(254\) 6.78334 0.425625
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.5069 −0.655400 −0.327700 0.944782i \(-0.606274\pi\)
−0.327700 + 0.944782i \(0.606274\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −15.0873 −0.935673
\(261\) 0 0
\(262\) 13.8990 0.858683
\(263\) −23.6402 −1.45772 −0.728860 0.684663i \(-0.759949\pi\)
−0.728860 + 0.684663i \(0.759949\pi\)
\(264\) 0 0
\(265\) −15.0873 −0.926804
\(266\) 0 0
\(267\) 0 0
\(268\) 3.54364 0.216462
\(269\) −15.1524 −0.923860 −0.461930 0.886916i \(-0.652843\pi\)
−0.461930 + 0.886916i \(0.652843\pi\)
\(270\) 0 0
\(271\) −18.9863 −1.15333 −0.576667 0.816979i \(-0.695647\pi\)
−0.576667 + 0.816979i \(0.695647\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 5.49314 0.331853
\(275\) −2.54364 −0.153387
\(276\) 0 0
\(277\) 24.4794 1.47083 0.735413 0.677620i \(-0.236988\pi\)
0.735413 + 0.677620i \(0.236988\pi\)
\(278\) 13.6309 0.817528
\(279\) 0 0
\(280\) 0 0
\(281\) 12.0873 0.721066 0.360533 0.932746i \(-0.382595\pi\)
0.360533 + 0.932746i \(0.382595\pi\)
\(282\) 0 0
\(283\) −4.68141 −0.278281 −0.139141 0.990273i \(-0.544434\pi\)
−0.139141 + 0.990273i \(0.544434\pi\)
\(284\) −2.54364 −0.150937
\(285\) 0 0
\(286\) −5.49314 −0.324816
\(287\) 0 0
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) 12.4794 0.732816
\(291\) 0 0
\(292\) 8.58041 0.502131
\(293\) −11.6309 −0.679485 −0.339743 0.940518i \(-0.610340\pi\)
−0.339743 + 0.940518i \(0.610340\pi\)
\(294\) 0 0
\(295\) −26.1745 −1.52394
\(296\) 4.03677 0.234633
\(297\) 0 0
\(298\) 16.0368 0.928985
\(299\) −7.08727 −0.409868
\(300\) 0 0
\(301\) 0 0
\(302\) 5.69607 0.327772
\(303\) 0 0
\(304\) 8.03677 0.460941
\(305\) 4.55736 0.260954
\(306\) 0 0
\(307\) 14.0735 0.803220 0.401610 0.915811i \(-0.368451\pi\)
0.401610 + 0.915811i \(0.368451\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 13.9725 0.793587
\(311\) 12.2765 0.696135 0.348068 0.937469i \(-0.386838\pi\)
0.348068 + 0.937469i \(0.386838\pi\)
\(312\) 0 0
\(313\) −23.4564 −1.32583 −0.662916 0.748694i \(-0.730681\pi\)
−0.662916 + 0.748694i \(0.730681\pi\)
\(314\) 18.1103 1.02202
\(315\) 0 0
\(316\) 12.2397 0.688537
\(317\) 0.572020 0.0321278 0.0160639 0.999871i \(-0.494886\pi\)
0.0160639 + 0.999871i \(0.494886\pi\)
\(318\) 0 0
\(319\) 4.54364 0.254395
\(320\) 2.74657 0.153538
\(321\) 0 0
\(322\) 0 0
\(323\) 8.03677 0.447178
\(324\) 0 0
\(325\) −13.9725 −0.775057
\(326\) 13.4426 0.744519
\(327\) 0 0
\(328\) −5.54364 −0.306096
\(329\) 0 0
\(330\) 0 0
\(331\) 7.71819 0.424230 0.212115 0.977245i \(-0.431965\pi\)
0.212115 + 0.977245i \(0.431965\pi\)
\(332\) −14.5299 −0.797432
\(333\) 0 0
\(334\) −23.5667 −1.28951
\(335\) 9.73284 0.531762
\(336\) 0 0
\(337\) 28.5530 1.55538 0.777689 0.628649i \(-0.216392\pi\)
0.777689 + 0.628649i \(0.216392\pi\)
\(338\) −17.1745 −0.934172
\(339\) 0 0
\(340\) 2.74657 0.148954
\(341\) 5.08727 0.275491
\(342\) 0 0
\(343\) 0 0
\(344\) 4.03677 0.217648
\(345\) 0 0
\(346\) 10.9127 0.586672
\(347\) 23.4426 1.25847 0.629233 0.777216i \(-0.283369\pi\)
0.629233 + 0.777216i \(0.283369\pi\)
