Properties

Label 9702.2.a.di.1.2
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.82843 q^{5} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} +2.82843 q^{5} +1.00000 q^{8} +2.82843 q^{10} -1.00000 q^{11} +4.24264 q^{13} +1.00000 q^{16} +5.65685 q^{17} +7.07107 q^{19} +2.82843 q^{20} -1.00000 q^{22} +3.00000 q^{25} +4.24264 q^{26} -8.00000 q^{29} +1.41421 q^{31} +1.00000 q^{32} +5.65685 q^{34} +6.00000 q^{37} +7.07107 q^{38} +2.82843 q^{40} +4.00000 q^{43} -1.00000 q^{44} -7.07107 q^{47} +3.00000 q^{50} +4.24264 q^{52} +6.00000 q^{53} -2.82843 q^{55} -8.00000 q^{58} +2.82843 q^{59} -12.7279 q^{61} +1.41421 q^{62} +1.00000 q^{64} +12.0000 q^{65} -4.00000 q^{67} +5.65685 q^{68} +6.00000 q^{71} -8.48528 q^{73} +6.00000 q^{74} +7.07107 q^{76} +12.0000 q^{79} +2.82843 q^{80} -7.07107 q^{83} +16.0000 q^{85} +4.00000 q^{86} -1.00000 q^{88} -15.5563 q^{89} -7.07107 q^{94} +20.0000 q^{95} -7.07107 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{11} + 2 q^{16} - 2 q^{22} + 6 q^{25} - 16 q^{29} + 2 q^{32} + 12 q^{37} + 8 q^{43} - 2 q^{44} + 6 q^{50} + 12 q^{53} - 16 q^{58} + 2 q^{64} + 24 q^{65} - 8 q^{67} + 12 q^{71} + 12 q^{74} + 24 q^{79} + 32 q^{85} + 8 q^{86} - 2 q^{88} + 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.82843 0.894427
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.24264 1.17670 0.588348 0.808608i \(-0.299778\pi\)
0.588348 + 0.808608i \(0.299778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.65685 1.37199 0.685994 0.727607i \(-0.259367\pi\)
0.685994 + 0.727607i \(0.259367\pi\)
\(18\) 0 0
\(19\) 7.07107 1.62221 0.811107 0.584898i \(-0.198865\pi\)
0.811107 + 0.584898i \(0.198865\pi\)
\(20\) 2.82843 0.632456
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 4.24264 0.832050
\(27\) 0 0
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 1.41421 0.254000 0.127000 0.991903i \(-0.459465\pi\)
0.127000 + 0.991903i \(0.459465\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 5.65685 0.970143
\(35\) 0 0
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 7.07107 1.14708
\(39\) 0 0
\(40\) 2.82843 0.447214
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 0 0
\(47\) −7.07107 −1.03142 −0.515711 0.856763i \(-0.672472\pi\)
−0.515711 + 0.856763i \(0.672472\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.00000 0.424264
\(51\) 0 0
\(52\) 4.24264 0.588348
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −2.82843 −0.381385
\(56\) 0 0
\(57\) 0 0
\(58\) −8.00000 −1.05045
\(59\) 2.82843 0.368230 0.184115 0.982905i \(-0.441058\pi\)
0.184115 + 0.982905i \(0.441058\pi\)
\(60\) 0 0
\(61\) −12.7279 −1.62964 −0.814822 0.579712i \(-0.803165\pi\)
−0.814822 + 0.579712i \(0.803165\pi\)
\(62\) 1.41421 0.179605
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 5.65685 0.685994
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) −8.48528 −0.993127 −0.496564 0.868000i \(-0.665405\pi\)
−0.496564 + 0.868000i \(0.665405\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) 7.07107 0.811107
\(77\) 0 0
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 2.82843 0.316228
\(81\) 0 0
\(82\) 0 0
\(83\) −7.07107 −0.776151 −0.388075 0.921628i \(-0.626860\pi\)
−0.388075 + 0.921628i \(0.626860\pi\)
\(84\) 0 0
\(85\) 16.0000 1.73544
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −15.5563 −1.64897 −0.824485 0.565884i \(-0.808535\pi\)
−0.824485 + 0.565884i \(0.808535\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −7.07107 −0.729325
\(95\) 20.0000 2.05196
\(96\) 0 0
\(97\) −7.07107 −0.717958 −0.358979 0.933346i \(-0.616875\pi\)
