Properties

Label 9702.2.a.cy.1.2
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3234)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{5} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{5} -1.00000 q^{8} -2.00000 q^{10} +1.00000 q^{11} -2.58579 q^{13} +1.00000 q^{16} +2.00000 q^{17} -6.24264 q^{19} +2.00000 q^{20} -1.00000 q^{22} -0.828427 q^{23} -1.00000 q^{25} +2.58579 q^{26} +1.65685 q^{29} +2.24264 q^{31} -1.00000 q^{32} -2.00000 q^{34} -4.82843 q^{37} +6.24264 q^{38} -2.00000 q^{40} +0.343146 q^{41} +0.828427 q^{43} +1.00000 q^{44} +0.828427 q^{46} +11.8995 q^{47} +1.00000 q^{50} -2.58579 q^{52} -6.48528 q^{53} +2.00000 q^{55} -1.65685 q^{58} +1.17157 q^{59} -5.41421 q^{61} -2.24264 q^{62} +1.00000 q^{64} -5.17157 q^{65} -6.82843 q^{67} +2.00000 q^{68} +5.65685 q^{71} -0.343146 q^{73} +4.82843 q^{74} -6.24264 q^{76} +0.485281 q^{79} +2.00000 q^{80} -0.343146 q^{82} -9.07107 q^{83} +4.00000 q^{85} -0.828427 q^{86} -1.00000 q^{88} +12.2426 q^{89} -0.828427 q^{92} -11.8995 q^{94} -12.4853 q^{95} -9.89949 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 4 q^{5} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} + 4 q^{5} - 2 q^{8} - 4 q^{10} + 2 q^{11} - 8 q^{13} + 2 q^{16} + 4 q^{17} - 4 q^{19} + 4 q^{20} - 2 q^{22} + 4 q^{23} - 2 q^{25} + 8 q^{26} - 8 q^{29} - 4 q^{31} - 2 q^{32} - 4 q^{34} - 4 q^{37} + 4 q^{38} - 4 q^{40} + 12 q^{41} - 4 q^{43} + 2 q^{44} - 4 q^{46} + 4 q^{47} + 2 q^{50} - 8 q^{52} + 4 q^{53} + 4 q^{55} + 8 q^{58} + 8 q^{59} - 8 q^{61} + 4 q^{62} + 2 q^{64} - 16 q^{65} - 8 q^{67} + 4 q^{68} - 12 q^{73} + 4 q^{74} - 4 q^{76} - 16 q^{79} + 4 q^{80} - 12 q^{82} - 4 q^{83} + 8 q^{85} + 4 q^{86} - 2 q^{88} + 16 q^{89} + 4 q^{92} - 4 q^{94} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.00000 −0.632456
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −2.58579 −0.717168 −0.358584 0.933497i \(-0.616740\pi\)
−0.358584 + 0.933497i \(0.616740\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −6.24264 −1.43216 −0.716080 0.698018i \(-0.754065\pi\)
−0.716080 + 0.698018i \(0.754065\pi\)
\(20\) 2.00000 0.447214
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −0.828427 −0.172739 −0.0863695 0.996263i \(-0.527527\pi\)
−0.0863695 + 0.996263i \(0.527527\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 2.58579 0.507114
\(27\) 0 0
\(28\) 0 0
\(29\) 1.65685 0.307670 0.153835 0.988097i \(-0.450838\pi\)
0.153835 + 0.988097i \(0.450838\pi\)
\(30\) 0 0
\(31\) 2.24264 0.402790 0.201395 0.979510i \(-0.435452\pi\)
0.201395 + 0.979510i \(0.435452\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) 0 0
\(37\) −4.82843 −0.793789 −0.396894 0.917864i \(-0.629912\pi\)
−0.396894 + 0.917864i \(0.629912\pi\)
\(38\) 6.24264 1.01269
\(39\) 0 0
\(40\) −2.00000 −0.316228
\(41\) 0.343146 0.0535904 0.0267952 0.999641i \(-0.491470\pi\)
0.0267952 + 0.999641i \(0.491470\pi\)
\(42\) 0 0
\(43\) 0.828427 0.126334 0.0631670 0.998003i \(-0.479880\pi\)
0.0631670 + 0.998003i \(0.479880\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 0.828427 0.122145
\(47\) 11.8995 1.73572 0.867860 0.496809i \(-0.165495\pi\)
0.867860 + 0.496809i \(0.165495\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.00000 0.141421
\(51\) 0 0
\(52\) −2.58579 −0.358584