\(348\) 0 0
\(349\) −25.7328 −1.37745 −0.688724 0.725024i \(-0.741829\pi\)
−0.688724 + 0.725024i \(0.741829\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) −18.4059 −0.979645 −0.489823 0.871822i \(-0.662938\pi\)
−0.489823 + 0.871822i \(0.662938\pi\)
\(354\) 0 0
\(355\) −6.98627 −0.370793
\(356\) −6.50686 −0.344863
\(357\) 0 0
\(358\) −12.9495 −0.684402
\(359\) 31.9725 1.68745 0.843723 0.536778i \(-0.180359\pi\)
0.843723 + 0.536778i \(0.180359\pi\)
\(360\) 0 0
\(361\) 45.5897 2.39946
\(362\) 7.59414 0.399139
\(363\) 0 0
\(364\) 0 0
\(365\) 23.5667 1.23354
\(366\) 0 0
\(367\) −36.4794 −1.90421 −0.952105 0.305772i \(-0.901086\pi\)
−0.952105 + 0.305772i \(0.901086\pi\)
\(368\) 1.29021 0.0672566
\(369\) 0 0
\(370\) 11.0873 0.576400
\(371\) 0 0
\(372\) 0 0
\(373\) −20.3133 −1.05178 −0.525890 0.850552i \(-0.676268\pi\)
−0.525890 + 0.850552i \(0.676268\pi\)
\(374\) 1.00000 0.0517088
\(375\) 0 0
\(376\) 9.29021 0.479106
\(377\) 24.9588 1.28544
\(378\) 0 0
\(379\) 9.44264 0.485036 0.242518 0.970147i \(-0.422027\pi\)
0.242518 + 0.970147i \(0.422027\pi\)
\(380\) 22.0735 1.13235
\(381\) 0 0
\(382\) 18.9863 0.971422
\(383\) 23.7045 1.21124 0.605621 0.795754i \(-0.292925\pi\)
0.605621 + 0.795754i \(0.292925\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 21.5667 1.09772
\(387\) 0 0
\(388\) 0.0872743 0.00443068
\(389\) 1.25343 0.0635515 0.0317758 0.999495i \(-0.489884\pi\)
0.0317758 + 0.999495i \(0.489884\pi\)
\(390\) 0 0
\(391\) 1.29021 0.0652485
\(392\) 0 0
\(393\) 0 0
\(394\) −3.12405 −0.157387
\(395\) 33.6172 1.69146
\(396\) 0 0
\(397\) −28.6172 −1.43626 −0.718128 0.695911i \(-0.755001\pi\)
−0.718128 + 0.695911i \(0.755001\pi\)
\(398\) −26.0735 −1.30695
\(399\) 0 0
\(400\) 2.54364 0.127182
\(401\) −0.405862 −0.0202678 −0.0101339 0.999949i \(-0.503226\pi\)
−0.0101339 + 0.999949i \(0.503226\pi\)
\(402\) 0 0
\(403\) 27.9451 1.39204
\(404\) 13.0230 0.647921
\(405\) 0 0
\(406\) 0 0
\(407\) 4.03677 0.200095
\(408\) 0 0
\(409\) 32.7550 1.61963 0.809814 0.586686i \(-0.199568\pi\)
0.809814 + 0.586686i \(0.199568\pi\)
\(410\) −15.2260 −0.751957
\(411\) 0 0
\(412\) 18.0735 0.890420
\(413\) 0 0
\(414\) 0 0
\(415\) −39.9074 −1.95898
\(416\) 5.49314 0.269323
\(417\) 0 0
\(418\) 8.03677 0.393091
\(419\) −15.9358 −0.778513 −0.389257 0.921129i \(-0.627268\pi\)
−0.389257 + 0.921129i \(0.627268\pi\)
\(420\) 0 0
\(421\) −27.1240 −1.32195 −0.660973 0.750410i \(-0.729856\pi\)
−0.660973 + 0.750410i \(0.729856\pi\)
\(422\) −15.6677 −0.762691
\(423\) 0 0
\(424\) 5.49314 0.266770
\(425\) 2.54364 0.123385
\(426\) 0 0
\(427\) 0 0
\(428\) −17.4426 −0.843122
\(429\) 0 0
\(430\) 11.0873 0.534676
\(431\) 40.6265 1.95691 0.978455 0.206461i \(-0.0661945\pi\)
0.978455 + 0.206461i \(0.0661945\pi\)
\(432\) 0 0
\(433\) −1.10100 −0.0529107 −0.0264554 0.999650i \(-0.508422\pi\)
−0.0264554 + 0.999650i \(0.508422\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 1.65929 0.0794658
\(437\) 10.3691 0.496021
\(438\) 0 0
\(439\) −22.8569 −1.09090 −0.545450 0.838143i \(-0.683641\pi\)