−0.358979 + 0.933346i \(0.616875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) 15.5563 1.54791 0.773957 0.633238i \(-0.218274\pi\)
0.773957 + 0.633238i \(0.218274\pi\)
\(102\) 0 0
\(103\) −4.24264 −0.418040 −0.209020 0.977911i \(-0.567027\pi\)
−0.209020 + 0.977911i \(0.567027\pi\)
\(104\) 4.24264 0.416025
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) −16.0000 −1.53252 −0.766261 0.642529i \(-0.777885\pi\)
−0.766261 + 0.642529i \(0.777885\pi\)
\(110\) −2.82843 −0.269680
\(111\) 0 0
\(112\) 0 0
\(113\) −14.0000 −1.31701 −0.658505 0.752577i \(-0.728811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) 0 0
\(118\) 2.82843 0.260378
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −12.7279 −1.15233
\(123\) 0 0
\(124\) 1.41421 0.127000
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 12.0000 1.05247
\(131\) 15.5563 1.35916 0.679582 0.733599i \(-0.262161\pi\)
0.679582 + 0.733599i \(0.262161\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) 5.65685 0.485071
\(137\) −4.00000 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(138\) 0 0
\(139\) 4.24264 0.359856 0.179928 0.983680i \(-0.442414\pi\)
0.179928 + 0.983680i \(0.442414\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) −4.24264 −0.354787
\(144\) 0 0
\(145\) −22.6274 −1.87910
\(146\) −8.48528 −0.702247
\(147\) 0 0
\(148\) 6.00000 0.493197
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 7.07107 0.573539
\(153\) 0 0
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 8.48528 0.677199 0.338600 0.940931i \(-0.390047\pi\)
0.338600 + 0.940931i \(0.390047\pi\)
\(158\) 12.0000 0.954669
\(159\) 0 0
\(160\) 2.82843 0.223607
\(161\) 0 0
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −7.07107 −0.548821
\(167\) 2.82843 0.218870 0.109435 0.993994i \(-0.465096\pi\)
0.109435 + 0.993994i \(0.465096\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 16.0000 1.22714
\(171\) 0 0
\(172\) 4.00000 0.304997
\(173\) 9.89949 0.752645 0.376322 0.926489i \(-0.377189\pi\)
0.376322 + 0.926489i \(0.377189\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −15.5563 −1.16600
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −16.9706 −1.26141 −0.630706 0.776022i \(-0.717235\pi\)
−0.630706 + 0.776022i \(0.717235\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 16.9706 1.24770
\(186\) 0 0
\(187\) −5.65685 −0.413670
\(188\) −7.07107 −0.515711
\(189\) 0 0
\(190\) 20.0000 1.45095
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) −7.07107 −0.507673
\(195\) 0 0
\(196\) 0 0
\(197\) −10.0000 −0.712470 −0.356235 0.934396i \(-0.615940\pi\)
−0.356235 + 0.934396i \(0.615940\pi\)
\(198\) 0 0
\(199\) 4.24264 0.300753 0.150376 0.988629i \(-0.451951\pi\)
0.150376 + 0.988629i \(0.451951\pi\)
\(200\) 3.00000 0.212132
\(201\) 0 0
\(202\) 15.5563 1.09454
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −4.24264 −0.295599
\(207\) 0 0
\(208\) 4.24264 0.294174
\(209\) −7.07107 −0.489116
\(210\) 0 0
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 6.00000 0.412082
\(213\) 0 0
\(214\) −6.00000 −0.410152
\(215\) 11.3137 0.771589
\(216\) 0 0
\(217\) 0 0
\(218\) −16.0000 −1.08366
\(219\) 0 0
\(220\) −2.82843 −0.190693
\(221\) 24.0000 1.61441
\(222\) 0 0
\(223\) 21.2132 1.42054 0.710271 0.703929i \(-0.248573\pi\)
0.710271 + 0.703929i \(0.248573\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 18.3848 1.22024 0.610120 0.792309i \(-0.291121\pi\)
0.610120 + 0.792309i \(0.291121\pi\)
\(228\) 0 0
\(229\) −16.9706 −1.12145 −0.560723 0.828003i \(-0.689477\pi\)
−0.560723 + 0.828003i \(0.689477\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −8.00000 −0.525226
\(233\) −14.0000 −0.917170 −0.458585 0.888650i \(-0.651644\pi\)