\(53\) −6.48528 −0.890822 −0.445411 0.895326i \(-0.646942\pi\)
−0.445411 + 0.895326i \(0.646942\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) −1.65685 −0.217556
\(59\) 1.17157 0.152526 0.0762629 0.997088i \(-0.475701\pi\)
0.0762629 + 0.997088i \(0.475701\pi\)
\(60\) 0 0
\(61\) −5.41421 −0.693219 −0.346610 0.938010i \(-0.612667\pi\)
−0.346610 + 0.938010i \(0.612667\pi\)
\(62\) −2.24264 −0.284816
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −5.17157 −0.641455
\(66\) 0 0
\(67\) −6.82843 −0.834225 −0.417113 0.908855i \(-0.636958\pi\)
−0.417113 + 0.908855i \(0.636958\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) 5.65685 0.671345 0.335673 0.941979i \(-0.391036\pi\)
0.335673 + 0.941979i \(0.391036\pi\)
\(72\) 0 0
\(73\) −0.343146 −0.0401622 −0.0200811 0.999798i \(-0.506392\pi\)
−0.0200811 + 0.999798i \(0.506392\pi\)
\(74\) 4.82843 0.561293
\(75\) 0 0
\(76\) −6.24264 −0.716080
\(77\) 0 0
\(78\) 0 0
\(79\) 0.485281 0.0545984 0.0272992 0.999627i \(-0.491309\pi\)
0.0272992 + 0.999627i \(0.491309\pi\)
\(80\) 2.00000 0.223607
\(81\) 0 0
\(82\) −0.343146 −0.0378941
\(83\) −9.07107 −0.995679 −0.497840 0.867269i \(-0.665873\pi\)
−0.497840 + 0.867269i \(0.665873\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) −0.828427 −0.0893316
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 12.2426 1.29772 0.648859 0.760909i \(-0.275247\pi\)
0.648859 + 0.760909i \(0.275247\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.828427 −0.0863695
\(93\) 0 0
\(94\) −11.8995 −1.22734
\(95\) −12.4853 −1.28096
\(96\) 0 0
\(97\) −9.89949 −1.00514 −0.502571 0.864536i \(-0.667612\pi\)
−0.502571 + 0.864536i \(0.667612\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −0.928932 −0.0924322 −0.0462161 0.998931i \(-0.514716\pi\)
−0.0462161 + 0.998931i \(0.514716\pi\)
\(102\) 0 0
\(103\) 2.24264 0.220974 0.110487 0.993878i \(-0.464759\pi\)
0.110487 + 0.993878i \(0.464759\pi\)
\(104\) 2.58579 0.253557
\(105\) 0 0
\(106\) 6.48528 0.629906
\(107\) −7.17157 −0.693302 −0.346651 0.937994i \(-0.612681\pi\)
−0.346651 + 0.937994i \(0.612681\pi\)
\(108\) 0 0
\(109\) 15.6569 1.49965 0.749827 0.661634i \(-0.230137\pi\)
0.749827 + 0.661634i \(0.230137\pi\)
\(110\) −2.00000 −0.190693
\(111\) 0 0
\(112\) 0 0
\(113\) 5.65685 0.532152 0.266076 0.963952i \(-0.414273\pi\)
0.266076 + 0.963952i \(0.414273\pi\)
\(114\) 0 0
\(115\) −1.65685 −0.154502
\(116\) 1.65685 0.153835
\(117\) 0 0
\(118\) −1.17157 −0.107852
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 5.41421 0.490180
\(123\) 0 0
\(124\) 2.24264 0.201395
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −14.1421 −1.25491 −0.627456 0.778652i \(-0.715904\pi\)
−0.627456 + 0.778652i \(0.715904\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 5.17157 0.453577
\(131\) −13.5563 −1.18442 −0.592212 0.805782i \(-0.701745\pi\)
−0.592212 + 0.805782i \(0.701745\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.82843 0.589886
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) −17.3137 −1.47921 −0.739605 0.673041i \(-0.764988\pi\)
−0.739605 + 0.673041i \(0.764988\pi\)
\(138\) 0 0
\(139\) −19.8995 −1.68785 −0.843927 0.536459i \(-0.819762\pi\)
−0.843927 + 0.536459i \(0.819762\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.65685 −0.474713
\(143\) −2.58579 −0.216234
\(144\) 0 0