−0.545450 + 0.838143i \(0.683641\pi\)
\(440\) 2.74657 0.130938
\(441\) 0 0
\(442\) 5.49314 0.261282
\(443\) 9.55736 0.454084 0.227042 0.973885i \(-0.427095\pi\)
0.227042 + 0.973885i \(0.427095\pi\)
\(444\) 0 0
\(445\) −17.8715 −0.847192
\(446\) 2.40586 0.113921
\(447\) 0 0
\(448\) 0 0
\(449\) −0.681412 −0.0321578 −0.0160789 0.999871i \(-0.505118\pi\)
−0.0160789 + 0.999871i \(0.505118\pi\)
\(450\) 0 0
\(451\) −5.54364 −0.261040
\(452\) 7.08727 0.333357
\(453\) 0 0
\(454\) −2.45636 −0.115283
\(455\) 0 0
\(456\) 0 0
\(457\) 18.1471 0.848885 0.424443 0.905455i \(-0.360470\pi\)
0.424443 + 0.905455i \(0.360470\pi\)
\(458\) −10.5804 −0.494390
\(459\) 0 0
\(460\) 3.54364 0.165223
\(461\) −41.7045 −1.94237 −0.971185 0.238326i \(-0.923401\pi\)
−0.971185 + 0.238326i \(0.923401\pi\)
\(462\) 0 0
\(463\) −28.5804 −1.32824 −0.664122 0.747624i \(-0.731195\pi\)
−0.664122 + 0.747624i \(0.731195\pi\)
\(464\) −4.54364 −0.210933
\(465\) 0 0
\(466\) −7.07355 −0.327676
\(467\) 5.38282 0.249087 0.124544 0.992214i \(-0.460253\pi\)
0.124544 + 0.992214i \(0.460253\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 25.5162 1.17697
\(471\) 0 0
\(472\) 9.52991 0.438650
\(473\) 4.03677 0.185611
\(474\) 0 0
\(475\) 20.4426 0.937972
\(476\) 0 0
\(477\) 0 0
\(478\) 7.66769 0.350712
\(479\) 14.4794 0.661581 0.330791 0.943704i \(-0.392685\pi\)
0.330791 + 0.943704i \(0.392685\pi\)
\(480\) 0 0
\(481\) 22.1745 1.01107
\(482\) −25.0598 −1.14144
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0.239705 0.0108844
\(486\) 0 0
\(487\) −8.43332 −0.382150 −0.191075 0.981575i \(-0.561197\pi\)
−0.191075 + 0.981575i \(0.561197\pi\)
\(488\) −1.65929 −0.0751127
\(489\) 0 0
\(490\) 0 0
\(491\) 38.6770 1.74547 0.872734 0.488195i \(-0.162345\pi\)
0.872734 + 0.488195i \(0.162345\pi\)
\(492\) 0 0
\(493\) −4.54364 −0.204635
\(494\) 44.1471 1.98627
\(495\) 0 0
\(496\) −5.08727 −0.228425
\(497\) 0 0
\(498\) 0 0
\(499\) 38.0461 1.70318 0.851589 0.524211i \(-0.175640\pi\)
0.851589 + 0.524211i \(0.175640\pi\)
\(500\) −6.74657 −0.301716
\(501\) 0 0
\(502\) 25.0230 1.11683
\(503\) 21.5667 0.961611 0.480805 0.876827i \(-0.340344\pi\)
0.480805 + 0.876827i \(0.340344\pi\)
\(504\) 0 0
\(505\) 35.7687 1.59169
\(506\) 1.29021 0.0573566
\(507\) 0 0
\(508\) −6.78334 −0.300962
\(509\) −26.6540 −1.18142 −0.590708 0.806885i \(-0.701151\pi\)
−0.590708 + 0.806885i \(0.701151\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 10.5069 0.463438
\(515\) 49.6402 2.18741
\(516\) 0 0
\(517\) 9.29021 0.408583
\(518\) 0 0
\(519\) 0 0
\(520\) 15.0873 0.661621
\(521\) −23.9725 −1.05026 −0.525128 0.851023i \(-0.675983\pi\)
−0.525128 + 0.851023i \(0.675983\pi\)
\(522\) 0 0
\(523\) −20.6814 −0.904335 −0.452168 0.891933i \(-0.649349\pi\)
−0.452168 + 0.891933i \(0.649349\pi\)
\(524\) −13.8990 −0.607181
\(525\) 0 0
\(526\) 23.6402 1.03076
\(527\) −5.08727 −0.221605
\(528\) 0 0
\(529\) −21.3354 −0.927625
\(530\) 15.0873 0.655349
\(531\) 0 0
\(532\) 0 0
\(533\) −30.4520 −1.31902
\(534\) 0 0
\(535\) −47.9074 −2.07122
\(536\) −3.54364 −0.153062
\(537\) 0 0