−0.458585 + 0.888650i \(0.651644\pi\)
\(234\) 0 0
\(235\) −20.0000 −1.30466
\(236\) 2.82843 0.184115
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) −14.1421 −0.910975 −0.455488 0.890242i \(-0.650535\pi\)
−0.455488 + 0.890242i \(0.650535\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −12.7279 −0.814822
\(245\) 0 0
\(246\) 0 0
\(247\) 30.0000 1.90885
\(248\) 1.41421 0.0898027
\(249\) 0 0
\(250\) −5.65685 −0.357771
\(251\) −8.48528 −0.535586 −0.267793 0.963476i \(-0.586294\pi\)
−0.267793 + 0.963476i \(0.586294\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −4.00000 −0.250982
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 9.89949 0.617514 0.308757 0.951141i \(-0.400087\pi\)
0.308757 + 0.951141i \(0.400087\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 12.0000 0.744208
\(261\) 0 0
\(262\) 15.5563 0.961074
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 0 0
\(265\) 16.9706 1.04249
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −8.48528 −0.517357 −0.258678 0.965964i \(-0.583287\pi\)
−0.258678 + 0.965964i \(0.583287\pi\)
\(270\) 0 0
\(271\) −25.4558 −1.54633 −0.773166 0.634203i \(-0.781328\pi\)
−0.773166 + 0.634203i \(0.781328\pi\)
\(272\) 5.65685 0.342997
\(273\) 0 0
\(274\) −4.00000 −0.241649
\(275\) −3.00000 −0.180907
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) 4.24264 0.254457
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 21.2132 1.26099 0.630497 0.776192i \(-0.282851\pi\)
0.630497 + 0.776192i \(0.282851\pi\)
\(284\) 6.00000 0.356034
\(285\) 0 0
\(286\) −4.24264 −0.250873
\(287\) 0 0
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) −22.6274 −1.32873
\(291\) 0 0
\(292\) −8.48528 −0.496564
\(293\) −7.07107 −0.413096 −0.206548 0.978436i \(-0.566223\pi\)
−0.206548 + 0.978436i \(0.566223\pi\)
\(294\) 0 0
\(295\) 8.00000 0.465778
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) −4.00000 −0.231714
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 16.0000 0.920697
\(303\) 0 0
\(304\) 7.07107 0.405554
\(305\) −36.0000 −2.06135
\(306\) 0 0
\(307\) 7.07107 0.403567 0.201784 0.979430i \(-0.435326\pi\)
0.201784 + 0.979430i \(0.435326\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.00000 0.227185
\(311\) 1.41421 0.0801927 0.0400963 0.999196i \(-0.487234\pi\)
0.0400963 + 0.999196i \(0.487234\pi\)
\(312\) 0 0
\(313\) −12.7279 −0.719425 −0.359712 0.933063i \(-0.617125\pi\)
−0.359712 + 0.933063i \(0.617125\pi\)
\(314\) 8.48528 0.478852
\(315\) 0 0
\(316\) 12.0000 0.675053
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 2.82843 0.158114
\(321\) 0 0
\(322\) 0 0
\(323\) 40.0000 2.22566
\(324\) 0 0
\(325\) 12.7279 0.706018
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) −7.07107 −0.388075
\(333\) 0 0
\(334\) 2.82843 0.154765
\(335\) −11.3137 −0.618134
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 5.00000 0.271964
\(339\) 0 0
\(340\) 16.0000 0.867722
\(341\) −1.41421 −0.0765840
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 9.89949 0.532200
\(347\) −34.0000 −1.82522 −0.912608 0.408836i \(-0.865935\pi\)
−0.912608 + 0.408836i \(0.865935\pi\)
\(348\) 0 0
\(349\) 26.8701 1.43832 0.719161 0.694844i \(-0.244527\pi\)
0.719161 + 0.694844i \(0.244527\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −12.7279 −0.677439 −0.338719 0.940887i \(-0.609994\pi\)
−0.338719 + 0.940887i \(0.609994\pi\)
\(354\) 0 0
\(355\) 16.9706 0.900704
\(356\) −15.5563 −0.824485
\(357\) 0 0
\(358\) 12.0000 0.634220
\(359\) −36.0000 −1.90001 −0.950004 0.312239i \(-0.898921\pi\)
−0.950004 + 0.312239i \(0.898921\pi\)
\(360\) 0 0
\(361\) 31.0000 1.63158
