Properties

Label 9702.2.a.dl.1.2
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3234)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{8} -1.00000 q^{11} +1.41421 q^{13} +1.00000 q^{16} +4.00000 q^{17} -2.58579 q^{19} -1.00000 q^{22} +3.65685 q^{23} -5.00000 q^{25} +1.41421 q^{26} -5.65685 q^{29} -11.0711 q^{31} +1.00000 q^{32} +4.00000 q^{34} -7.65685 q^{37} -2.58579 q^{38} -1.65685 q^{41} -10.0000 q^{43} -1.00000 q^{44} +3.65685 q^{46} +1.41421 q^{47} -5.00000 q^{50} +1.41421 q^{52} -7.65685 q^{53} -5.65685 q^{58} +1.17157 q^{59} -1.41421 q^{61} -11.0711 q^{62} +1.00000 q^{64} +11.3137 q^{67} +4.00000 q^{68} -2.34315 q^{71} -4.00000 q^{73} -7.65685 q^{74} -2.58579 q^{76} -9.65685 q^{79} -1.65685 q^{82} -0.928932 q^{83} -10.0000 q^{86} -1.00000 q^{88} +5.41421 q^{89} +3.65685 q^{92} +1.41421 q^{94} +12.7279 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{11} + 2 q^{16} + 8 q^{17} - 8 q^{19} - 2 q^{22} - 4 q^{23} - 10 q^{25} - 8 q^{31} + 2 q^{32} + 8 q^{34} - 4 q^{37} - 8 q^{38} + 8 q^{41} - 20 q^{43} - 2 q^{44} - 4 q^{46}+ \cdots - 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 1.41421 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −2.58579 −0.593220 −0.296610 0.954999i \(-0.595856\pi\)
−0.296610 + 0.954999i \(0.595856\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 3.65685 0.762507 0.381253 0.924471i \(-0.375493\pi\)
0.381253 + 0.924471i \(0.375493\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 1.41421 0.277350
\(27\) 0 0
\(28\) 0 0
\(29\) −5.65685 −1.05045 −0.525226 0.850963i \(-0.676019\pi\)
−0.525226 + 0.850963i \(0.676019\pi\)
\(30\) 0 0
\(31\) −11.0711 −1.98842 −0.994211 0.107443i \(-0.965734\pi\)
−0.994211 + 0.107443i \(0.965734\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) 0 0
\(36\) 0 0
\(37\) −7.65685 −1.25878 −0.629390 0.777090i \(-0.716695\pi\)
−0.629390 + 0.777090i \(0.716695\pi\)
\(38\) −2.58579 −0.419470
\(39\) 0 0
\(40\) 0 0
\(41\) −1.65685 −0.258757 −0.129379 0.991595i \(-0.541298\pi\)
−0.129379 + 0.991595i \(0.541298\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 3.65685 0.539174
\(47\) 1.41421 0.206284 0.103142 0.994667i \(-0.467110\pi\)
0.103142 + 0.994667i \(0.467110\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −5.00000 −0.707107
\(51\) 0 0
\(52\) 1.41421 0.196116
\(53\) −7.65685 −1.05175 −0.525875 0.850562i \(-0.676262\pi\)
−0.525875 + 0.850562i \(0.676262\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −5.65685 −0.742781
\(59\) 1.17157 0.152526 0.0762629 0.997088i \(-0.475701\pi\)
0.0762629 + 0.997088i \(0.475701\pi\)
\(60\) 0 0
\(61\) −1.41421 −0.181071 −0.0905357 0.995893i \(-0.528858\pi\)
−0.0905357 + 0.995893i \(0.528858\pi\)
\(62\) −11.0711 −1.40603
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 11.3137 1.38219 0.691095 0.722764i \(-0.257129\pi\)
0.691095 + 0.722764i \(0.257129\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) −2.34315 −0.278080 −0.139040 0.990287i \(-0.544402\pi\)
−0.139040 + 0.990287i \(0.544402\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −7.65685 −0.890091
\(75\) 0 0
\(76\) −2.58579 −0.296610
\(77\) 0 0
\(78\) 0 0
\(79\) −9.65685 −1.08648 −0.543240 0.839577i \(-0.682803\pi\)
−0.543240 + 0.839577i \(0.682803\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −1.65685 −0.182969
\(83\) −0.928932 −0.101964 −0.0509818 0.998700i \(-0.516235\pi\)
−0.0509818 + 0.998700i \(0.516235\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10.0000 −1.07833
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 5.41421 0.573905 0.286953 0.957945i \(-0.407358\pi\)
0.286953 + 0.957945i \(0.407358\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.65685 0.381253
\(93\) 0 0
\(94\) 1.41421 0.145865
\(95\) 0 0
\(96\) 0 0
\(97\) 12.7279 1.29232 0.646162 0.763200i \(-0.276373\pi\)
0.646162 + 0.763200i \(0.276373\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 8.24264 0.820173 0.410087 0.912047i \(-0.365498\pi\)
0.410087 + 0.912047i \(0.365498\pi\)