\(538\) 15.1524 0.653268
\(539\) 0 0
\(540\) 0 0
\(541\) 35.9074 1.54378 0.771890 0.635757i \(-0.219312\pi\)
0.771890 + 0.635757i \(0.219312\pi\)
\(542\) 18.9863 0.815530
\(543\) 0 0
\(544\) −1.00000 −0.0428746
\(545\) 4.55736 0.195216
\(546\) 0 0
\(547\) −5.12405 −0.219088 −0.109544 0.993982i \(-0.534939\pi\)
−0.109544 + 0.993982i \(0.534939\pi\)
\(548\) −5.49314 −0.234655
\(549\) 0 0
\(550\) 2.54364 0.108461
\(551\) −36.5162 −1.55564
\(552\) 0 0
\(553\) 0 0
\(554\) −24.4794 −1.04003
\(555\) 0 0
\(556\) −13.6309 −0.578079
\(557\) 12.8760 0.545572 0.272786 0.962075i \(-0.412055\pi\)
0.272786 + 0.962075i \(0.412055\pi\)
\(558\) 0 0
\(559\) 22.1745 0.937883
\(560\) 0 0
\(561\) 0 0
\(562\) −12.0873 −0.509871
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 19.4657 0.818927
\(566\) 4.68141 0.196774
\(567\) 0 0
\(568\) 2.54364 0.106729
\(569\) −21.3554 −0.895263 −0.447632 0.894218i \(-0.647732\pi\)
−0.447632 + 0.894218i \(0.647732\pi\)
\(570\) 0 0
\(571\) 7.45636 0.312039 0.156020 0.987754i \(-0.450134\pi\)
0.156020 + 0.987754i \(0.450134\pi\)
\(572\) 5.49314 0.229680
\(573\) 0 0
\(574\) 0 0
\(575\) 3.28181 0.136861
\(576\) 0 0
\(577\) −5.64464 −0.234989 −0.117495 0.993074i \(-0.537486\pi\)
−0.117495 + 0.993074i \(0.537486\pi\)
\(578\) 16.0000 0.665512
\(579\) 0 0
\(580\) −12.4794 −0.518179
\(581\) 0 0
\(582\) 0 0
\(583\) 5.49314 0.227502
\(584\) −8.58041 −0.355060
\(585\) 0 0
\(586\) 11.6309 0.480469
\(587\) −34.4059 −1.42008 −0.710041 0.704160i \(-0.751324\pi\)
−0.710041 + 0.704160i \(0.751324\pi\)
\(588\) 0 0
\(589\) −40.8853 −1.68465
\(590\) 26.1745 1.07759
\(591\) 0 0
\(592\) −4.03677 −0.165910
\(593\) −18.7182 −0.768664 −0.384332 0.923195i \(-0.625568\pi\)
−0.384332 + 0.923195i \(0.625568\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.0368 −0.656892
\(597\) 0 0
\(598\) 7.08727 0.289820
\(599\) −10.4143 −0.425515 −0.212757 0.977105i \(-0.568244\pi\)
−0.212757 + 0.977105i \(0.568244\pi\)
\(600\) 0 0
\(601\) −25.0873 −1.02333 −0.511666 0.859185i \(-0.670971\pi\)
−0.511666 + 0.859185i \(0.670971\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.69607 −0.231770
\(605\) 2.74657 0.111664
\(606\) 0 0
\(607\) −31.9074 −1.29508 −0.647541 0.762031i \(-0.724202\pi\)
−0.647541 + 0.762031i \(0.724202\pi\)
\(608\) −8.03677 −0.325934
\(609\) 0 0
\(610\) −4.55736 −0.184522
\(611\) 51.0324 2.06455
\(612\) 0 0
\(613\) 3.42798 0.138455 0.0692274 0.997601i \(-0.477947\pi\)
0.0692274 + 0.997601i \(0.477947\pi\)
\(614\) −14.0735 −0.567962
\(615\) 0 0
\(616\) 0 0
\(617\) −12.7550 −0.513495 −0.256748 0.966478i \(-0.582651\pi\)
−0.256748 + 0.966478i \(0.582651\pi\)
\(618\) 0 0
\(619\) 21.5897 0.867765 0.433882 0.900970i \(-0.357143\pi\)
0.433882 + 0.900970i \(0.357143\pi\)
\(620\) −13.9725 −0.561151
\(621\) 0 0
\(622\) −12.2765 −0.492242
\(623\) 0 0
\(624\) 0 0
\(625\) −31.2481 −1.24992
\(626\) 23.4564 0.937505
\(627\) 0 0
\(628\) −18.1103 −0.722680
\(629\) −4.03677 −0.160957
\(630\) 0 0
\(631\) 4.23131 0.168446 0.0842230 0.996447i \(-0.473159\pi\)
0.0842230 + 0.996447i \(0.473159\pi\)