\(362\) −16.9706 −0.891953
\(363\) 0 0
\(364\) 0 0
\(365\) −24.0000 −1.25622
\(366\) 0 0
\(367\) 35.3553 1.84553 0.922767 0.385359i \(-0.125922\pi\)
0.922767 + 0.385359i \(0.125922\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 16.9706 0.882258
\(371\) 0 0
\(372\) 0 0
\(373\) 8.00000 0.414224 0.207112 0.978317i \(-0.433593\pi\)
0.207112 + 0.978317i \(0.433593\pi\)
\(374\) −5.65685 −0.292509
\(375\) 0 0
\(376\) −7.07107 −0.364662
\(377\) −33.9411 −1.74806
\(378\) 0 0
\(379\) 32.0000 1.64373 0.821865 0.569683i \(-0.192934\pi\)
0.821865 + 0.569683i \(0.192934\pi\)
\(380\) 20.0000 1.02598
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) −24.0416 −1.22847 −0.614235 0.789123i \(-0.710535\pi\)
−0.614235 + 0.789123i \(0.710535\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 22.0000 1.11977
\(387\) 0 0
\(388\) −7.07107 −0.358979
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) 33.9411 1.70776
\(396\) 0 0
\(397\) −14.1421 −0.709773 −0.354887 0.934909i \(-0.615481\pi\)
−0.354887 + 0.934909i \(0.615481\pi\)
\(398\) 4.24264 0.212664
\(399\) 0 0
\(400\) 3.00000 0.150000
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 0 0
\(403\) 6.00000 0.298881
\(404\) 15.5563 0.773957
\(405\) 0 0
\(406\) 0 0
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 11.3137 0.559427 0.279713 0.960084i \(-0.409761\pi\)
0.279713 + 0.960084i \(0.409761\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4.24264 −0.209020
\(413\) 0 0
\(414\) 0 0
\(415\) −20.0000 −0.981761
\(416\) 4.24264 0.208013
\(417\) 0 0
\(418\) −7.07107 −0.345857
\(419\) 11.3137 0.552711 0.276355 0.961056i \(-0.410873\pi\)
0.276355 + 0.961056i \(0.410873\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 16.9706 0.823193
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 11.3137 0.545595
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −32.5269 −1.56314 −0.781572 0.623815i \(-0.785582\pi\)
−0.781572 + 0.623815i \(0.785582\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −16.0000 −0.766261
\(437\) 0 0
\(438\) 0 0
\(439\) −19.7990 −0.944954 −0.472477 0.881343i \(-0.656640\pi\)
−0.472477 + 0.881343i \(0.656640\pi\)
\(440\) −2.82843 −0.134840
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) −44.0000 −2.08580
\(446\) 21.2132 1.00447
\(447\) 0 0
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −14.0000 −0.658505
\(453\) 0 0
\(454\) 18.3848 0.862840
\(455\) 0 0
\(456\) 0 0
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) −16.9706 −0.792982
\(459\) 0 0
\(460\) 0 0
\(461\) −24.0416 −1.11973 −0.559865 0.828584i \(-0.689147\pi\)
−0.559865 + 0.828584i \(0.689147\pi\)
\(462\) 0 0
\(463\) 32.0000 1.48717 0.743583 0.668644i \(-0.233125\pi\)
0.743583 + 0.668644i \(0.233125\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) −14.0000 −0.648537
\(467\) −16.9706 −0.785304 −0.392652 0.919687i \(-0.628442\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −20.0000 −0.922531
\(471\) 0 0
\(472\) 2.82843 0.130189
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 21.2132 0.973329
\(476\) 0 0
\(477\) 0 0
\(478\) 16.0000 0.731823
\(479\) −28.2843 −1.29234 −0.646171 0.763193i \(-0.723631\pi\)
−0.646171 + 0.763193i \(0.723631\pi\)
\(480\) 0 0
\(481\) 25.4558 1.16069
\(482\) −14.1421 −0.644157
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) −12.7279 −0.576166
\(489\) 0 0
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) −45.2548 −2.03818
\(494\) 30.0000 1.34976
\(495\) 0 0
\(496\) 1.41421 0.0635001
\(497\) 0 0
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) −5.65685 −0.252982
\(501\) 0 0
\(502\) −8.48528 −0.378717