\(102\) 0 0
\(103\) 5.89949 0.581295 0.290647 0.956830i \(-0.406129\pi\)
0.290647 + 0.956830i \(0.406129\pi\)
\(104\) 1.41421 0.138675
\(105\) 0 0
\(106\) −7.65685 −0.743699
\(107\) 5.31371 0.513696 0.256848 0.966452i \(-0.417316\pi\)
0.256848 + 0.966452i \(0.417316\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.65685 −0.532152 −0.266076 0.963952i \(-0.585727\pi\)
−0.266076 + 0.963952i \(0.585727\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.65685 −0.525226
\(117\) 0 0
\(118\) 1.17157 0.107852
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.41421 −0.128037
\(123\) 0 0
\(124\) −11.0711 −0.994211
\(125\) 0 0
\(126\) 0 0
\(127\) 7.31371 0.648987 0.324493 0.945888i \(-0.394806\pi\)
0.324493 + 0.945888i \(0.394806\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 12.2426 1.06964 0.534822 0.844965i \(-0.320379\pi\)
0.534822 + 0.844965i \(0.320379\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 11.3137 0.977356
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) −13.3137 −1.13747 −0.568733 0.822522i \(-0.692566\pi\)
−0.568733 + 0.822522i \(0.692566\pi\)
\(138\) 0 0
\(139\) −21.8995 −1.85749 −0.928745 0.370718i \(-0.879112\pi\)
−0.928745 + 0.370718i \(0.879112\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.34315 −0.196632
\(143\) −1.41421 −0.118262
\(144\) 0 0
\(145\) 0 0
\(146\) −4.00000 −0.331042
\(147\) 0 0
\(148\) −7.65685 −0.629390
\(149\) 20.9706 1.71798 0.858988 0.511996i \(-0.171094\pi\)
0.858988 + 0.511996i \(0.171094\pi\)
\(150\) 0 0
\(151\) 9.65685 0.785864 0.392932 0.919568i \(-0.371461\pi\)
0.392932 + 0.919568i \(0.371461\pi\)
\(152\) −2.58579 −0.209735
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.82843 −0.225733 −0.112867 0.993610i \(-0.536003\pi\)
−0.112867 + 0.993610i \(0.536003\pi\)
\(158\) −9.65685 −0.768258
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.65685 −0.443079 −0.221540 0.975151i \(-0.571108\pi\)
−0.221540 + 0.975151i \(0.571108\pi\)
\(164\) −1.65685 −0.129379
\(165\) 0 0
\(166\) −0.928932 −0.0720991
\(167\) 5.17157 0.400188 0.200094 0.979777i \(-0.435875\pi\)
0.200094 + 0.979777i \(0.435875\pi\)
\(168\) 0 0
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 0 0
\(172\) −10.0000 −0.762493
\(173\) 19.0711 1.44995 0.724973 0.688777i \(-0.241852\pi\)
0.724973 + 0.688777i \(0.241852\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) 5.41421 0.405812
\(179\) −13.6569 −1.02076 −0.510381 0.859949i \(-0.670495\pi\)
−0.510381 + 0.859949i \(0.670495\pi\)
\(180\) 0 0
\(181\) 10.3431 0.768800 0.384400 0.923167i \(-0.374408\pi\)
0.384400 + 0.923167i \(0.374408\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.65685 0.269587
\(185\) 0 0
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 1.41421 0.103142
\(189\) 0 0
\(190\) 0 0
\(191\) −22.9706 −1.66209 −0.831046 0.556204i \(-0.812257\pi\)
−0.831046 + 0.556204i \(0.812257\pi\)
\(192\) 0 0
\(193\) −3.65685 −0.263226 −0.131613 0.991301i \(-0.542016\pi\)
−0.131613 + 0.991301i \(0.542016\pi\)
\(194\) 12.7279 0.913812
\(195\) 0 0
\(196\) 0 0
\(197\) 1.31371 0.0935979 0.0467989 0.998904i \(-0.485098\pi\)
0.0467989 + 0.998904i \(0.485098\pi\)
\(198\) 0 0
\(199\) −13.4142 −0.950908 −0.475454 0.879740i \(-0.657716\pi\)
−0.475454 + 0.879740i \(0.657716\pi\)
\(200\) −5.00000 −0.353553
\(201\) 0 0
\(202\) 8.24264 0.579950
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 5.89949 0.411037
\(207\) 0 0
\(208\) 1.41421 0.0980581
\(209\) 2.58579 0.178863
\(210\) 0 0
\(211\) −5.31371 −0.365811 −0.182905 0.983131i \(-0.558550\pi\)
−0.182905 + 0.983131i \(0.558550\pi\)
\(212\) −7.65685 −0.525875
\(213\) 0 0
\(214\) 5.31371 0.363238
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −10.0000 −0.677285
\(219\) 0 0
\(220\) 0 0
\(221\) 5.65685 0.380521
\(222\) 0 0
\(223\) 11.5563 0.773870 0.386935 0.922107i \(-0.373534\pi\)
0.386935 + 0.922107i \(0.373534\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.65685 −0.376288
\(227\) −7.55635 −0.501533 −0.250766 0.968048i \(-0.580683\pi\)