\(632\) −12.2397 −0.486869
\(633\) 0 0
\(634\) −0.572020 −0.0227178
\(635\) −18.6309 −0.739345
\(636\) 0 0
\(637\) 0 0
\(638\) −4.54364 −0.179884
\(639\) 0 0
\(640\) −2.74657 −0.108568
\(641\) −4.07355 −0.160895 −0.0804477 0.996759i \(-0.525635\pi\)
−0.0804477 + 0.996759i \(0.525635\pi\)
\(642\) 0 0
\(643\) 19.2618 0.759612 0.379806 0.925066i \(-0.375991\pi\)
0.379806 + 0.925066i \(0.375991\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.03677 −0.316203
\(647\) −18.8937 −0.742787 −0.371393 0.928476i \(-0.621120\pi\)
−0.371393 + 0.928476i \(0.621120\pi\)
\(648\) 0 0
\(649\) 9.52991 0.374082
\(650\) 13.9725 0.548048
\(651\) 0 0
\(652\) −13.4426 −0.526454
\(653\) 8.92112 0.349110 0.174555 0.984647i \(-0.444151\pi\)
0.174555 + 0.984647i \(0.444151\pi\)
\(654\) 0 0
\(655\) −38.1745 −1.49160
\(656\) 5.54364 0.216443
\(657\) 0 0
\(658\) 0 0
\(659\) −45.4426 −1.77019 −0.885097 0.465407i \(-0.845908\pi\)
−0.885097 + 0.465407i \(0.845908\pi\)
\(660\) 0 0
\(661\) 29.0230 1.12887 0.564433 0.825479i \(-0.309095\pi\)
0.564433 + 0.825479i \(0.309095\pi\)
\(662\) −7.71819 −0.299976
\(663\) 0 0
\(664\) 14.5299 0.563870
\(665\) 0 0
\(666\) 0 0
\(667\) −5.86223 −0.226986
\(668\) 23.5667 0.911822
\(669\) 0 0
\(670\) −9.73284 −0.376012
\(671\) −1.65929 −0.0640563
\(672\) 0 0
\(673\) −16.2481 −0.626318 −0.313159 0.949701i \(-0.601387\pi\)
−0.313159 + 0.949701i \(0.601387\pi\)
\(674\) −28.5530 −1.09982
\(675\) 0 0
\(676\) 17.1745 0.660560
\(677\) −3.88968 −0.149493 −0.0747463 0.997203i \(-0.523815\pi\)
−0.0747463 + 0.997203i \(0.523815\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −2.74657 −0.105326
\(681\) 0 0
\(682\) −5.08727 −0.194802
\(683\) −5.80546 −0.222140 −0.111070 0.993813i \(-0.535428\pi\)
−0.111070 + 0.993813i \(0.535428\pi\)
\(684\) 0 0
\(685\) −15.0873 −0.576455
\(686\) 0 0
\(687\) 0 0
\(688\) −4.03677 −0.153901
\(689\) 30.1745 1.14956
\(690\) 0 0
\(691\) 6.35536 0.241769 0.120885 0.992667i \(-0.461427\pi\)
0.120885 + 0.992667i \(0.461427\pi\)
\(692\) −10.9127 −0.414840
\(693\) 0 0
\(694\) −23.4426 −0.889870
\(695\) −37.4382 −1.42011
\(696\) 0 0
\(697\) 5.54364 0.209980
\(698\) 25.7328 0.974002
\(699\) 0 0
\(700\) 0 0
\(701\) −5.86223 −0.221413 −0.110707 0.993853i \(-0.535311\pi\)
−0.110707 + 0.993853i \(0.535311\pi\)
\(702\) 0 0
\(703\) −32.4426 −1.22360
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 18.4059 0.692714
\(707\) 0 0
\(708\) 0 0
\(709\) −13.4564 −0.505364 −0.252682 0.967549i \(-0.581313\pi\)
−0.252682 + 0.967549i \(0.581313\pi\)
\(710\) 6.98627 0.262190
\(711\) 0 0
\(712\) 6.50686 0.243855
\(713\) −6.56363 −0.245810
\(714\) 0 0
\(715\) 15.0873 0.564232
\(716\) 12.9495 0.483946
\(717\) 0 0
\(718\) −31.9725 −1.19320
\(719\) −24.2765 −0.905360 −0.452680 0.891673i \(-0.649532\pi\)
−0.452680 + 0.891673i \(0.649532\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −45.5897 −1.69667
\(723\) 0 0
\(724\) −7.59414 −0.282234
\(725\) −11.5574 −0.429230
\(726\) 0 0
\(727\) 22.1471 0.821390 0.410695 0.911773i \(-0.365286\pi\)