\(503\) 19.7990 0.882793 0.441397 0.897312i \(-0.354483\pi\)
0.441397 + 0.897312i \(0.354483\pi\)
\(504\) 0 0
\(505\) 44.0000 1.95797
\(506\) 0 0
\(507\) 0 0
\(508\) −4.00000 −0.177471
\(509\) 2.82843 0.125368 0.0626839 0.998033i \(-0.480034\pi\)
0.0626839 + 0.998033i \(0.480034\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 9.89949 0.436648
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) 7.07107 0.310985
\(518\) 0 0
\(519\) 0 0
\(520\) 12.0000 0.526235
\(521\) 1.41421 0.0619578 0.0309789 0.999520i \(-0.490138\pi\)
0.0309789 + 0.999520i \(0.490138\pi\)
\(522\) 0 0
\(523\) −32.5269 −1.42230 −0.711151 0.703039i \(-0.751826\pi\)
−0.711151 + 0.703039i \(0.751826\pi\)
\(524\) 15.5563 0.679582
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 8.00000 0.348485
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 16.9706 0.737154
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −16.9706 −0.733701
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −8.48528 −0.365826
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) −25.4558 −1.09342
\(543\) 0 0
\(544\) 5.65685 0.242536
\(545\) −45.2548 −1.93850
\(546\) 0 0
\(547\) 6.00000 0.256541 0.128271 0.991739i \(-0.459057\pi\)
0.128271 + 0.991739i \(0.459057\pi\)
\(548\) −4.00000 −0.170872
\(549\) 0 0
\(550\) −3.00000 −0.127920
\(551\) −56.5685 −2.40990
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) 4.24264 0.179928
\(557\) −2.00000 −0.0847427 −0.0423714 0.999102i \(-0.513491\pi\)
−0.0423714 + 0.999102i \(0.513491\pi\)
\(558\) 0 0
\(559\) 16.9706 0.717778
\(560\) 0 0
\(561\) 0 0
\(562\) 30.0000 1.26547
\(563\) −9.89949 −0.417214 −0.208607 0.978000i \(-0.566893\pi\)
−0.208607 + 0.978000i \(0.566893\pi\)
\(564\) 0 0
\(565\) −39.5980 −1.66590
\(566\) 21.2132 0.891657
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −14.0000 −0.586911 −0.293455 0.955973i \(-0.594805\pi\)
−0.293455 + 0.955973i \(0.594805\pi\)
\(570\) 0 0
\(571\) 30.0000 1.25546 0.627730 0.778431i \(-0.283984\pi\)
0.627730 + 0.778431i \(0.283984\pi\)
\(572\) −4.24264 −0.177394
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 29.6985 1.23636 0.618182 0.786035i \(-0.287869\pi\)
0.618182 + 0.786035i \(0.287869\pi\)
\(578\) 15.0000 0.623918
\(579\) 0 0
\(580\) −22.6274 −0.939552
\(581\) 0 0
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) −8.48528 −0.351123
\(585\) 0 0
\(586\) −7.07107 −0.292103
\(587\) −19.7990 −0.817192 −0.408596 0.912715i \(-0.633981\pi\)
−0.408596 + 0.912715i \(0.633981\pi\)
\(588\) 0 0
\(589\) 10.0000 0.412043
\(590\) 8.00000 0.329355
\(591\) 0 0
\(592\) 6.00000 0.246598
\(593\) −22.6274 −0.929197 −0.464598 0.885522i \(-0.653801\pi\)
−0.464598 + 0.885522i \(0.653801\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.00000 −0.163846
\(597\) 0 0
\(598\) 0 0
\(599\) 10.0000 0.408589 0.204294 0.978909i \(-0.434510\pi\)
0.204294 + 0.978909i \(0.434510\pi\)
\(600\) 0 0
\(601\) 16.9706 0.692244 0.346122 0.938190i \(-0.387498\pi\)
0.346122 + 0.938190i \(0.387498\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 16.0000 0.651031
\(605\) 2.82843 0.114992
\(606\) 0 0
\(607\) 16.9706 0.688814 0.344407 0.938820i \(-0.388080\pi\)
0.344407 + 0.938820i \(0.388080\pi\)
\(608\) 7.07107 0.286770
\(609\) 0 0
\(610\) −36.0000 −1.45760
\(611\) −30.0000 −1.21367
\(612\) 0 0
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 7.07107 0.285365
\(615\) 0 0
\(616\) 0 0
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 0 0
\(619\) 39.5980 1.59158 0.795789 0.605575i \(-0.207057\pi\)
0.795789 + 0.605575i \(0.207057\pi\)
\(620\) 4.00000 0.160644
\(621\) 0 0
\(622\) 1.41421 0.0567048