−0.250766 + 0.968048i \(0.580683\pi\)
\(228\) 0 0
\(229\) 5.65685 0.373815 0.186908 0.982377i \(-0.440153\pi\)
0.186908 + 0.982377i \(0.440153\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.65685 −0.371391
\(233\) −23.6569 −1.54981 −0.774906 0.632076i \(-0.782203\pi\)
−0.774906 + 0.632076i \(0.782203\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1.17157 0.0762629
\(237\) 0 0
\(238\) 0 0
\(239\) −25.6569 −1.65960 −0.829802 0.558058i \(-0.811547\pi\)
−0.829802 + 0.558058i \(0.811547\pi\)
\(240\) 0 0
\(241\) −15.3137 −0.986443 −0.493221 0.869904i \(-0.664181\pi\)
−0.493221 + 0.869904i \(0.664181\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −1.41421 −0.0905357
\(245\) 0 0
\(246\) 0 0
\(247\) −3.65685 −0.232680
\(248\) −11.0711 −0.703014
\(249\) 0 0
\(250\) 0 0
\(251\) 9.17157 0.578905 0.289452 0.957192i \(-0.406527\pi\)
0.289452 + 0.957192i \(0.406527\pi\)
\(252\) 0 0
\(253\) −3.65685 −0.229904
\(254\) 7.31371 0.458903
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.72792 0.544433 0.272216 0.962236i \(-0.412243\pi\)
0.272216 + 0.962236i \(0.412243\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 12.2426 0.756353
\(263\) −2.34315 −0.144485 −0.0722423 0.997387i \(-0.523015\pi\)
−0.0722423 + 0.997387i \(0.523015\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 11.3137 0.691095
\(269\) −22.6274 −1.37962 −0.689809 0.723991i \(-0.742306\pi\)
−0.689809 + 0.723991i \(0.742306\pi\)
\(270\) 0 0
\(271\) −26.8284 −1.62971 −0.814855 0.579664i \(-0.803184\pi\)
−0.814855 + 0.579664i \(0.803184\pi\)
\(272\) 4.00000 0.242536
\(273\) 0 0
\(274\) −13.3137 −0.804311
\(275\) 5.00000 0.301511
\(276\) 0 0
\(277\) 4.00000 0.240337 0.120168 0.992754i \(-0.461657\pi\)
0.120168 + 0.992754i \(0.461657\pi\)
\(278\) −21.8995 −1.31344
\(279\) 0 0
\(280\) 0 0
\(281\) −14.9706 −0.893069 −0.446534 0.894766i \(-0.647342\pi\)
−0.446534 + 0.894766i \(0.647342\pi\)
\(282\) 0 0
\(283\) −24.2426 −1.44108 −0.720538 0.693416i \(-0.756105\pi\)
−0.720538 + 0.693416i \(0.756105\pi\)
\(284\) −2.34315 −0.139040
\(285\) 0 0
\(286\) −1.41421 −0.0836242
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) −4.00000 −0.234082
\(293\) 11.0711 0.646779 0.323389 0.946266i \(-0.395178\pi\)
0.323389 + 0.946266i \(0.395178\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −7.65685 −0.445046
\(297\) 0 0
\(298\) 20.9706 1.21479
\(299\) 5.17157 0.299080
\(300\) 0 0
\(301\) 0 0
\(302\) 9.65685 0.555690
\(303\) 0 0
\(304\) −2.58579 −0.148305
\(305\) 0 0
\(306\) 0 0
\(307\) −24.7279 −1.41130 −0.705649 0.708562i \(-0.749344\pi\)
−0.705649 + 0.708562i \(0.749344\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.7574 0.666699 0.333349 0.942803i \(-0.391821\pi\)
0.333349 + 0.942803i \(0.391821\pi\)
\(312\) 0 0
\(313\) 3.75736 0.212379 0.106189 0.994346i \(-0.466135\pi\)
0.106189 + 0.994346i \(0.466135\pi\)
\(314\) −2.82843 −0.159617
\(315\) 0 0
\(316\) −9.65685 −0.543240
\(317\) −17.3137 −0.972435 −0.486217 0.873838i \(-0.661624\pi\)
−0.486217 + 0.873838i \(0.661624\pi\)
\(318\) 0 0
\(319\) 5.65685 0.316723
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10.3431 −0.575508
\(324\) 0 0
\(325\) −7.07107 −0.392232
\(326\) −5.65685 −0.313304
\(327\) 0 0
\(328\) −1.65685 −0.0914845
\(329\) 0 0
\(330\) 0 0
\(331\) −4.97056 −0.273207 −0.136603 0.990626i \(-0.543619\pi\)
−0.136603 + 0.990626i \(0.543619\pi\)
\(332\) −0.928932 −0.0509818
\(333\) 0 0
\(334\) 5.17157 0.282976
\(335\) 0 0
\(336\) 0 0
\(337\) 5.31371 0.289456 0.144728 0.989471i \(-0.453769\pi\)
0.144728 + 0.989471i \(0.453769\pi\)
\(338\) −11.0000 −0.598321
\(339\) 0 0
\(340\) 0 0
\(341\) 11.0711 0.599532
\(342\) 0 0
\(343\) 0 0
\(344\) −10.0000 −0.539164
\(345\) 0 0
\(346\) 19.0711 1.02527
\(347\) 2.00000 0.107366 0.0536828 0.998558i \(-0.482904\pi\)
0.0536828 + 0.998558i \(0.482904\pi\)
\(348\) 0 0
\(349\) −25.4142 −1.36039 −0.680196 0.733030i \(-0.738105\pi\)
