Properties

Label 9702.2.a.dc.1.1
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{10}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1386)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.16228\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.16228 q^{5} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -3.16228 q^{5} +1.00000 q^{8} -3.16228 q^{10} -1.00000 q^{11} -2.00000 q^{13} +1.00000 q^{16} -0.837722 q^{17} +1.16228 q^{19} -3.16228 q^{20} -1.00000 q^{22} +6.32456 q^{23} +5.00000 q^{25} -2.00000 q^{26} +4.00000 q^{29} -2.83772 q^{31} +1.00000 q^{32} -0.837722 q^{34} -4.32456 q^{37} +1.16228 q^{38} -3.16228 q^{40} +0.837722 q^{41} +6.32456 q^{43} -1.00000 q^{44} +6.32456 q^{46} +7.48683 q^{47} +5.00000 q^{50} -2.00000 q^{52} -8.32456 q^{53} +3.16228 q^{55} +4.00000 q^{58} +14.3246 q^{59} -10.0000 q^{61} -2.83772 q^{62} +1.00000 q^{64} +6.32456 q^{65} -8.32456 q^{67} -0.837722 q^{68} -8.00000 q^{71} -13.4868 q^{73} -4.32456 q^{74} +1.16228 q^{76} +8.32456 q^{79} -3.16228 q^{80} +0.837722 q^{82} -1.16228 q^{83} +2.64911 q^{85} +6.32456 q^{86} -1.00000 q^{88} -3.67544 q^{89} +6.32456 q^{92} +7.48683 q^{94} -3.67544 q^{95} -14.6491 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} - 2 q^{11} - 4 q^{13} + 2 q^{16} - 8 q^{17} - 4 q^{19} - 2 q^{22} + 10 q^{25} - 4 q^{26} + 8 q^{29} - 12 q^{31} + 2 q^{32} - 8 q^{34} + 4 q^{37} - 4 q^{38} + 8 q^{41} - 2 q^{44} - 4 q^{47} + 10 q^{50} - 4 q^{52} - 4 q^{53} + 8 q^{58} + 16 q^{59} - 20 q^{61} - 12 q^{62} + 2 q^{64} - 4 q^{67} - 8 q^{68} - 16 q^{71} - 8 q^{73} + 4 q^{74} - 4 q^{76} + 4 q^{79} + 8 q^{82} + 4 q^{83} - 20 q^{85} - 2 q^{88} - 20 q^{89} - 4 q^{94} - 20 q^{95} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.16228 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −3.16228 −1.00000
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.837722 −0.203178 −0.101589 0.994826i \(-0.532393\pi\)
−0.101589 + 0.994826i \(0.532393\pi\)
\(18\) 0 0
\(19\) 1.16228 0.266645 0.133322 0.991073i \(-0.457435\pi\)
0.133322 + 0.991073i \(0.457435\pi\)
\(20\) −3.16228 −0.707107
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) 6.32456 1.31876 0.659380 0.751809i \(-0.270819\pi\)
0.659380 + 0.751809i \(0.270819\pi\)
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −2.83772 −0.509670 −0.254835 0.966985i \(-0.582021\pi\)
−0.254835 + 0.966985i \(0.582021\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −0.837722 −0.143668
\(35\) 0 0
\(36\) 0 0
\(37\) −4.32456 −0.710953 −0.355476 0.934685i \(-0.615681\pi\)
−0.355476 + 0.934685i \(0.615681\pi\)
\(38\) 1.16228 0.188546
\(39\) 0 0
\(40\) −3.16228 −0.500000
\(41\) 0.837722 0.130830 0.0654151 0.997858i \(-0.479163\pi\)
0.0654151 + 0.997858i \(0.479163\pi\)
\(42\) 0 0
\(43\) 6.32456 0.964486 0.482243 0.876038i \(-0.339822\pi\)
0.482243 + 0.876038i \(0.339822\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 6.32456 0.932505
\(47\) 7.48683 1.09207 0.546033 0.837763i \(-0.316137\pi\)
0.546033 + 0.837763i \(0.316137\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −8.32456 −1.14347 −0.571733 0.820440i \(-0.693729\pi\)
−0.571733 + 0.820440i \(0.693729\pi\)
\(54\) 0 0
\(55\) 3.16228 0.426401
\(56\) 0 0
\(57\) 0 0
\(58\) 4.00000 0.525226
\(59\) 14.3246 1.86490 0.932449 0.361301i \(-0.117667\pi\)
0.932449 + 0.361301i \(0.117667\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −2.83772 −0.360391
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.32456 0.784465
\(66\) 0 0
\(67\) −8.32456 −1.01701 −0.508503 0.861060i \(-0.669801\pi\)
−0.508503 + 0.861060i \(0.669801\pi\)
\(68\) −0.837722 −0.101589
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) −13.4868 −1.57851 −0.789257 0.614063i \(-0.789534\pi\)
−0.789257 + 0.614063i \(0.789534\pi\)
\(74\) −4.32456 −0.502719
\(75\) 0 0
\(76\) 1.16228 0.133322
\(77\) 0 0
\(78\) 0 0
\(79\) 8.32456 0.936586 0.468293 0.883573i \(-0.344869\pi\)
0.468293 + 0.883573i \(0.344869\pi\)
\(80\) −3.16228 −0.353553
\(81\) 0 0
\(82\) 0.837722 0.0925110
\(83\) −1.16228 −0.127577 −0.0637883 0.997963i \(-0.520318\pi\)
−0.0637883 + 0.997963i \(0.520318\pi\)
\(84\) 0 0
\(85\) 2.64911 0.287336