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) −12.7279 −0.508710
\(627\) 0 0
\(628\) 8.48528 0.338600
\(629\) 33.9411 1.35332
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) 12.0000 0.477334
\(633\) 0 0
\(634\) 18.0000 0.714871
\(635\) −11.3137 −0.448971
\(636\) 0 0
\(637\) 0 0
\(638\) 8.00000 0.316723
\(639\) 0 0
\(640\) 2.82843 0.111803
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) 8.48528 0.334627 0.167313 0.985904i \(-0.446491\pi\)
0.167313 + 0.985904i \(0.446491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 40.0000 1.57378
\(647\) 18.3848 0.722780 0.361390 0.932415i \(-0.382302\pi\)
0.361390 + 0.932415i \(0.382302\pi\)
\(648\) 0 0
\(649\) −2.82843 −0.111025
\(650\) 12.7279 0.499230
\(651\) 0 0
\(652\) 20.0000 0.783260
\(653\) −22.0000 −0.860927 −0.430463 0.902608i \(-0.641650\pi\)
−0.430463 + 0.902608i \(0.641650\pi\)
\(654\) 0 0
\(655\) 44.0000 1.71922
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 26.0000 1.01282 0.506408 0.862294i \(-0.330973\pi\)
0.506408 + 0.862294i \(0.330973\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) −7.07107 −0.274411
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 2.82843 0.109435
\(669\) 0 0
\(670\) −11.3137 −0.437087
\(671\) 12.7279 0.491356
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 18.0000 0.693334
\(675\) 0 0
\(676\) 5.00000 0.192308
\(677\) −35.3553 −1.35882 −0.679408 0.733761i \(-0.737763\pi\)
−0.679408 + 0.733761i \(0.737763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 16.0000 0.613572
\(681\) 0 0
\(682\) −1.41421 −0.0541530
\(683\) −32.0000 −1.22445 −0.612223 0.790685i \(-0.709725\pi\)
−0.612223 + 0.790685i \(0.709725\pi\)
\(684\) 0 0
\(685\) −11.3137 −0.432275
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 25.4558 0.969790
\(690\) 0 0
\(691\) −42.4264 −1.61398 −0.806988 0.590567i \(-0.798904\pi\)
−0.806988 + 0.590567i \(0.798904\pi\)
\(692\) 9.89949 0.376322
\(693\) 0 0
\(694\) −34.0000 −1.29062
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 0 0
\(698\) 26.8701 1.01705
\(699\) 0 0
\(700\) 0 0
\(701\) −14.0000 −0.528773 −0.264386 0.964417i \(-0.585169\pi\)
−0.264386 + 0.964417i \(0.585169\pi\)
\(702\) 0 0
\(703\) 42.4264 1.60014
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −12.7279 −0.479022
\(707\) 0 0
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 16.9706 0.636894
\(711\) 0 0
\(712\) −15.5563 −0.582999
\(713\) 0 0
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) −36.0000 −1.34351
\(719\) 4.24264 0.158224 0.0791119 0.996866i \(-0.474792\pi\)
0.0791119 + 0.996866i \(0.474792\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 31.0000 1.15370
\(723\) 0 0
\(724\) −16.9706 −0.630706
\(725\) −24.0000 −0.891338
\(726\) 0 0
\(727\) −7.07107 −0.262251 −0.131126 0.991366i \(-0.541859\pi\)
−0.131126 + 0.991366i \(0.541859\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −24.0000 −0.888280
\(731\) 22.6274 0.836905
\(732\) 0 0
\(733\) −4.24264 −0.156706 −0.0783528 0.996926i \(-0.524966\pi\)
−0.0783528 + 0.996926i \(0.524966\pi\)
\(734\) 35.3553 1.30499
\(735\) 0 0
\(736\) 0 0
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) 34.0000 1.25071 0.625355 0.780340i \(-0.284954\pi\)
0.625355 + 0.780340i \(0.284954\pi\)
\(740\) 16.9706 0.623850
\(741\) 0 0
\(742\) 0 0
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) 0 0
\(745\) −11.3137 −0.414502
\(746\) 8.00000 0.292901
\(747\) 0 0
\(748\) −5.65685 −0.206835
\(749\) 0 0
\(750\) 0 0
\(751\) 46.0000 1.67856 0.839282 0.543696i \(-0.182976\pi\)
0.839282 + 0.543696i \(0.182976\pi\)
\(752\) −7.07107 −0.257855
\(753\) 0 0
\(754\) −33.9411 −1.23606