\(145\) 3.31371 0.275189
\(146\) 0.343146 0.0283989
\(147\) 0 0
\(148\) −4.82843 −0.396894
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 6.24264 0.506345
\(153\) 0 0
\(154\) 0 0
\(155\) 4.48528 0.360266
\(156\) 0 0
\(157\) −7.17157 −0.572354 −0.286177 0.958177i \(-0.592385\pi\)
−0.286177 + 0.958177i \(0.592385\pi\)
\(158\) −0.485281 −0.0386069
\(159\) 0 0
\(160\) −2.00000 −0.158114
\(161\) 0 0
\(162\) 0 0
\(163\) −13.6569 −1.06969 −0.534844 0.844951i \(-0.679630\pi\)
−0.534844 + 0.844951i \(0.679630\pi\)
\(164\) 0.343146 0.0267952
\(165\) 0 0
\(166\) 9.07107 0.704051
\(167\) −10.8284 −0.837929 −0.418964 0.908003i \(-0.637607\pi\)
−0.418964 + 0.908003i \(0.637607\pi\)
\(168\) 0 0
\(169\) −6.31371 −0.485670
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) 0.828427 0.0631670
\(173\) 13.8995 1.05676 0.528380 0.849008i \(-0.322800\pi\)
0.528380 + 0.849008i \(0.322800\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −12.2426 −0.917625
\(179\) 3.51472 0.262702 0.131351 0.991336i \(-0.458068\pi\)
0.131351 + 0.991336i \(0.458068\pi\)
\(180\) 0 0
\(181\) −13.3137 −0.989600 −0.494800 0.869007i \(-0.664759\pi\)
−0.494800 + 0.869007i \(0.664759\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.828427 0.0610725
\(185\) −9.65685 −0.709986
\(186\) 0 0
\(187\) 2.00000 0.146254
\(188\) 11.8995 0.867860
\(189\) 0 0
\(190\) 12.4853 0.905778
\(191\) 17.7990 1.28789 0.643945 0.765072i \(-0.277297\pi\)
0.643945 + 0.765072i \(0.277297\pi\)
\(192\) 0 0
\(193\) 18.9706 1.36553 0.682765 0.730638i \(-0.260777\pi\)
0.682765 + 0.730638i \(0.260777\pi\)
\(194\) 9.89949 0.710742
\(195\) 0 0
\(196\) 0 0
\(197\) −4.34315 −0.309436 −0.154718 0.987959i \(-0.549447\pi\)
−0.154718 + 0.987959i \(0.549447\pi\)
\(198\) 0 0
\(199\) 27.2132 1.92909 0.964546 0.263913i \(-0.0850133\pi\)
0.964546 + 0.263913i \(0.0850133\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 0.928932 0.0653594
\(203\) 0 0
\(204\) 0 0
\(205\) 0.686292 0.0479327
\(206\) −2.24264 −0.156252
\(207\) 0 0
\(208\) −2.58579 −0.179292
\(209\) −6.24264 −0.431812
\(210\) 0 0
\(211\) −28.8284 −1.98463 −0.992315 0.123734i \(-0.960513\pi\)
−0.992315 + 0.123734i \(0.960513\pi\)
\(212\) −6.48528 −0.445411
\(213\) 0 0
\(214\) 7.17157 0.490239
\(215\) 1.65685 0.112997
\(216\) 0 0
\(217\) 0 0
\(218\) −15.6569 −1.06042
\(219\) 0 0
\(220\) 2.00000 0.134840
\(221\) −5.17157 −0.347878
\(222\) 0 0
\(223\) 2.24264 0.150178 0.0750892 0.997177i \(-0.476076\pi\)
0.0750892 + 0.997177i \(0.476076\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −5.65685 −0.376288
\(227\) 7.89949 0.524308 0.262154 0.965026i \(-0.415567\pi\)
0.262154 + 0.965026i \(0.415567\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 1.65685 0.109250
\(231\) 0 0
\(232\) −1.65685 −0.108778
\(233\) −3.65685 −0.239568 −0.119784 0.992800i \(-0.538220\pi\)
−0.119784 + 0.992800i \(0.538220\pi\)
\(234\) 0 0
\(235\) 23.7990 1.55247
\(236\) 1.17157 0.0762629
\(237\) 0 0
\(238\) 0 0
\(239\) −23.3137 −1.50804 −0.754019 0.656852i \(-0.771887\pi\)
−0.754019 + 0.656852i \(0.771887\pi\)
\(240\) 0 0
\(241\) −3.65685 −0.235559 −0.117779 0.993040i \(-0.537578\pi\)
−0.117779 + 0.993040i \(0.537578\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) −5.41421 −0.346610
\(245\) 0 0
\(246\) 0 0
\(247\) 16.1421 1.02710