\(86\) 6.32456 0.681994
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −3.67544 −0.389596 −0.194798 0.980843i \(-0.562405\pi\)
−0.194798 + 0.980843i \(0.562405\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.32456 0.659380
\(93\) 0 0
\(94\) 7.48683 0.772208
\(95\) −3.67544 −0.377093
\(96\) 0 0
\(97\) −14.6491 −1.48739 −0.743696 0.668518i \(-0.766929\pi\)
−0.743696 + 0.668518i \(0.766929\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 17.8114 1.75501 0.877504 0.479569i \(-0.159207\pi\)
0.877504 + 0.479569i \(0.159207\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −8.32456 −0.808552
\(107\) −1.67544 −0.161971 −0.0809857 0.996715i \(-0.525807\pi\)
−0.0809857 + 0.996715i \(0.525807\pi\)
\(108\) 0 0
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 3.16228 0.301511
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) −20.0000 −1.86501
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 14.3246 1.31868
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −10.0000 −0.905357
\(123\) 0 0
\(124\) −2.83772 −0.254835
\(125\) 0 0
\(126\) 0 0
\(127\) −16.9737 −1.50617 −0.753085 0.657924i \(-0.771435\pi\)
−0.753085 + 0.657924i \(0.771435\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) 6.32456 0.554700
\(131\) 1.16228 0.101549 0.0507743 0.998710i \(-0.483831\pi\)
0.0507743 + 0.998710i \(0.483831\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −8.32456 −0.719132
\(135\) 0 0
\(136\) −0.837722 −0.0718341
\(137\) −18.0000 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 0 0
\(139\) −11.4868 −0.974300 −0.487150 0.873318i \(-0.661964\pi\)
−0.487150 + 0.873318i \(0.661964\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) −12.6491 −1.05045
\(146\) −13.4868 −1.11618
\(147\) 0 0
\(148\) −4.32456 −0.355476
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −4.64911 −0.378339 −0.189170 0.981944i \(-0.560580\pi\)
−0.189170 + 0.981944i \(0.560580\pi\)
\(152\) 1.16228 0.0942732
\(153\) 0 0
\(154\) 0 0
\(155\) 8.97367 0.720782
\(156\) 0 0
\(157\) −13.4868 −1.07637 −0.538183 0.842828i \(-0.680889\pi\)
−0.538183 + 0.842828i \(0.680889\pi\)
\(158\) 8.32456 0.662266
\(159\) 0 0
\(160\) −3.16228 −0.250000
\(161\) 0 0
\(162\) 0 0
\(163\) 8.64911 0.677451 0.338725 0.940885i \(-0.390004\pi\)
0.338725 + 0.940885i \(0.390004\pi\)
\(164\) 0.837722 0.0654151
\(165\) 0 0
\(166\) −1.16228 −0.0902102
\(167\) −6.32456 −0.489409 −0.244704 0.969598i \(-0.578691\pi\)
−0.244704 + 0.969598i \(0.578691\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 2.64911 0.203178
\(171\) 0 0
\(172\) 6.32456 0.482243
\(173\) −0.324555 −0.0246755 −0.0123377 0.999924i \(-0.503927\pi\)
−0.0123377 + 0.999924i \(0.503927\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) −3.67544 −0.275486
\(179\) −16.3246 −1.22015 −0.610077 0.792342i \(-0.708862\pi\)
−0.610077 + 0.792342i \(0.708862\pi\)
\(180\) 0 0
\(181\) 1.48683 0.110515 0.0552577 0.998472i \(-0.482402\pi\)
0.0552577 + 0.998472i \(0.482402\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.32456 0.466252
\(185\) 13.6754 1.00544
\(186\) 0 0
\(187\) 0.837722 0.0612603
\(188\) 7.48683 0.546033
\(189\) 0 0
\(190\) −3.67544 −0.266645
\(191\) −18.3246 −1.32592 −0.662959 0.748656i \(-0.730700\pi\)
−0.662959 + 0.748656i \(0.730700\pi\)
\(192\) 0 0
\(193\) −14.6491 −1.05447 −0.527233 0.849721i \(-0.676771\pi\)
−0.527233 + 0.849721i \(0.676771\pi\)
\(194\) −14.6491 −1.05174
\(195\) 0 0
\(196\) 0 0
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) −0.513167 −0.0363774 −0.0181887 0.999835i \(-0.505790\pi\)
−0.0181887 + 0.999835i \(0.505790\pi\)
\(200\) 5.00000 0.353553
\(201\) 0 0
\(202\) 6.00000 0.422159
\(203\) 0 0
\(204\) 0 0
\(205\) −2.64911 −0.185022
\(206\) 17.8114 1.24098
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) −1.16228 −0.0803964
\(210\) 0 0
\(211\) −5.67544 −0.390714 −0.195357 0.980732i \(-0.562587\pi\)
−0.195357 + 0.980732i \(0.562587\pi\)
\(212\) −8.32456 −0.571733
\(213\) 0 0
\(214\) −1.67544 −0.114531
\(215\) −20.0000 −1.36399
\(216\) 0 0
\(217\) 0 0
\(218\) −8.00000 −0.541828
\(219\) 0 0
\(220\) 3.16228 0.213201
\(221\) 1.67544 0.112703
\(222\) 0 0