\(755\) 45.2548 1.64699
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 32.0000 1.16229
\(759\) 0 0
\(760\) 20.0000 0.725476
\(761\) 31.1127 1.12783 0.563917 0.825831i \(-0.309294\pi\)
0.563917 + 0.825831i \(0.309294\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) −24.0416 −0.868659
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) −16.9706 −0.611974 −0.305987 0.952036i \(-0.598986\pi\)
−0.305987 + 0.952036i \(0.598986\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 22.0000 0.791797
\(773\) −5.65685 −0.203463 −0.101731 0.994812i \(-0.532438\pi\)
−0.101731 + 0.994812i \(0.532438\pi\)
\(774\) 0 0
\(775\) 4.24264 0.152400
\(776\) −7.07107 −0.253837
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 0 0
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 24.0000 0.856597
\(786\) 0 0
\(787\) 9.89949 0.352879 0.176439 0.984311i \(-0.443542\pi\)
0.176439 + 0.984311i \(0.443542\pi\)
\(788\) −10.0000 −0.356235
\(789\) 0 0
\(790\) 33.9411 1.20757
\(791\) 0 0
\(792\) 0 0
\(793\) −54.0000 −1.91760
\(794\) −14.1421 −0.501886
\(795\) 0 0
\(796\) 4.24264 0.150376
\(797\) −5.65685 −0.200376 −0.100188 0.994969i \(-0.531944\pi\)
−0.100188 + 0.994969i \(0.531944\pi\)
\(798\) 0 0
\(799\) −40.0000 −1.41510
\(800\) 3.00000 0.106066
\(801\) 0 0
\(802\) −12.0000 −0.423735
\(803\) 8.48528 0.299439
\(804\) 0 0
\(805\) 0 0
\(806\) 6.00000 0.211341
\(807\) 0 0
\(808\) 15.5563 0.547270
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) 24.0416 0.844216 0.422108 0.906546i \(-0.361290\pi\)
0.422108 + 0.906546i \(0.361290\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −6.00000 −0.210300
\(815\) 56.5685 1.98151
\(816\) 0 0
\(817\) 28.2843 0.989541
\(818\) 11.3137 0.395575
\(819\) 0 0
\(820\) 0 0
\(821\) 20.0000 0.698005 0.349002 0.937122i \(-0.386521\pi\)
0.349002 + 0.937122i \(0.386521\pi\)
\(822\) 0 0
\(823\) 18.0000 0.627441 0.313720 0.949515i \(-0.398425\pi\)
0.313720 + 0.949515i \(0.398425\pi\)
\(824\) −4.24264 −0.147799
\(825\) 0 0
\(826\) 0 0
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 0 0
\(829\) 16.9706 0.589412 0.294706 0.955588i \(-0.404778\pi\)
0.294706 + 0.955588i \(0.404778\pi\)
\(830\) −20.0000 −0.694210
\(831\) 0 0
\(832\) 4.24264 0.147087
\(833\) 0 0
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) −7.07107 −0.244558
\(837\) 0 0
\(838\) 11.3137 0.390826
\(839\) −49.4975 −1.70884 −0.854421 0.519581i \(-0.826088\pi\)
−0.854421 + 0.519581i \(0.826088\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 2.00000 0.0689246
\(843\) 0 0
\(844\) −20.0000 −0.688428
\(845\) 14.1421 0.486504
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 16.9706 0.582086
\(851\) 0 0
\(852\) 0 0
\(853\) −29.6985 −1.01686 −0.508428 0.861104i \(-0.669773\pi\)
−0.508428 + 0.861104i \(0.669773\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.00000 −0.205076
\(857\) −19.7990 −0.676321 −0.338160 0.941089i \(-0.609805\pi\)
−0.338160 + 0.941089i \(0.609805\pi\)
\(858\) 0 0
\(859\) −31.1127 −1.06155 −0.530776 0.847512i \(-0.678099\pi\)
−0.530776 + 0.847512i \(0.678099\pi\)
\(860\) 11.3137 0.385794
\(861\) 0 0
\(862\) 24.0000 0.817443
\(863\) −40.0000 −1.36162 −0.680808 0.732462i \(-0.738371\pi\)
−0.680808 + 0.732462i \(0.738371\pi\)
\(864\) 0 0
\(865\) 28.0000 0.952029
\(866\) −32.5269 −1.10531
\(867\) 0 0
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) −16.9706 −0.575026
\(872\) −16.0000 −0.541828
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 36.0000 1.21563 0.607817 0.794077i \(-0.292045\pi\)
0.607817 + 0.794077i \(0.292045\pi\)
\(878\) −19.7990 −0.668184
\(879\) 0 0
\(880\) −2.82843 −0.0953463