−0.680196 + 0.733030i \(0.738105\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) 5.89949 0.313998 0.156999 0.987599i \(-0.449818\pi\)
0.156999 + 0.987599i \(0.449818\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 5.41421 0.286953
\(357\) 0 0
\(358\) −13.6569 −0.721787
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) −12.3137 −0.648090
\(362\) 10.3431 0.543624
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −22.8701 −1.19381 −0.596904 0.802313i \(-0.703603\pi\)
−0.596904 + 0.802313i \(0.703603\pi\)
\(368\) 3.65685 0.190627
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 8.62742 0.446711 0.223355 0.974737i \(-0.428299\pi\)
0.223355 + 0.974737i \(0.428299\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) 1.41421 0.0729325
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) −6.34315 −0.325826 −0.162913 0.986640i \(-0.552089\pi\)
−0.162913 + 0.986640i \(0.552089\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −22.9706 −1.17528
\(383\) 23.5563 1.20367 0.601837 0.798619i \(-0.294436\pi\)
0.601837 + 0.798619i \(0.294436\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.65685 −0.186129
\(387\) 0 0
\(388\) 12.7279 0.646162
\(389\) 32.6274 1.65428 0.827138 0.561999i \(-0.189968\pi\)
0.827138 + 0.561999i \(0.189968\pi\)
\(390\) 0 0
\(391\) 14.6274 0.739740
\(392\) 0 0
\(393\) 0 0
\(394\) 1.31371 0.0661837
\(395\) 0 0
\(396\) 0 0
\(397\) 27.7990 1.39519 0.697596 0.716492i \(-0.254253\pi\)
0.697596 + 0.716492i \(0.254253\pi\)
\(398\) −13.4142 −0.672394
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) −15.6569 −0.779923
\(404\) 8.24264 0.410087
\(405\) 0 0
\(406\) 0 0
\(407\) 7.65685 0.379536
\(408\) 0 0
\(409\) −4.48528 −0.221783 −0.110891 0.993833i \(-0.535371\pi\)
−0.110891 + 0.993833i \(0.535371\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.89949 0.290647
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 1.41421 0.0693375
\(417\) 0 0
\(418\) 2.58579 0.126475
\(419\) −40.2843 −1.96802 −0.984008 0.178126i \(-0.942997\pi\)
−0.984008 + 0.178126i \(0.942997\pi\)
\(420\) 0 0
\(421\) 18.9706 0.924569 0.462284 0.886732i \(-0.347030\pi\)
0.462284 + 0.886732i \(0.347030\pi\)
\(422\) −5.31371 −0.258667
\(423\) 0 0
\(424\) −7.65685 −0.371850
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 0 0
\(428\) 5.31371 0.256848
\(429\) 0 0
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 5.21320 0.250531 0.125265 0.992123i \(-0.460022\pi\)
0.125265 + 0.992123i \(0.460022\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) −9.45584 −0.452334
\(438\) 0 0
\(439\) 3.79899 0.181316 0.0906579 0.995882i \(-0.471103\pi\)
0.0906579 + 0.995882i \(0.471103\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 5.65685 0.269069
\(443\) 28.2843 1.34383 0.671913 0.740630i \(-0.265473\pi\)
0.671913 + 0.740630i \(0.265473\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 11.5563 0.547209
\(447\) 0 0
\(448\) 0 0
\(449\) −21.6569 −1.02205 −0.511025 0.859566i \(-0.670734\pi\)
−0.511025 + 0.859566i \(0.670734\pi\)
\(450\) 0 0
\(451\) 1.65685 0.0780182
\(452\) −5.65685 −0.266076
\(453\) 0 0
\(454\) −7.55635 −0.354637
\(455\) 0 0
\(456\) 0 0
\(457\) 8.34315 0.390276 0.195138 0.980776i \(-0.437485\pi\)
0.195138 + 0.980776i \(0.437485\pi\)
\(458\) 5.65685 0.264327
\(459\) 0 0
\(460\) 0 0
\(461\) 18.1005 0.843025 0.421512 0.906823i \(-0.361499\pi\)
0.421512 + 0.906823i \(0.361499\pi\)
\(462\) 0 0
\(463\) −4.68629 −0.217790 −0.108895 0.994053i \(-0.534731\pi\)
−0.108895 + 0.994053i \(0.534731\pi\)
\(464\) −5.65685 −0.262613
\(465\) 0 0
\(466\) −23.6569 −1.09588
\(467\) 29.9411 1.38551 0.692755 0.721173i \(-0.256397\pi\)
0.692755 + 0.721173i \(0.256397\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.17157 0.0539260
\(473\) 10.0000 0.459800
\(474\) 0 0
\(475\) 12.9289 0.593220
\(476\) 0 0
\(477\) 0 0
\(478\) −25.6569 −1.17352
\(479\) −0.970563 −0.0443461 −0.0221731 0.999754i \(-0.507058\pi\)
−0.0221731 + 0.999754i \(0.507058\pi\)
\(480\) 0 0
\(481\) −10.8284 −0.493734
\(482\) −15.3137 −0.697520