\(223\) −7.48683 −0.501355 −0.250678 0.968071i \(-0.580653\pi\)
−0.250678 + 0.968071i \(0.580653\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) 11.4868 0.762408 0.381204 0.924491i \(-0.375510\pi\)
0.381204 + 0.924491i \(0.375510\pi\)
\(228\) 0 0
\(229\) 6.51317 0.430402 0.215201 0.976570i \(-0.430959\pi\)
0.215201 + 0.976570i \(0.430959\pi\)
\(230\) −20.0000 −1.31876
\(231\) 0 0
\(232\) 4.00000 0.262613
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −23.6754 −1.54442
\(236\) 14.3246 0.932449
\(237\) 0 0
\(238\) 0 0
\(239\) −12.6491 −0.818203 −0.409101 0.912489i \(-0.634158\pi\)
−0.409101 + 0.912489i \(0.634158\pi\)
\(240\) 0 0
\(241\) −7.16228 −0.461363 −0.230681 0.973029i \(-0.574096\pi\)
−0.230681 + 0.973029i \(0.574096\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) −2.32456 −0.147908
\(248\) −2.83772 −0.180196
\(249\) 0 0
\(250\) 0 0
\(251\) 26.3246 1.66159 0.830796 0.556578i \(-0.187886\pi\)
0.830796 + 0.556578i \(0.187886\pi\)
\(252\) 0 0
\(253\) −6.32456 −0.397621
\(254\) −16.9737 −1.06502
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −20.3246 −1.26781 −0.633905 0.773411i \(-0.718549\pi\)
−0.633905 + 0.773411i \(0.718549\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6.32456 0.392232
\(261\) 0 0
\(262\) 1.16228 0.0718058
\(263\) −12.9737 −0.799991 −0.399995 0.916517i \(-0.630988\pi\)
−0.399995 + 0.916517i \(0.630988\pi\)
\(264\) 0 0
\(265\) 26.3246 1.61710
\(266\) 0 0
\(267\) 0 0
\(268\) −8.32456 −0.508503
\(269\) −4.83772 −0.294961 −0.147481 0.989065i \(-0.547116\pi\)
−0.147481 + 0.989065i \(0.547116\pi\)
\(270\) 0 0
\(271\) −6.32456 −0.384189 −0.192095 0.981376i \(-0.561528\pi\)
−0.192095 + 0.981376i \(0.561528\pi\)
\(272\) −0.837722 −0.0507944
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) −5.00000 −0.301511
\(276\) 0 0
\(277\) −24.0000 −1.44202 −0.721010 0.692925i \(-0.756322\pi\)
−0.721010 + 0.692925i \(0.756322\pi\)
\(278\) −11.4868 −0.688934
\(279\) 0 0
\(280\) 0 0
\(281\) −2.64911 −0.158033 −0.0790163 0.996873i \(-0.525178\pi\)
−0.0790163 + 0.996873i \(0.525178\pi\)
\(282\) 0 0
\(283\) −3.48683 −0.207271 −0.103635 0.994615i \(-0.533047\pi\)
−0.103635 + 0.994615i \(0.533047\pi\)
\(284\) −8.00000 −0.474713
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 0 0
\(288\) 0 0
\(289\) −16.2982 −0.958719
\(290\) −12.6491 −0.742781
\(291\) 0 0
\(292\) −13.4868 −0.789257
\(293\) 12.9737 0.757930 0.378965 0.925411i \(-0.376280\pi\)
0.378965 + 0.925411i \(0.376280\pi\)
\(294\) 0 0
\(295\) −45.2982 −2.63736
\(296\) −4.32456 −0.251360
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) −12.6491 −0.731517
\(300\) 0 0
\(301\) 0 0
\(302\) −4.64911 −0.267526
\(303\) 0 0
\(304\) 1.16228 0.0666612
\(305\) 31.6228 1.81071
\(306\) 0 0
\(307\) 14.8377 0.846834 0.423417 0.905935i \(-0.360831\pi\)
0.423417 + 0.905935i \(0.360831\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 8.97367 0.509670
\(311\) −1.81139 −0.102714 −0.0513572 0.998680i \(-0.516355\pi\)
−0.0513572 + 0.998680i \(0.516355\pi\)
\(312\) 0 0
\(313\) −7.67544 −0.433842 −0.216921 0.976189i \(-0.569601\pi\)
−0.216921 + 0.976189i \(0.569601\pi\)
\(314\) −13.4868 −0.761106
\(315\) 0 0
\(316\) 8.32456 0.468293
\(317\) −24.9737 −1.40266 −0.701330 0.712836i \(-0.747410\pi\)
−0.701330 + 0.712836i \(0.747410\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) −3.16228 −0.176777
\(321\) 0 0
\(322\) 0 0
\(323\) −0.973666 −0.0541762
\(324\) 0 0
\(325\) −10.0000 −0.554700
\(326\) 8.64911 0.479030
\(327\) 0 0
\(328\) 0.837722 0.0462555
\(329\) 0 0
\(330\) 0 0
\(331\) 28.9737 1.59254 0.796268 0.604944i \(-0.206804\pi\)
0.796268 + 0.604944i \(0.206804\pi\)
\(332\) −1.16228 −0.0637883
\(333\) 0 0
\(334\) −6.32456 −0.346064
\(335\) 26.3246 1.43826
\(336\) 0 0
\(337\) −32.3246 −1.76083 −0.880415 0.474203i \(-0.842736\pi\)
−0.880415 + 0.474203i \(0.842736\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 2.64911 0.143668
\(341\) 2.83772 0.153671
\(342\) 0 0
\(343\) 0 0
\(344\) 6.32456 0.340997
\(345\) 0 0
\(346\) −0.324555 −0.0174482
\(347\) −1.67544 −0.0899426 −0.0449713 0.998988i \(-0.514320\pi\)
−0.0449713 + 0.998988i \(0.514320\pi\)