0.410695 + 0.911773i \(0.365286\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −23.5667 −0.872242
\(731\) −4.03677 −0.149305
\(732\) 0 0
\(733\) 5.32698 0.196756 0.0983782 0.995149i \(-0.468635\pi\)
0.0983782 + 0.995149i \(0.468635\pi\)
\(734\) 36.4794 1.34648
\(735\) 0 0
\(736\) −1.29021 −0.0475576
\(737\) −3.54364 −0.130532
\(738\) 0 0
\(739\) −25.2618 −0.929271 −0.464636 0.885502i \(-0.653815\pi\)
−0.464636 + 0.885502i \(0.653815\pi\)
\(740\) −11.0873 −0.407576
\(741\) 0 0
\(742\) 0 0
\(743\) 25.4196 0.932554 0.466277 0.884639i \(-0.345595\pi\)
0.466277 + 0.884639i \(0.345595\pi\)
\(744\) 0 0
\(745\) −44.0461 −1.61372
\(746\) 20.3133 0.743721
\(747\) 0 0
\(748\) −1.00000 −0.0365636
\(749\) 0 0
\(750\) 0 0
\(751\) −40.5530 −1.47980 −0.739899 0.672718i \(-0.765127\pi\)
−0.739899 + 0.672718i \(0.765127\pi\)
\(752\) −9.29021 −0.338779
\(753\) 0 0
\(754\) −24.9588 −0.908947
\(755\) −15.6446 −0.569367
\(756\) 0 0
\(757\) 13.3554 0.485409 0.242704 0.970100i \(-0.421965\pi\)
0.242704 + 0.970100i \(0.421965\pi\)
\(758\) −9.44264 −0.342972
\(759\) 0 0
\(760\) −22.0735 −0.800692
\(761\) 18.4564 0.669043 0.334521 0.942388i \(-0.391425\pi\)
0.334521 + 0.942388i \(0.391425\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −18.9863 −0.686899
\(765\) 0 0
\(766\) −23.7045 −0.856477
\(767\) 52.3491 1.89022
\(768\) 0 0
\(769\) −49.9158 −1.80001 −0.900005 0.435881i \(-0.856437\pi\)
−0.900005 + 0.435881i \(0.856437\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −21.5667 −0.776202
\(773\) −42.1387 −1.51562 −0.757812 0.652473i \(-0.773732\pi\)
−0.757812 + 0.652473i \(0.773732\pi\)
\(774\) 0 0
\(775\) −12.9402 −0.464825
\(776\) −0.0872743 −0.00313296
\(777\) 0 0
\(778\) −1.25343 −0.0449377
\(779\) 44.5530 1.59628
\(780\) 0 0
\(781\) 2.54364 0.0910185
\(782\) −1.29021 −0.0461377
\(783\) 0 0
\(784\) 0 0
\(785\) −49.7412 −1.77534
\(786\) 0 0
\(787\) 34.3584 1.22475 0.612373 0.790569i \(-0.290215\pi\)
0.612373 + 0.790569i \(0.290215\pi\)
\(788\) 3.12405 0.111290
\(789\) 0 0
\(790\) −33.6172 −1.19605
\(791\) 0 0
\(792\) 0 0
\(793\) −9.11473 −0.323673
\(794\) 28.6172 1.01559
\(795\) 0 0
\(796\) 26.0735 0.924152
\(797\) −18.1387 −0.642506 −0.321253 0.946993i \(-0.604104\pi\)
−0.321253 + 0.946993i \(0.604104\pi\)
\(798\) 0 0
\(799\) −9.29021 −0.328664
\(800\) −2.54364 −0.0899312
\(801\) 0 0
\(802\) 0.405862 0.0143315
\(803\) −8.58041 −0.302796
\(804\) 0 0
\(805\) 0 0
\(806\) −27.9451 −0.984324
\(807\) 0 0
\(808\) −13.0230 −0.458149
\(809\) 17.5436 0.616801 0.308401 0.951257i \(-0.400206\pi\)
0.308401 + 0.951257i \(0.400206\pi\)
\(810\) 0 0
\(811\) 43.0873 1.51300 0.756499 0.653994i \(-0.226908\pi\)
0.756499 + 0.653994i \(0.226908\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4.03677 −0.141489
\(815\) −36.9211 −1.29329
\(816\) 0 0
\(817\) −32.4426 −1.13502
\(818\) −32.7550 −1.14525
\(819\) 0 0
\(820\) 15.2260 0.531714
\(821\) −2.10100 −0.0733255 −0.0366627 0.999328i \(-0.511673\pi\)
−0.0366627 + 0.999328i \(0.511673\pi\)
\(822\) 0 0
\(823\) 19.7412 0.688136 0.344068 0.938945i \(-0.388195\pi\)