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) −11.6569 −0.528222 −0.264111 0.964492i \(-0.585079\pi\)
−0.264111 + 0.964492i \(0.585079\pi\)
\(488\) −1.41421 −0.0640184
\(489\) 0 0
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) −22.6274 −1.01909
\(494\) −3.65685 −0.164530
\(495\) 0 0
\(496\) −11.0711 −0.497106
\(497\) 0 0
\(498\) 0 0
\(499\) 34.6274 1.55014 0.775068 0.631878i \(-0.217716\pi\)
0.775068 + 0.631878i \(0.217716\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 9.17157 0.409347
\(503\) 16.4853 0.735042 0.367521 0.930015i \(-0.380207\pi\)
0.367521 + 0.930015i \(0.380207\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.65685 −0.162567
\(507\) 0 0
\(508\) 7.31371 0.324493
\(509\) 25.9411 1.14982 0.574910 0.818217i \(-0.305037\pi\)
0.574910 + 0.818217i \(0.305037\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 8.72792 0.384972
\(515\) 0 0
\(516\) 0 0
\(517\) −1.41421 −0.0621970
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −32.7279 −1.43384 −0.716918 0.697157i \(-0.754448\pi\)
−0.716918 + 0.697157i \(0.754448\pi\)
\(522\) 0 0
\(523\) 40.2426 1.75969 0.879844 0.475263i \(-0.157647\pi\)
0.879844 + 0.475263i \(0.157647\pi\)
\(524\) 12.2426 0.534822
\(525\) 0 0
\(526\) −2.34315 −0.102166
\(527\) −44.2843 −1.92905
\(528\) 0 0
\(529\) −9.62742 −0.418583
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.34315 −0.101493
\(534\) 0 0
\(535\) 0 0
\(536\) 11.3137 0.488678
\(537\) 0 0
\(538\) −22.6274 −0.975537
\(539\) 0 0
\(540\) 0 0
\(541\) 36.6274 1.57474 0.787368 0.616483i \(-0.211443\pi\)
0.787368 + 0.616483i \(0.211443\pi\)
\(542\) −26.8284 −1.15238
\(543\) 0 0
\(544\) 4.00000 0.171499
\(545\) 0 0
\(546\) 0 0
\(547\) 9.65685 0.412897 0.206449 0.978457i \(-0.433809\pi\)
0.206449 + 0.978457i \(0.433809\pi\)
\(548\) −13.3137 −0.568733
\(549\) 0 0
\(550\) 5.00000 0.213201
\(551\) 14.6274 0.623149
\(552\) 0 0
\(553\) 0 0
\(554\) 4.00000 0.169944
\(555\) 0 0
\(556\) −21.8995 −0.928745
\(557\) 35.9411 1.52287 0.761437 0.648239i \(-0.224494\pi\)
0.761437 + 0.648239i \(0.224494\pi\)
\(558\) 0 0
\(559\) −14.1421 −0.598149
\(560\) 0 0
\(561\) 0 0
\(562\) −14.9706 −0.631495
\(563\) −25.4142 −1.07108 −0.535541 0.844509i \(-0.679892\pi\)
−0.535541 + 0.844509i \(0.679892\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −24.2426 −1.01899
\(567\) 0 0
\(568\) −2.34315 −0.0983162
\(569\) 29.3137 1.22889 0.614447 0.788958i \(-0.289379\pi\)
0.614447 + 0.788958i \(0.289379\pi\)
\(570\) 0 0
\(571\) −16.2843 −0.681476 −0.340738 0.940158i \(-0.610677\pi\)
−0.340738 + 0.940158i \(0.610677\pi\)
\(572\) −1.41421 −0.0591312
\(573\) 0 0
\(574\) 0 0
\(575\) −18.2843 −0.762507
\(576\) 0 0
\(577\) 36.2426 1.50880 0.754400 0.656414i \(-0.227928\pi\)
0.754400 + 0.656414i \(0.227928\pi\)
\(578\) −1.00000 −0.0415945
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 7.65685 0.317115
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) 11.0711 0.457342
\(587\) 20.4853 0.845518 0.422759 0.906242i \(-0.361062\pi\)
0.422759 + 0.906242i \(0.361062\pi\)
\(588\) 0 0
\(589\) 28.6274 1.17957
\(590\) 0 0
\(591\) 0 0
\(592\) −7.65685 −0.314695
\(593\) −0.686292 −0.0281826 −0.0140913 0.999901i \(-0.504486\pi\)
−0.0140913 + 0.999901i \(0.504486\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.9706 0.858988
\(597\) 0 0
\(598\) 5.17157 0.211481
\(599\) −0.970563 −0.0396561 −0.0198281 0.999803i \(-0.506312\pi\)
−0.0198281 + 0.999803i \(0.506312\pi\)
\(600\) 0 0
\(601\) 37.4558 1.52786 0.763928 0.645302i \(-0.223268\pi\)
0.763928 + 0.645302i \(0.223268\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 9.65685 0.392932
\(605\) 0 0
\(606\) 0 0
\(607\) 19.3137 0.783919 0.391960 0.919982i \(-0.371797\pi\)
0.391960 + 0.919982i \(0.371797\pi\)
\(608\) −2.58579 −0.104867
\(609\) 0 0
\(610\) 0 0
\(611\) 2.00000 0.0809113
\(612\) 0 0
\(613\) 12.0000 0.484675 0.242338 0.970192i \(-0.422086\pi\)
0.242338 + 0.970192i \(0.422086\pi\)
\(614\) −24.7279 −0.997938
\(615\) 0 0
\(616\) 0 0