\(881\) 43.8406 1.47703 0.738514 0.674238i \(-0.235528\pi\)
0.738514 + 0.674238i \(0.235528\pi\)
\(882\) 0 0
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 24.0000 0.807207
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) 5.65685 0.189939 0.0949693 0.995480i \(-0.469725\pi\)
0.0949693 + 0.995480i \(0.469725\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −44.0000 −1.47488
\(891\) 0 0
\(892\) 21.2132 0.710271
\(893\) −50.0000 −1.67319
\(894\) 0 0
\(895\) 33.9411 1.13453
\(896\) 0 0
\(897\) 0 0
\(898\) 22.0000 0.734150
\(899\) −11.3137 −0.377333
\(900\) 0 0
\(901\) 33.9411 1.13074
\(902\) 0 0
\(903\) 0 0
\(904\) −14.0000 −0.465633
\(905\) −48.0000 −1.59557
\(906\) 0 0
\(907\) 24.0000 0.796907 0.398453 0.917189i \(-0.369547\pi\)
0.398453 + 0.917189i \(0.369547\pi\)
\(908\) 18.3848 0.610120
\(909\) 0 0
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 7.07107 0.234018
\(914\) −34.0000 −1.12462
\(915\) 0 0
\(916\) −16.9706 −0.560723
\(917\) 0 0
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −24.0416 −0.791769
\(923\) 25.4558 0.837889
\(924\) 0 0
\(925\) 18.0000 0.591836
\(926\) 32.0000 1.05159
\(927\) 0 0
\(928\) −8.00000 −0.262613
\(929\) −24.0416 −0.788780 −0.394390 0.918943i \(-0.629044\pi\)
−0.394390 + 0.918943i \(0.629044\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −14.0000 −0.458585
\(933\) 0 0
\(934\) −16.9706 −0.555294
\(935\) −16.0000 −0.523256
\(936\) 0 0
\(937\) 19.7990 0.646805 0.323402 0.946262i \(-0.395173\pi\)
0.323402 + 0.946262i \(0.395173\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −20.0000 −0.652328
\(941\) −29.6985 −0.968143 −0.484071 0.875028i \(-0.660843\pi\)
−0.484071 + 0.875028i \(0.660843\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 2.82843 0.0920575
\(945\) 0 0
\(946\) −4.00000 −0.130051
\(947\) 40.0000 1.29983 0.649913 0.760009i \(-0.274805\pi\)
0.649913 + 0.760009i \(0.274805\pi\)
\(948\) 0 0
\(949\) −36.0000 −1.16861
\(950\) 21.2132 0.688247
\(951\) 0 0
\(952\) 0 0
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) −22.6274 −0.732206
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) −28.2843 −0.913823
\(959\) 0 0
\(960\) 0 0
\(961\) −29.0000 −0.935484
\(962\) 25.4558 0.820729
\(963\) 0 0
\(964\) −14.1421 −0.455488
\(965\) 62.2254 2.00311
\(966\) 0 0
\(967\) −28.0000 −0.900419 −0.450210 0.892923i \(-0.648651\pi\)
−0.450210 + 0.892923i \(0.648651\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) −20.0000 −0.642161
\(971\) 22.6274 0.726148 0.363074 0.931760i \(-0.381727\pi\)
0.363074 + 0.931760i \(0.381727\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −38.0000 −1.21760
\(975\) 0 0
\(976\) −12.7279 −0.407411
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 15.5563 0.497183
\(980\) 0 0
\(981\) 0 0
\(982\) −12.0000 −0.382935
\(983\) 46.6690 1.48851 0.744256 0.667895i \(-0.232804\pi\)
0.744256 + 0.667895i \(0.232804\pi\)
\(984\) 0 0
\(985\) −28.2843 −0.901212
\(986\) −45.2548 −1.44121
\(987\) 0 0
\(988\) 30.0000 0.954427
\(989\) 0 0
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) 1.41421 0.0449013
\(993\) 0 0
\(994\) 0 0
\(995\) 12.0000 0.380426
\(996\) 0 0
\(997\) −24.0416 −0.761406 −0.380703 0.924697i \(-0.624318\pi\)
−0.380703 + 0.924697i \(0.624318\pi\)
\(998\) 28.0000 0.886325
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.di.1.2 yes 2
3.2 odd 2 9702.2.a.cr.1.1 2
7.6 odd 2 inner 9702.2.a.di.1.1 yes 2
21.20 even 2 9702.2.a.cr.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9702.2.a.cr.1.1 2 3.2 odd 2
9702.2.a.cr.1.2 yes 2 21.20 even 2
9702.2.a.di.1.1 yes 2 7.6 odd 2 inner
9702.2.a.di.1.2 yes 2 1.1 even 1 trivial