0.344068 + 0.938945i \(0.388195\pi\)
\(824\) −18.0735 −0.629622
\(825\) 0 0
\(826\) 0 0
\(827\) −23.7182 −0.824762 −0.412381 0.911011i \(-0.635303\pi\)
−0.412381 + 0.911011i \(0.635303\pi\)
\(828\) 0 0
\(829\) −39.9632 −1.38798 −0.693990 0.719985i \(-0.744149\pi\)
−0.693990 + 0.719985i \(0.744149\pi\)
\(830\) 39.9074 1.38521
\(831\) 0 0
\(832\) −5.49314 −0.190440
\(833\) 0 0
\(834\) 0 0
\(835\) 64.7275 2.23999
\(836\) −8.03677 −0.277958
\(837\) 0 0
\(838\) 15.9358 0.550492
\(839\) 29.0682 1.00355 0.501773 0.864999i \(-0.332681\pi\)
0.501773 + 0.864999i \(0.332681\pi\)
\(840\) 0 0
\(841\) −8.35536 −0.288116
\(842\) 27.1240 0.934756
\(843\) 0 0
\(844\) 15.6677 0.539304
\(845\) 47.1711 1.62273
\(846\) 0 0
\(847\) 0 0
\(848\) −5.49314 −0.188635
\(849\) 0 0
\(850\) −2.54364 −0.0872460
\(851\) −5.20827 −0.178537
\(852\) 0 0
\(853\) −20.2397 −0.692994 −0.346497 0.938051i \(-0.612629\pi\)
−0.346497 + 0.938051i \(0.612629\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 17.4426 0.596177
\(857\) −12.1608 −0.415406 −0.207703 0.978192i \(-0.566599\pi\)
−0.207703 + 0.978192i \(0.566599\pi\)
\(858\) 0 0
\(859\) 14.5299 0.495754 0.247877 0.968791i \(-0.420267\pi\)
0.247877 + 0.968791i \(0.420267\pi\)
\(860\) −11.0873 −0.378073
\(861\) 0 0
\(862\) −40.6265 −1.38374
\(863\) 13.5857 0.462464 0.231232 0.972899i \(-0.425724\pi\)
0.231232 + 0.972899i \(0.425724\pi\)
\(864\) 0 0
\(865\) −29.9725 −1.01910
\(866\) 1.10100 0.0374135
\(867\) 0 0
\(868\) 0 0
\(869\) −12.2397 −0.415204
\(870\) 0 0
\(871\) −19.4657 −0.659569
\(872\) −1.65929 −0.0561908
\(873\) 0 0
\(874\) −10.3691 −0.350740
\(875\) 0 0
\(876\) 0 0
\(877\) −2.06516 −0.0697354 −0.0348677 0.999392i \(-0.511101\pi\)
−0.0348677 + 0.999392i \(0.511101\pi\)
\(878\) 22.8569 0.771383
\(879\) 0 0
\(880\) −2.74657 −0.0925868
\(881\) −3.08727 −0.104013 −0.0520065 0.998647i \(-0.516562\pi\)
−0.0520065 + 0.998647i \(0.516562\pi\)
\(882\) 0 0
\(883\) 21.8927 0.736749 0.368375 0.929677i \(-0.379914\pi\)
0.368375 + 0.929677i \(0.379914\pi\)
\(884\) −5.49314 −0.184754
\(885\) 0 0
\(886\) −9.55736 −0.321086
\(887\) 37.7412 1.26723 0.633613 0.773650i \(-0.281571\pi\)
0.633613 + 0.773650i \(0.281571\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 17.8715 0.599056
\(891\) 0 0
\(892\) −2.40586 −0.0805542
\(893\) −74.6633 −2.49851
\(894\) 0 0
\(895\) 35.5667 1.18886
\(896\) 0 0
\(897\) 0 0
\(898\) 0.681412 0.0227390
\(899\) 23.1147 0.770919
\(900\) 0 0
\(901\) −5.49314 −0.183003
\(902\) 5.54364 0.184583
\(903\) 0 0
\(904\) −7.08727 −0.235719
\(905\) −20.8578 −0.693337
\(906\) 0 0
\(907\) 31.5897 1.04892 0.524460 0.851435i \(-0.324267\pi\)
0.524460 + 0.851435i \(0.324267\pi\)
\(908\) 2.45636 0.0815173
\(909\) 0 0
\(910\) 0 0
\(911\) 27.7422 0.919139 0.459569 0.888142i \(-0.348004\pi\)
0.459569 + 0.888142i \(0.348004\pi\)
\(912\) 0 0
\(913\) 14.5299 0.480870
\(914\) −18.1471 −0.600253
\(915\) 0 0
\(916\) 10.5804 0.349587
\(917\) 0 0
\(918\) 0 0
\(919\) 18.9304 0.624457 0.312229 0.950007i \(-0.398924\pi\)
0.312229 + 0.950007i \(0.398924\pi\)