\(348\) 0 0
\(349\) 28.9737 1.55092 0.775462 0.631394i \(-0.217517\pi\)
0.775462 + 0.631394i \(0.217517\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −20.3246 −1.08177 −0.540883 0.841098i \(-0.681910\pi\)
−0.540883 + 0.841098i \(0.681910\pi\)
\(354\) 0 0
\(355\) 25.2982 1.34269
\(356\) −3.67544 −0.194798
\(357\) 0 0
\(358\) −16.3246 −0.862780
\(359\) 16.3246 0.861577 0.430789 0.902453i \(-0.358235\pi\)
0.430789 + 0.902453i \(0.358235\pi\)
\(360\) 0 0
\(361\) −17.6491 −0.928901
\(362\) 1.48683 0.0781462
\(363\) 0 0
\(364\) 0 0
\(365\) 42.6491 2.23236
\(366\) 0 0
\(367\) −5.16228 −0.269469 −0.134734 0.990882i \(-0.543018\pi\)
−0.134734 + 0.990882i \(0.543018\pi\)
\(368\) 6.32456 0.329690
\(369\) 0 0
\(370\) 13.6754 0.710953
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0.837722 0.0433176
\(375\) 0 0
\(376\) 7.48683 0.386104
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) 37.2982 1.91588 0.957940 0.286967i \(-0.0926470\pi\)
0.957940 + 0.286967i \(0.0926470\pi\)
\(380\) −3.67544 −0.188546
\(381\) 0 0
\(382\) −18.3246 −0.937566
\(383\) 2.83772 0.145001 0.0725004 0.997368i \(-0.476902\pi\)
0.0725004 + 0.997368i \(0.476902\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.6491 −0.745620
\(387\) 0 0
\(388\) −14.6491 −0.743696
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) −5.29822 −0.267943
\(392\) 0 0
\(393\) 0 0
\(394\) 24.0000 1.20910
\(395\) −26.3246 −1.32453
\(396\) 0 0
\(397\) −2.51317 −0.126132 −0.0630661 0.998009i \(-0.520088\pi\)
−0.0630661 + 0.998009i \(0.520088\pi\)
\(398\) −0.513167 −0.0257227
\(399\) 0 0
\(400\) 5.00000 0.250000
\(401\) −27.2982 −1.36321 −0.681604 0.731721i \(-0.738717\pi\)
−0.681604 + 0.731721i \(0.738717\pi\)
\(402\) 0 0
\(403\) 5.67544 0.282714
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) 4.32456 0.214360
\(408\) 0 0
\(409\) −20.8377 −1.03036 −0.515180 0.857082i \(-0.672275\pi\)
−0.515180 + 0.857082i \(0.672275\pi\)
\(410\) −2.64911 −0.130830
\(411\) 0 0
\(412\) 17.8114 0.877504
\(413\) 0 0
\(414\) 0 0
\(415\) 3.67544 0.180420
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) −1.16228 −0.0568489
\(419\) −8.64911 −0.422537 −0.211268 0.977428i \(-0.567759\pi\)
−0.211268 + 0.977428i \(0.567759\pi\)
\(420\) 0 0
\(421\) 35.9473 1.75197 0.875983 0.482342i \(-0.160214\pi\)
0.875983 + 0.482342i \(0.160214\pi\)
\(422\) −5.67544 −0.276276
\(423\) 0 0
\(424\) −8.32456 −0.404276
\(425\) −4.18861 −0.203178
\(426\) 0 0
\(427\) 0 0
\(428\) −1.67544 −0.0809857
\(429\) 0 0
\(430\) −20.0000 −0.964486
\(431\) 28.9737 1.39561 0.697806 0.716287i \(-0.254160\pi\)
0.697806 + 0.716287i \(0.254160\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.00000 −0.383131
\(437\) 7.35089 0.351641
\(438\) 0 0
\(439\) −6.32456 −0.301855 −0.150927 0.988545i \(-0.548226\pi\)
−0.150927 + 0.988545i \(0.548226\pi\)
\(440\) 3.16228 0.150756
\(441\) 0 0
\(442\) 1.67544 0.0796928
\(443\) −8.32456 −0.395512 −0.197756 0.980251i \(-0.563365\pi\)
−0.197756 + 0.980251i \(0.563365\pi\)
\(444\) 0 0
\(445\) 11.6228 0.550972
\(446\) −7.48683 −0.354512
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −0.837722 −0.0394468
\(452\) 2.00000 0.0940721
\(453\) 0 0
\(454\) 11.4868 0.539104
\(455\) 0 0
\(456\) 0 0
\(457\) 42.6491 1.99504 0.997521 0.0703747i \(-0.0224195\pi\)
0.997521 + 0.0703747i \(0.0224195\pi\)
\(458\) 6.51317 0.304340
\(459\) 0 0
\(460\) −20.0000 −0.932505
\(461\) −27.2982 −1.27140 −0.635702 0.771934i \(-0.719289\pi\)
−0.635702 + 0.771934i \(0.719289\pi\)
\(462\) 0 0
\(463\) −3.35089 −0.155729 −0.0778645 0.996964i \(-0.524810\pi\)
−0.0778645 + 0.996964i \(0.524810\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) 6.00000 0.277945
\(467\) −33.2982 −1.54086 −0.770429 0.637526i \(-0.779958\pi\)
−0.770429 + 0.637526i \(0.779958\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −23.6754 −1.09207
\(471\) 0 0
\(472\) 14.3246 0.659341
\(473\) −6.32456 −0.290803
\(474\) 0 0
\(475\) 5.81139 0.266645
\(476\) 0 0
\(477\) 0 0
\(478\) −12.6491 −0.578557
\(479\) −29.2982 −1.33867 −0.669335 0.742961i \(-0.733421\pi\)
−0.669335 + 0.742961i \(0.733421\pi\)
\(480\) 0 0
\(481\) 8.64911 0.394365