\(617\) −25.6569 −1.03291 −0.516453 0.856316i \(-0.672748\pi\)
−0.516453 + 0.856316i \(0.672748\pi\)
\(618\) 0 0
\(619\) −15.3137 −0.615510 −0.307755 0.951466i \(-0.599578\pi\)
−0.307755 + 0.951466i \(0.599578\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 11.7574 0.471427
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 3.75736 0.150174
\(627\) 0 0
\(628\) −2.82843 −0.112867
\(629\) −30.6274 −1.22120
\(630\) 0 0
\(631\) −41.5980 −1.65599 −0.827995 0.560736i \(-0.810518\pi\)
−0.827995 + 0.560736i \(0.810518\pi\)
\(632\) −9.65685 −0.384129
\(633\) 0 0
\(634\) −17.3137 −0.687615
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 5.65685 0.223957
\(639\) 0 0
\(640\) 0 0
\(641\) 48.2843 1.90711 0.953557 0.301213i \(-0.0973914\pi\)
0.953557 + 0.301213i \(0.0973914\pi\)
\(642\) 0 0
\(643\) 41.1716 1.62365 0.811824 0.583902i \(-0.198475\pi\)
0.811824 + 0.583902i \(0.198475\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −10.3431 −0.406946
\(647\) −1.89949 −0.0746769 −0.0373384 0.999303i \(-0.511888\pi\)
−0.0373384 + 0.999303i \(0.511888\pi\)
\(648\) 0 0
\(649\) −1.17157 −0.0459883
\(650\) −7.07107 −0.277350
\(651\) 0 0
\(652\) −5.65685 −0.221540
\(653\) −12.6274 −0.494149 −0.247075 0.968996i \(-0.579469\pi\)
−0.247075 + 0.968996i \(0.579469\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1.65685 −0.0646893
\(657\) 0 0
\(658\) 0 0
\(659\) 2.68629 0.104643 0.0523215 0.998630i \(-0.483338\pi\)
0.0523215 + 0.998630i \(0.483338\pi\)
\(660\) 0 0
\(661\) −8.97056 −0.348914 −0.174457 0.984665i \(-0.555817\pi\)
−0.174457 + 0.984665i \(0.555817\pi\)
\(662\) −4.97056 −0.193186
\(663\) 0 0
\(664\) −0.928932 −0.0360496
\(665\) 0 0
\(666\) 0 0
\(667\) −20.6863 −0.800976
\(668\) 5.17157 0.200094
\(669\) 0 0
\(670\) 0 0
\(671\) 1.41421 0.0545951
\(672\) 0 0
\(673\) 8.34315 0.321605 0.160802 0.986987i \(-0.448592\pi\)
0.160802 + 0.986987i \(0.448592\pi\)
\(674\) 5.31371 0.204676
\(675\) 0 0
\(676\) −11.0000 −0.423077
\(677\) −21.4142 −0.823015 −0.411508 0.911406i \(-0.634998\pi\)
−0.411508 + 0.911406i \(0.634998\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 11.0711 0.423933
\(683\) −8.28427 −0.316989 −0.158494 0.987360i \(-0.550664\pi\)
−0.158494 + 0.987360i \(0.550664\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −10.0000 −0.381246
\(689\) −10.8284 −0.412530
\(690\) 0 0
\(691\) 12.4853 0.474962 0.237481 0.971392i \(-0.423678\pi\)
0.237481 + 0.971392i \(0.423678\pi\)
\(692\) 19.0711 0.724973
\(693\) 0 0
\(694\) 2.00000 0.0759190
\(695\) 0 0
\(696\) 0 0
\(697\) −6.62742 −0.251031
\(698\) −25.4142 −0.961942
\(699\) 0 0
\(700\) 0 0
\(701\) 18.6863 0.705771 0.352886 0.935666i \(-0.385200\pi\)
0.352886 + 0.935666i \(0.385200\pi\)
\(702\) 0 0
\(703\) 19.7990 0.746733
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 5.89949 0.222030
\(707\) 0 0
\(708\) 0 0
\(709\) −44.6274 −1.67602 −0.838009 0.545657i \(-0.816280\pi\)
−0.838009 + 0.545657i \(0.816280\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 5.41421 0.202906
\(713\) −40.4853 −1.51619
\(714\) 0 0
\(715\) 0 0
\(716\) −13.6569 −0.510381
\(717\) 0 0
\(718\) 4.00000 0.149279
\(719\) 17.4142 0.649441 0.324720 0.945810i \(-0.394730\pi\)
0.324720 + 0.945810i \(0.394730\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −12.3137 −0.458269
\(723\) 0 0
\(724\) 10.3431 0.384400
\(725\) 28.2843 1.05045
\(726\) 0 0
\(727\) −31.3553 −1.16291 −0.581453 0.813580i \(-0.697515\pi\)
−0.581453 + 0.813580i \(0.697515\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −40.0000 −1.47945
\(732\) 0 0
\(733\) 44.2426 1.63414 0.817070 0.576539i \(-0.195597\pi\)
0.817070 + 0.576539i \(0.195597\pi\)
\(734\) −22.8701 −0.844149
\(735\) 0 0
\(736\) 3.65685 0.134793
\(737\) −11.3137 −0.416746
\(738\) 0 0
\(739\) 17.6569 0.649518 0.324759 0.945797i \(-0.394717\pi\)
0.324759 + 0.945797i \(0.394717\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28.9706 −1.06283 −0.531413 0.847113i \(-0.678339\pi\)