\(920\) −3.54364 −0.116830
\(921\) 0 0
\(922\) 41.7045 1.37346
\(923\) 13.9725 0.459912
\(924\) 0 0
\(925\) −10.2681 −0.337613
\(926\) 28.5804 0.939211
\(927\) 0 0
\(928\) 4.54364 0.149152
\(929\) 13.7687 0.451736 0.225868 0.974158i \(-0.427478\pi\)
0.225868 + 0.974158i \(0.427478\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 7.07355 0.231702
\(933\) 0 0
\(934\) −5.38282 −0.176131
\(935\) −2.74657 −0.0898224
\(936\) 0 0
\(937\) 17.2618 0.563919 0.281960 0.959426i \(-0.409016\pi\)
0.281960 + 0.959426i \(0.409016\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −25.5162 −0.832246
\(941\) −37.6309 −1.22673 −0.613366 0.789799i \(-0.710185\pi\)
−0.613366 + 0.789799i \(0.710185\pi\)
\(942\) 0 0
\(943\) 7.15243 0.232915
\(944\) −9.52991 −0.310172
\(945\) 0 0
\(946\) −4.03677 −0.131247
\(947\) 7.73191 0.251253 0.125627 0.992078i \(-0.459906\pi\)
0.125627 + 0.992078i \(0.459906\pi\)
\(948\) 0 0
\(949\) −47.1334 −1.53001
\(950\) −20.4426 −0.663247
\(951\) 0 0
\(952\) 0 0
\(953\) 20.6770 0.669794 0.334897 0.942255i \(-0.391298\pi\)
0.334897 + 0.942255i \(0.391298\pi\)
\(954\) 0 0
\(955\) −52.1471 −1.68744
\(956\) −7.66769 −0.247991
\(957\) 0 0
\(958\) −14.4794 −0.467808
\(959\) 0 0
\(960\) 0 0
\(961\) −5.11964 −0.165150
\(962\) −22.1745 −0.714936
\(963\) 0 0
\(964\) 25.0598 0.807122
\(965\) −59.2344 −1.90682
\(966\) 0 0
\(967\) 15.7235 0.505634 0.252817 0.967514i \(-0.418643\pi\)
0.252817 + 0.967514i \(0.418643\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −0.239705 −0.00769646
\(971\) 8.24810 0.264694 0.132347 0.991203i \(-0.457749\pi\)
0.132347 + 0.991203i \(0.457749\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 8.43332 0.270221
\(975\) 0 0
\(976\) 1.65929 0.0531127
\(977\) 35.3354 1.13048 0.565239 0.824927i \(-0.308784\pi\)
0.565239 + 0.824927i \(0.308784\pi\)
\(978\) 0 0
\(979\) 6.50686 0.207960
\(980\) 0 0
\(981\) 0 0
\(982\) −38.6770 −1.23423
\(983\) −9.14311 −0.291620 −0.145810 0.989313i \(-0.546579\pi\)
−0.145810 + 0.989313i \(0.546579\pi\)
\(984\) 0 0
\(985\) 8.58041 0.273395
\(986\) 4.54364 0.144699
\(987\) 0 0
\(988\) −44.1471 −1.40451
\(989\) −5.20827 −0.165613
\(990\) 0 0
\(991\) 35.4657 1.12660 0.563302 0.826251i \(-0.309531\pi\)
0.563302 + 0.826251i \(0.309531\pi\)
\(992\) 5.08727 0.161521
\(993\) 0 0
\(994\) 0 0
\(995\) 71.6128 2.27028
\(996\) 0 0
\(997\) −45.4931 −1.44078 −0.720391 0.693568i \(-0.756038\pi\)
−0.720391 + 0.693568i \(0.756038\pi\)
\(998\) −38.0461 −1.20433
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.du.1.3 3
3.2 odd 2 3234.2.a.bg.1.1 3
7.3 odd 6 1386.2.k.w.793.3 6
7.5 odd 6 1386.2.k.w.991.3 6
7.6 odd 2 9702.2.a.dt.1.1 3
21.5 even 6 462.2.i.f.67.1 6
21.17 even 6 462.2.i.f.331.1 yes 6
21.20 even 2 3234.2.a.bi.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
462.2.i.f.67.1 6 21.5 even 6
462.2.i.f.331.1 yes 6 21.17 even 6
1386.2.k.w.793.3 6 7.3 odd 6
1386.2.k.w.991.3 6 7.5 odd 6
3234.2.a.bg.1.1 3 3.2 odd 2
3234.2.a.bi.1.3 3 21.20 even 2
9702.2.a.dt.1.1 3 7.6 odd 2
9702.2.a.du.1.3 3 1.1 even 1 trivial