\(482\) −7.16228 −0.326233
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 46.3246 2.10349
\(486\) 0 0
\(487\) −1.67544 −0.0759216 −0.0379608 0.999279i \(-0.512086\pi\)
−0.0379608 + 0.999279i \(0.512086\pi\)
\(488\) −10.0000 −0.452679
\(489\) 0 0
\(490\) 0 0
\(491\) −16.6491 −0.751364 −0.375682 0.926749i \(-0.622591\pi\)
−0.375682 + 0.926749i \(0.622591\pi\)
\(492\) 0 0
\(493\) −3.35089 −0.150916
\(494\) −2.32456 −0.104587
\(495\) 0 0
\(496\) −2.83772 −0.127417
\(497\) 0 0
\(498\) 0 0
\(499\) 20.9737 0.938910 0.469455 0.882956i \(-0.344450\pi\)
0.469455 + 0.882956i \(0.344450\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 26.3246 1.17492
\(503\) 42.9737 1.91610 0.958051 0.286599i \(-0.0925248\pi\)
0.958051 + 0.286599i \(0.0925248\pi\)
\(504\) 0 0
\(505\) −18.9737 −0.844317
\(506\) −6.32456 −0.281161
\(507\) 0 0
\(508\) −16.9737 −0.753085
\(509\) −8.18861 −0.362954 −0.181477 0.983395i \(-0.558088\pi\)
−0.181477 + 0.983395i \(0.558088\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −20.3246 −0.896478
\(515\) −56.3246 −2.48196
\(516\) 0 0
\(517\) −7.48683 −0.329271
\(518\) 0 0
\(519\) 0 0
\(520\) 6.32456 0.277350
\(521\) −7.67544 −0.336267 −0.168134 0.985764i \(-0.553774\pi\)
−0.168134 + 0.985764i \(0.553774\pi\)
\(522\) 0 0
\(523\) −40.1359 −1.75502 −0.877511 0.479556i \(-0.840798\pi\)
−0.877511 + 0.479556i \(0.840798\pi\)
\(524\) 1.16228 0.0507743
\(525\) 0 0
\(526\) −12.9737 −0.565679
\(527\) 2.37722 0.103553
\(528\) 0 0
\(529\) 17.0000 0.739130
\(530\) 26.3246 1.14347
\(531\) 0 0
\(532\) 0 0
\(533\) −1.67544 −0.0725716
\(534\) 0 0
\(535\) 5.29822 0.229062
\(536\) −8.32456 −0.359566
\(537\) 0 0
\(538\) −4.83772 −0.208569
\(539\) 0 0
\(540\) 0 0
\(541\) −19.2982 −0.829695 −0.414848 0.909891i \(-0.636165\pi\)
−0.414848 + 0.909891i \(0.636165\pi\)
\(542\) −6.32456 −0.271663
\(543\) 0 0
\(544\) −0.837722 −0.0359170
\(545\) 25.2982 1.08366
\(546\) 0 0
\(547\) 9.29822 0.397563 0.198782 0.980044i \(-0.436302\pi\)
0.198782 + 0.980044i \(0.436302\pi\)
\(548\) −18.0000 −0.768922
\(549\) 0 0
\(550\) −5.00000 −0.213201
\(551\) 4.64911 0.198059
\(552\) 0 0
\(553\) 0 0
\(554\) −24.0000 −1.01966
\(555\) 0 0
\(556\) −11.4868 −0.487150
\(557\) 17.2982 0.732949 0.366475 0.930428i \(-0.380565\pi\)
0.366475 + 0.930428i \(0.380565\pi\)
\(558\) 0 0
\(559\) −12.6491 −0.535000
\(560\) 0 0
\(561\) 0 0
\(562\) −2.64911 −0.111746
\(563\) 24.1359 1.01721 0.508604 0.861000i \(-0.330162\pi\)
0.508604 + 0.861000i \(0.330162\pi\)
\(564\) 0 0
\(565\) −6.32456 −0.266076
\(566\) −3.48683 −0.146563
\(567\) 0 0
\(568\) −8.00000 −0.335673
\(569\) 1.35089 0.0566322 0.0283161 0.999599i \(-0.490985\pi\)
0.0283161 + 0.999599i \(0.490985\pi\)
\(570\) 0 0
\(571\) −12.6491 −0.529349 −0.264674 0.964338i \(-0.585264\pi\)
−0.264674 + 0.964338i \(0.585264\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) 0 0
\(575\) 31.6228 1.31876
\(576\) 0 0
\(577\) −28.3246 −1.17917 −0.589583 0.807708i \(-0.700708\pi\)
−0.589583 + 0.807708i \(0.700708\pi\)
\(578\) −16.2982 −0.677917
\(579\) 0 0
\(580\) −12.6491 −0.525226
\(581\) 0 0
\(582\) 0 0
\(583\) 8.32456 0.344768
\(584\) −13.4868 −0.558089
\(585\) 0 0
\(586\) 12.9737 0.535937
\(587\) 30.9737 1.27842 0.639210 0.769032i \(-0.279261\pi\)
0.639210 + 0.769032i \(0.279261\pi\)
\(588\) 0 0
\(589\) −3.29822 −0.135901
\(590\) −45.2982 −1.86490
\(591\) 0 0
\(592\) −4.32456 −0.177738
\(593\) −40.4605 −1.66151 −0.830757 0.556636i \(-0.812092\pi\)
−0.830757 + 0.556636i \(0.812092\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.00000 0.0819232
\(597\) 0 0
\(598\) −12.6491 −0.517261
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −12.8377 −0.523662 −0.261831 0.965114i \(-0.584326\pi\)
−0.261831 + 0.965114i \(0.584326\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −4.64911 −0.189170
\(605\) −3.16228 −0.128565
\(606\) 0 0
\(607\) 20.6491 0.838122 0.419061 0.907958i \(-0.362359\pi\)
0.419061 + 0.907958i \(0.362359\pi\)
\(608\) 1.16228 0.0471366
\(609\) 0 0
\(610\) 31.6228 1.28037
\(611\) −14.9737 −0.605770
\(612\) 0 0
\(613\) 19.2982 0.779448 0.389724 0.920932i \(-0.372570\pi\)
0.389724 + 0.920932i \(0.372570\pi\)