−0.531413 + 0.847113i \(0.678339\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8.62742 0.315872
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) −6.97056 −0.254359 −0.127180 0.991880i \(-0.540592\pi\)
−0.127180 + 0.991880i \(0.540592\pi\)
\(752\) 1.41421 0.0515711
\(753\) 0 0
\(754\) −8.00000 −0.291343
\(755\) 0 0
\(756\) 0 0
\(757\) −29.3137 −1.06542 −0.532712 0.846296i \(-0.678827\pi\)
−0.532712 + 0.846296i \(0.678827\pi\)
\(758\) −6.34315 −0.230393
\(759\) 0 0
\(760\) 0 0
\(761\) −42.1421 −1.52765 −0.763826 0.645423i \(-0.776681\pi\)
−0.763826 + 0.645423i \(0.776681\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −22.9706 −0.831046
\(765\) 0 0
\(766\) 23.5563 0.851125
\(767\) 1.65685 0.0598255
\(768\) 0 0
\(769\) −0.201010 −0.00724861 −0.00362431 0.999993i \(-0.501154\pi\)
−0.00362431 + 0.999993i \(0.501154\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.65685 −0.131613
\(773\) 14.1421 0.508657 0.254329 0.967118i \(-0.418146\pi\)
0.254329 + 0.967118i \(0.418146\pi\)
\(774\) 0 0
\(775\) 55.3553 1.98842
\(776\) 12.7279 0.456906
\(777\) 0 0
\(778\) 32.6274 1.16975
\(779\) 4.28427 0.153500
\(780\) 0 0
\(781\) 2.34315 0.0838443
\(782\) 14.6274 0.523075
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.61522 0.0575765 0.0287883 0.999586i \(-0.490835\pi\)
0.0287883 + 0.999586i \(0.490835\pi\)
\(788\) 1.31371 0.0467989
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) 27.7990 0.986549
\(795\) 0 0
\(796\) −13.4142 −0.475454
\(797\) −45.1716 −1.60006 −0.800030 0.599961i \(-0.795183\pi\)
−0.800030 + 0.599961i \(0.795183\pi\)
\(798\) 0 0
\(799\) 5.65685 0.200125
\(800\) −5.00000 −0.176777
\(801\) 0 0
\(802\) 6.00000 0.211867
\(803\) 4.00000 0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) −15.6569 −0.551489
\(807\) 0 0
\(808\) 8.24264 0.289975
\(809\) 14.9706 0.526337 0.263168 0.964750i \(-0.415232\pi\)
0.263168 + 0.964750i \(0.415232\pi\)
\(810\) 0 0
\(811\) −54.8701 −1.92675 −0.963374 0.268161i \(-0.913584\pi\)
−0.963374 + 0.268161i \(0.913584\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 7.65685 0.268373
\(815\) 0 0
\(816\) 0 0
\(817\) 25.8579 0.904652
\(818\) −4.48528 −0.156824
\(819\) 0 0
\(820\) 0 0
\(821\) −36.9706 −1.29028 −0.645141 0.764064i \(-0.723201\pi\)
−0.645141 + 0.764064i \(0.723201\pi\)
\(822\) 0 0
\(823\) 25.5980 0.892289 0.446145 0.894961i \(-0.352797\pi\)
0.446145 + 0.894961i \(0.352797\pi\)
\(824\) 5.89949 0.205519
\(825\) 0 0
\(826\) 0 0
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) 3.31371 0.115090 0.0575449 0.998343i \(-0.481673\pi\)
0.0575449 + 0.998343i \(0.481673\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.41421 0.0490290
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 2.58579 0.0894313
\(837\) 0 0
\(838\) −40.2843 −1.39160
\(839\) −12.7279 −0.439417 −0.219708 0.975566i \(-0.570511\pi\)
−0.219708 + 0.975566i \(0.570511\pi\)
\(840\) 0 0
\(841\) 3.00000 0.103448
\(842\) 18.9706 0.653769
\(843\) 0 0
\(844\) −5.31371 −0.182905
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −7.65685 −0.262937
\(849\) 0 0
\(850\) −20.0000 −0.685994
\(851\) −28.0000 −0.959828
\(852\) 0 0
\(853\) 27.2721 0.933778 0.466889 0.884316i \(-0.345375\pi\)
0.466889 + 0.884316i \(0.345375\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 5.31371 0.181619
\(857\) −9.17157 −0.313295 −0.156647 0.987655i \(-0.550069\pi\)
−0.156647 + 0.987655i \(0.550069\pi\)
\(858\) 0 0
\(859\) 38.4264 1.31109 0.655546 0.755155i \(-0.272439\pi\)
0.655546 + 0.755155i \(0.272439\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −16.0000 −0.544962
\(863\) 29.5980 1.00753 0.503763 0.863842i \(-0.331948\pi\)
0.503763 + 0.863842i \(0.331948\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 5.21320 0.177152
\(867\) 0 0
\(868\) 0 0
\(869\) 9.65685 0.327586
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) −10.0000 −0.338643
\(873\) 0 0
\(874\) −9.45584 −0.319849
\(875\) 0 0
\(876\) 0 0
\(877\) 30.6863 1.03620 0.518101 0.855319i \(-0.326639\pi\)