\(614\) 14.8377 0.598802
\(615\) 0 0
\(616\) 0 0
\(617\) −4.64911 −0.187166 −0.0935831 0.995611i \(-0.529832\pi\)
−0.0935831 + 0.995611i \(0.529832\pi\)
\(618\) 0 0
\(619\) −48.6491 −1.95537 −0.977686 0.210070i \(-0.932631\pi\)
−0.977686 + 0.210070i \(0.932631\pi\)
\(620\) 8.97367 0.360391
\(621\) 0 0
\(622\) −1.81139 −0.0726301
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) −7.67544 −0.306772
\(627\) 0 0
\(628\) −13.4868 −0.538183
\(629\) 3.62278 0.144450
\(630\) 0 0
\(631\) 35.6228 1.41812 0.709060 0.705148i \(-0.249119\pi\)
0.709060 + 0.705148i \(0.249119\pi\)
\(632\) 8.32456 0.331133
\(633\) 0 0
\(634\) −24.9737 −0.991831
\(635\) 53.6754 2.13005
\(636\) 0 0
\(637\) 0 0
\(638\) −4.00000 −0.158362
\(639\) 0 0
\(640\) −3.16228 −0.125000
\(641\) −37.9473 −1.49883 −0.749415 0.662101i \(-0.769665\pi\)
−0.749415 + 0.662101i \(0.769665\pi\)
\(642\) 0 0
\(643\) 2.97367 0.117270 0.0586350 0.998279i \(-0.481325\pi\)
0.0586350 + 0.998279i \(0.481325\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.973666 −0.0383084
\(647\) 15.4868 0.608850 0.304425 0.952536i \(-0.401536\pi\)
0.304425 + 0.952536i \(0.401536\pi\)
\(648\) 0 0
\(649\) −14.3246 −0.562288
\(650\) −10.0000 −0.392232
\(651\) 0 0
\(652\) 8.64911 0.338725
\(653\) 7.29822 0.285601 0.142801 0.989751i \(-0.454389\pi\)
0.142801 + 0.989751i \(0.454389\pi\)
\(654\) 0 0
\(655\) −3.67544 −0.143612
\(656\) 0.837722 0.0327076
\(657\) 0 0
\(658\) 0 0
\(659\) −14.9737 −0.583291 −0.291646 0.956526i \(-0.594203\pi\)
−0.291646 + 0.956526i \(0.594203\pi\)
\(660\) 0 0
\(661\) −22.1359 −0.860988 −0.430494 0.902593i \(-0.641661\pi\)
−0.430494 + 0.902593i \(0.641661\pi\)
\(662\) 28.9737 1.12609
\(663\) 0 0
\(664\) −1.16228 −0.0451051
\(665\) 0 0
\(666\) 0 0
\(667\) 25.2982 0.979551
\(668\) −6.32456 −0.244704
\(669\) 0 0
\(670\) 26.3246 1.01701
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) −49.6228 −1.91282 −0.956409 0.292031i \(-0.905669\pi\)
−0.956409 + 0.292031i \(0.905669\pi\)
\(674\) −32.3246 −1.24510
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −4.32456 −0.166206 −0.0831031 0.996541i \(-0.526483\pi\)
−0.0831031 + 0.996541i \(0.526483\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 2.64911 0.101589
\(681\) 0 0
\(682\) 2.83772 0.108662
\(683\) 12.9737 0.496424 0.248212 0.968706i \(-0.420157\pi\)
0.248212 + 0.968706i \(0.420157\pi\)
\(684\) 0 0
\(685\) 56.9210 2.17484
\(686\) 0 0
\(687\) 0 0
\(688\) 6.32456 0.241121
\(689\) 16.6491 0.634281
\(690\) 0 0
\(691\) −30.9737 −1.17829 −0.589147 0.808026i \(-0.700536\pi\)
−0.589147 + 0.808026i \(0.700536\pi\)
\(692\) −0.324555 −0.0123377
\(693\) 0 0
\(694\) −1.67544 −0.0635990
\(695\) 36.3246 1.37787
\(696\) 0 0
\(697\) −0.701779 −0.0265818
\(698\) 28.9737 1.09667
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) −5.02633 −0.189572
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −20.3246 −0.764925
\(707\) 0 0
\(708\) 0 0
\(709\) 27.6754 1.03937 0.519687 0.854357i \(-0.326049\pi\)
0.519687 + 0.854357i \(0.326049\pi\)
\(710\) 25.2982 0.949425
\(711\) 0 0
\(712\) −3.67544 −0.137743
\(713\) −17.9473 −0.672133
\(714\) 0 0
\(715\) −6.32456 −0.236525
\(716\) −16.3246 −0.610077
\(717\) 0 0
\(718\) 16.3246 0.609227
\(719\) −29.1623 −1.08757 −0.543785 0.839225i \(-0.683009\pi\)
−0.543785 + 0.839225i \(0.683009\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −17.6491 −0.656832
\(723\) 0 0
\(724\) 1.48683 0.0552577
\(725\) 20.0000 0.742781
\(726\) 0 0
\(727\) −4.13594 −0.153394 −0.0766968 0.997054i \(-0.524437\pi\)
−0.0766968 + 0.997054i \(0.524437\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 42.6491 1.57851
\(731\) −5.29822 −0.195962
\(732\) 0 0
\(733\) −30.6491 −1.13205 −0.566025 0.824388i \(-0.691520\pi\)
−0.566025 + 0.824388i \(0.691520\pi\)
\(734\) −5.16228 −0.190543
\(735\) 0 0
\(736\) 6.32456 0.233126
\(737\) 8.32456 0.306639
\(738\) 0 0
\(739\) 28.6491 1.05387 0.526937 0.849904i \(-0.323340\pi\)
0.526937 + 0.849904i \(0.323340\pi\)
\(740\) 13.6754 0.502719
\(741\) 0 0
\(742\) 0 0
\(743\) 28.6491 1.05103 0.525517 0.850783i \(-0.323872\pi\)
0.525517 + 0.850783i \(0.323872\pi\)
\(744\) 0 0
\(745\) −6.32456 −0.231714
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 0.837722 0.0306302
\(749\) 0 0
\(750\) 0 0
\(751\) 18.3246 0.668673 0.334336 0.942454i \(-0.391488\pi\)
0.334336 + 0.942454i \(0.391488\pi\)
\(752\) 7.48683 0.273017
\(753\) 0 0
\(754\) −8.00000 −0.291343
\(755\) 14.7018 0.535053
\(756\) 0 0
\(757\) −33.6228 −1.22204 −0.611020 0.791615i \(-0.709241\pi\)
−0.611020 + 0.791615i \(0.709241\pi\)
\(758\) 37.2982 1.35473
\(759\) 0 0
\(760\) −3.67544 −0.133322
\(761\) −9.48683 −0.343897 −0.171949 0.985106i \(-0.555006\pi\)
−0.171949 + 0.985106i \(0.555006\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −18.3246 −0.662959
\(765\) 0 0
\(766\) 2.83772 0.102531
\(767\) −28.6491 −1.03446
\(768\) 0 0
\(769\) −6.51317 −0.234871 −0.117435 0.993081i \(-0.537467\pi\)
−0.117435 + 0.993081i \(0.537467\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −14.6491 −0.527233
\(773\) 50.1359 1.80326 0.901632 0.432503i \(-0.142370\pi\)
0.901632 + 0.432503i \(0.142370\pi\)
\(774\) 0 0
\(775\) −14.1886 −0.509670
\(776\) −14.6491 −0.525872
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 0.973666 0.0348852
\(780\) 0 0
\(781\) 8.00000 0.286263
\(782\) −5.29822 −0.189464
\(783\) 0 0
\(784\) 0 0
\(785\) 42.6491 1.52221
\(786\) 0 0
\(787\) 50.4605 1.79872 0.899361 0.437206i \(-0.144032\pi\)
0.899361 + 0.437206i \(0.144032\pi\)
\(788\) 24.0000 0.854965
\(789\) 0 0
\(790\) −26.3246 −0.936586
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) −2.51317 −0.0891890
\(795\) 0 0
\(796\) −0.513167 −0.0181887
\(797\) −15.1623 −0.537075 −0.268538 0.963269i \(-0.586540\pi\)
−0.268538 + 0.963269i \(0.586540\pi\)
\(798\) 0 0
\(799\) −6.27189 −0.221883
\(800\) 5.00000 0.176777
\(801\) 0 0
\(802\) −27.2982 −0.963934
\(803\) 13.4868 0.475940
\(804\) 0 0
\(805\) 0 0
\(806\) 5.67544 0.199909
\(807\) 0 0
\(808\) 6.00000 0.211079
\(809\) 56.3246 1.98027 0.990133 0.140131i \(-0.0447524\pi\)
0.990133 + 0.140131i \(0.0447524\pi\)
\(810\) 0 0
\(811\) −11.4868 −0.403357 −0.201679 0.979452i \(-0.564640\pi\)
−0.201679 + 0.979452i \(0.564640\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.32456 0.151576
\(815\) −27.3509 −0.958060
\(816\) 0 0
\(817\) 7.35089 0.257175
\(818\) −20.8377 −0.728574
\(819\) 0 0
\(820\) −2.64911 −0.0925110
\(821\) 48.5964 1.69603 0.848014 0.529974i \(-0.177798\pi\)
0.848014 + 0.529974i \(0.177798\pi\)
\(822\) 0 0
\(823\) −46.9737 −1.63740 −0.818700 0.574222i \(-0.805305\pi\)
−0.818700 + 0.574222i \(0.805305\pi\)
\(824\) 17.8114 0.620489
\(825\) 0 0
\(826\) 0 0
\(827\) −41.9473 −1.45865 −0.729326 0.684167i \(-0.760166\pi\)
−0.729326 + 0.684167i \(0.760166\pi\)
\(828\) 0 0
\(829\) −44.4605 −1.54418 −0.772088 0.635515i \(-0.780788\pi\)
−0.772088 + 0.635515i \(0.780788\pi\)
\(830\) 3.67544 0.127577
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) 0 0
\(834\) 0 0
\(835\) 20.0000 0.692129
\(836\) −1.16228 −0.0401982
\(837\) 0 0
\(838\) −8.64911 −0.298779
\(839\) −22.4605 −0.775423 −0.387711 0.921781i \(-0.626734\pi\)
−0.387711 + 0.921781i \(0.626734\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 35.9473 1.23883
\(843\) 0 0
\(844\) −5.67544 −0.195357
\(845\) 28.4605 0.979071
\(846\) 0 0
\(847\) 0 0
\(848\) −8.32456 −0.285866
\(849\) 0 0
\(850\) −4.18861 −0.143668
\(851\) −27.3509 −0.937576
\(852\) 0 0
\(853\) −18.6491 −0.638533 −0.319267 0.947665i \(-0.603437\pi\)
−0.319267 + 0.947665i \(0.603437\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.67544 −0.0572655
\(857\) −55.8114 −1.90648 −0.953240 0.302213i \(-0.902275\pi\)
−0.953240 + 0.302213i \(0.902275\pi\)
\(858\) 0 0
\(859\) 17.6754 0.603078 0.301539 0.953454i \(-0.402500\pi\)
0.301539 + 0.953454i \(0.402500\pi\)
\(860\) −20.0000 −0.681994
\(861\) 0 0
\(862\) 28.9737 0.986847
\(863\) 30.3246 1.03226 0.516130 0.856510i \(-0.327372\pi\)
0.516130 + 0.856510i \(0.327372\pi\)
\(864\) 0 0
\(865\) 1.02633 0.0348964
\(866\) 34.0000 1.15537
\(867\) 0 0
\(868\) 0 0
\(869\) −8.32456 −0.282391
\(870\) 0 0
\(871\) 16.6491 0.564134
\(872\) −8.00000 −0.270914
\(873\) 0 0
\(874\) 7.35089 0.248648
\(875\) 0 0
\(876\) 0 0
\(877\) −48.6491 −1.64276 −0.821382 0.570379i \(-0.806796\pi\)