0.518101 + 0.855319i \(0.326639\pi\)
\(878\) 3.79899 0.128210
\(879\) 0 0
\(880\) 0 0
\(881\) −2.10051 −0.0707678 −0.0353839 0.999374i \(-0.511265\pi\)
−0.0353839 + 0.999374i \(0.511265\pi\)
\(882\) 0 0
\(883\) 18.6274 0.626862 0.313431 0.949611i \(-0.398521\pi\)
0.313431 + 0.949611i \(0.398521\pi\)
\(884\) 5.65685 0.190261
\(885\) 0 0
\(886\) 28.2843 0.950229
\(887\) 52.2843 1.75553 0.877767 0.479088i \(-0.159032\pi\)
0.877767 + 0.479088i \(0.159032\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 11.5563 0.386935
\(893\) −3.65685 −0.122372
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −21.6569 −0.722699
\(899\) 62.6274 2.08874
\(900\) 0 0
\(901\) −30.6274 −1.02035
\(902\) 1.65685 0.0551672
\(903\) 0 0
\(904\) −5.65685 −0.188144
\(905\) 0 0
\(906\) 0 0
\(907\) 33.9411 1.12700 0.563498 0.826117i \(-0.309455\pi\)
0.563498 + 0.826117i \(0.309455\pi\)
\(908\) −7.55635 −0.250766
\(909\) 0 0
\(910\) 0 0
\(911\) 37.5980 1.24568 0.622838 0.782351i \(-0.285979\pi\)
0.622838 + 0.782351i \(0.285979\pi\)
\(912\) 0 0
\(913\) 0.928932 0.0307432
\(914\) 8.34315 0.275967
\(915\) 0 0
\(916\) 5.65685 0.186908
\(917\) 0 0
\(918\) 0 0
\(919\) −30.6274 −1.01031 −0.505153 0.863030i \(-0.668564\pi\)
−0.505153 + 0.863030i \(0.668564\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.1005 0.596108
\(923\) −3.31371 −0.109072
\(924\) 0 0
\(925\) 38.2843 1.25878
\(926\) −4.68629 −0.154001
\(927\) 0 0
\(928\) −5.65685 −0.185695
\(929\) −20.9289 −0.686656 −0.343328 0.939216i \(-0.611554\pi\)
−0.343328 + 0.939216i \(0.611554\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −23.6569 −0.774906
\(933\) 0 0
\(934\) 29.9411 0.979704
\(935\) 0 0
\(936\) 0 0
\(937\) 5.37258 0.175515 0.0877573 0.996142i \(-0.472030\pi\)
0.0877573 + 0.996142i \(0.472030\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −57.6985 −1.88092 −0.940458 0.339909i \(-0.889604\pi\)
−0.940458 + 0.339909i \(0.889604\pi\)
\(942\) 0 0
\(943\) −6.05887 −0.197304
\(944\) 1.17157 0.0381314
\(945\) 0 0
\(946\) 10.0000 0.325128
\(947\) 47.3137 1.53749 0.768744 0.639556i \(-0.220882\pi\)
0.768744 + 0.639556i \(0.220882\pi\)
\(948\) 0 0
\(949\) −5.65685 −0.183629
\(950\) 12.9289 0.419470
\(951\) 0 0
\(952\) 0 0
\(953\) 26.0000 0.842223 0.421111 0.907009i \(-0.361640\pi\)
0.421111 + 0.907009i \(0.361640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −25.6569 −0.829802
\(957\) 0 0
\(958\) −0.970563 −0.0313575
\(959\) 0 0
\(960\) 0 0
\(961\) 91.5685 2.95382
\(962\) −10.8284 −0.349123
\(963\) 0 0
\(964\) −15.3137 −0.493221
\(965\) 0 0
\(966\) 0 0
\(967\) −12.2843 −0.395036 −0.197518 0.980299i \(-0.563288\pi\)
−0.197518 + 0.980299i \(0.563288\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 0 0
\(971\) −54.9117 −1.76220 −0.881100 0.472930i \(-0.843196\pi\)
−0.881100 + 0.472930i \(0.843196\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −11.6569 −0.373510
\(975\) 0 0
\(976\) −1.41421 −0.0452679
\(977\) −37.6569 −1.20475 −0.602375 0.798213i \(-0.705779\pi\)
−0.602375 + 0.798213i \(0.705779\pi\)
\(978\) 0 0
\(979\) −5.41421 −0.173039
\(980\) 0 0
\(981\) 0 0
\(982\) −20.0000 −0.638226
\(983\) −41.0122 −1.30809 −0.654043 0.756457i \(-0.726928\pi\)
−0.654043 + 0.756457i \(0.726928\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −22.6274 −0.720604
\(987\) 0 0
\(988\) −3.65685 −0.116340
\(989\) −36.5685 −1.16281
\(990\) 0 0
\(991\) 20.6863 0.657122 0.328561 0.944483i \(-0.393436\pi\)
0.328561 + 0.944483i \(0.393436\pi\)
\(992\) −11.0711 −0.351507
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9.89949 0.313520 0.156760 0.987637i \(-0.449895\pi\)
0.156760 + 0.987637i \(0.449895\pi\)
\(998\) 34.6274 1.09611
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.dl.1.2 2
3.2 odd 2 3234.2.a.z.1.2 yes 2
7.6 odd 2 9702.2.a.de.1.1 2
21.20 even 2 3234.2.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3234.2.a.y.1.1 2 21.20 even 2
3234.2.a.z.1.2 yes 2 3.2 odd 2
9702.2.a.de.1.1 2 7.6 odd 2
9702.2.a.dl.1.2 2 1.1 even 1 trivial