−0.821382 + 0.570379i \(0.806796\pi\)
\(878\) −6.32456 −0.213443
\(879\) 0 0
\(880\) 3.16228 0.106600
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 37.2982 1.25519 0.627593 0.778542i \(-0.284040\pi\)
0.627593 + 0.778542i \(0.284040\pi\)
\(884\) 1.67544 0.0563513
\(885\) 0 0
\(886\) −8.32456 −0.279669
\(887\) −16.0000 −0.537227 −0.268614 0.963248i \(-0.586566\pi\)
−0.268614 + 0.963248i \(0.586566\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 11.6228 0.389596
\(891\) 0 0
\(892\) −7.48683 −0.250678
\(893\) 8.70178 0.291194
\(894\) 0 0
\(895\) 51.6228 1.72556
\(896\) 0 0
\(897\) 0 0
\(898\) −6.00000 −0.200223
\(899\) −11.3509 −0.378573
\(900\) 0 0
\(901\) 6.97367 0.232326
\(902\) −0.837722 −0.0278931
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) −4.70178 −0.156292
\(906\) 0 0
\(907\) −9.62278 −0.319519 −0.159760 0.987156i \(-0.551072\pi\)
−0.159760 + 0.987156i \(0.551072\pi\)
\(908\) 11.4868 0.381204
\(909\) 0 0
\(910\) 0 0
\(911\) −9.67544 −0.320562 −0.160281 0.987071i \(-0.551240\pi\)
−0.160281 + 0.987071i \(0.551240\pi\)
\(912\) 0 0
\(913\) 1.16228 0.0384658
\(914\) 42.6491 1.41071
\(915\) 0 0
\(916\) 6.51317 0.215201
\(917\) 0 0
\(918\) 0 0
\(919\) 33.2982 1.09841 0.549203 0.835689i \(-0.314931\pi\)
0.549203 + 0.835689i \(0.314931\pi\)
\(920\) −20.0000 −0.659380
\(921\) 0 0
\(922\) −27.2982 −0.899019
\(923\) 16.0000 0.526646
\(924\) 0 0
\(925\) −21.6228 −0.710953
\(926\) −3.35089 −0.110117
\(927\) 0 0
\(928\) 4.00000 0.131306
\(929\) 29.6228 0.971892 0.485946 0.873989i \(-0.338475\pi\)
0.485946 + 0.873989i \(0.338475\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.00000 0.196537
\(933\) 0 0
\(934\) −33.2982 −1.08955
\(935\) −2.64911 −0.0866352
\(936\) 0 0
\(937\) −2.13594 −0.0697782 −0.0348891 0.999391i \(-0.511108\pi\)
−0.0348891 + 0.999391i \(0.511108\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −23.6754 −0.772208
\(941\) 40.3246 1.31454 0.657271 0.753654i \(-0.271711\pi\)
0.657271 + 0.753654i \(0.271711\pi\)
\(942\) 0 0
\(943\) 5.29822 0.172534
\(944\) 14.3246 0.466225
\(945\) 0 0
\(946\) −6.32456 −0.205629
\(947\) 53.2982 1.73196 0.865980 0.500079i \(-0.166696\pi\)
0.865980 + 0.500079i \(0.166696\pi\)
\(948\) 0 0
\(949\) 26.9737 0.875602
\(950\) 5.81139 0.188546
\(951\) 0 0
\(952\) 0 0
\(953\) 32.9737 1.06812 0.534061 0.845446i \(-0.320665\pi\)
0.534061 + 0.845446i \(0.320665\pi\)
\(954\) 0 0
\(955\) 57.9473 1.87513
\(956\) −12.6491 −0.409101
\(957\) 0 0
\(958\) −29.2982 −0.946583
\(959\) 0 0
\(960\) 0 0
\(961\) −22.9473 −0.740237
\(962\) 8.64911 0.278859
\(963\) 0 0
\(964\) −7.16228 −0.230681
\(965\) 46.3246 1.49124
\(966\) 0 0
\(967\) −6.70178 −0.215515 −0.107757 0.994177i \(-0.534367\pi\)
−0.107757 + 0.994177i \(0.534367\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) 46.3246 1.48739
\(971\) 32.6491 1.04776 0.523880 0.851792i \(-0.324484\pi\)
0.523880 + 0.851792i \(0.324484\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.67544 −0.0536847
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 0.649111 0.0207669 0.0103834 0.999946i \(-0.496695\pi\)
0.0103834 + 0.999946i \(0.496695\pi\)
\(978\) 0 0
\(979\) 3.67544 0.117468
\(980\) 0 0
\(981\) 0 0
\(982\) −16.6491 −0.531294
\(983\) −3.86406 −0.123244 −0.0616221 0.998100i \(-0.519627\pi\)
−0.0616221 + 0.998100i \(0.519627\pi\)
\(984\) 0 0
\(985\) −75.8947 −2.41821
\(986\) −3.35089 −0.106714
\(987\) 0 0
\(988\) −2.32456 −0.0739540
\(989\) 40.0000 1.27193
\(990\) 0 0
\(991\) −10.7018 −0.339953 −0.169977 0.985448i \(-0.554369\pi\)
−0.169977 + 0.985448i \(0.554369\pi\)
\(992\) −2.83772 −0.0900978
\(993\) 0 0
\(994\) 0 0
\(995\) 1.62278 0.0514455
\(996\) 0 0
\(997\) −11.0263 −0.349208 −0.174604 0.984639i \(-0.555864\pi\)
−0.174604 + 0.984639i \(0.555864\pi\)
\(998\) 20.9737 0.663910
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.dc.1.1 2
3.2 odd 2 9702.2.a.cn.1.2 2
7.6 odd 2 1386.2.a.o.1.2 yes 2
21.20 even 2 1386.2.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1386.2.a.n.1.1 2 21.20 even 2
1386.2.a.o.1.2 yes 2 7.6 odd 2
9702.2.a.cn.1.2 2 3.2 odd 2
9702.2.a.dc.1.1 2 1.1 even 1 trivial