\(248\) −2.24264 −0.142408
\(249\) 0 0
\(250\) 12.0000 0.758947
\(251\) −8.48528 −0.535586 −0.267793 0.963476i \(-0.586294\pi\)
−0.267793 + 0.963476i \(0.586294\pi\)
\(252\) 0 0
\(253\) −0.828427 −0.0520828
\(254\) 14.1421 0.887357
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.2132 0.824217 0.412108 0.911135i \(-0.364792\pi\)
0.412108 + 0.911135i \(0.364792\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −5.17157 −0.320727
\(261\) 0 0
\(262\) 13.5563 0.837514
\(263\) −14.8284 −0.914360 −0.457180 0.889374i \(-0.651140\pi\)
−0.457180 + 0.889374i \(0.651140\pi\)
\(264\) 0 0
\(265\) −12.9706 −0.796775
\(266\) 0 0
\(267\) 0 0
\(268\) −6.82843 −0.417113
\(269\) −17.3137 −1.05564 −0.527818 0.849358i \(-0.676990\pi\)
−0.527818 + 0.849358i \(0.676990\pi\)
\(270\) 0 0
\(271\) 6.14214 0.373108 0.186554 0.982445i \(-0.440268\pi\)
0.186554 + 0.982445i \(0.440268\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 17.3137 1.04596
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −16.0000 −0.961347 −0.480673 0.876900i \(-0.659608\pi\)
−0.480673 + 0.876900i \(0.659608\pi\)
\(278\) 19.8995 1.19349
\(279\) 0 0
\(280\) 0 0
\(281\) −21.3137 −1.27147 −0.635735 0.771908i \(-0.719303\pi\)
−0.635735 + 0.771908i \(0.719303\pi\)
\(282\) 0 0
\(283\) −6.24264 −0.371086 −0.185543 0.982636i \(-0.559404\pi\)
−0.185543 + 0.982636i \(0.559404\pi\)
\(284\) 5.65685 0.335673
\(285\) 0 0
\(286\) 2.58579 0.152901
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −3.31371 −0.194588
\(291\) 0 0
\(292\) −0.343146 −0.0200811
\(293\) −19.0711 −1.11414 −0.557072 0.830464i \(-0.688075\pi\)
−0.557072 + 0.830464i \(0.688075\pi\)
\(294\) 0 0
\(295\) 2.34315 0.136423
\(296\) 4.82843 0.280647
\(297\) 0 0
\(298\) 4.00000 0.231714
\(299\) 2.14214 0.123883
\(300\) 0 0
\(301\) 0 0
\(302\) −4.00000 −0.230174
\(303\) 0 0
\(304\) −6.24264 −0.358040
\(305\) −10.8284 −0.620034
\(306\) 0 0
\(307\) 10.9289 0.623747 0.311874 0.950124i \(-0.399043\pi\)
0.311874 + 0.950124i \(0.399043\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.48528 −0.254747
\(311\) 27.8995 1.58204 0.791018 0.611793i \(-0.209552\pi\)
0.791018 + 0.611793i \(0.209552\pi\)
\(312\) 0 0
\(313\) −0.242641 −0.0137149 −0.00685743 0.999976i \(-0.502183\pi\)
−0.00685743 + 0.999976i \(0.502183\pi\)
\(314\) 7.17157 0.404715
\(315\) 0 0
\(316\) 0.485281 0.0272992
\(317\) −7.17157 −0.402796 −0.201398 0.979510i \(-0.564548\pi\)
−0.201398 + 0.979510i \(0.564548\pi\)
\(318\) 0 0
\(319\) 1.65685 0.0927660
\(320\) 2.00000 0.111803
\(321\) 0 0
\(322\) 0 0
\(323\) −12.4853 −0.694700
\(324\) 0 0
\(325\) 2.58579 0.143434
\(326\) 13.6569 0.756383
\(327\) 0 0
\(328\) −0.343146 −0.0189471
\(329\) 0 0
\(330\) 0 0
\(331\) 11.7990 0.648531 0.324266 0.945966i \(-0.394883\pi\)
0.324266 + 0.945966i \(0.394883\pi\)
\(332\) −9.07107 −0.497840
\(333\) 0 0
\(334\) 10.8284 0.592505
\(335\) −13.6569 −0.746154
\(336\) 0 0
\(337\) 7.17157 0.390660 0.195330 0.980738i \(-0.437422\pi\)
0.195330 + 0.980738i \(0.437422\pi\)
\(338\) 6.31371 0.343420
\(339\) 0 0
\(340\) 4.00000 0.216930
\(341\) 2.24264 0.121446
\(342\) 0 0
\(343\) 0 0
\(344\) −0.828427 −0.0446658
\(345\) 0 0
\(346\) −13.8995 −0.747241
\(347\) 31.4558 1.68864 0.844319 0.535841i \(-0.180005\pi\)
0.844319 + 0.535841i \(0.180005\pi\)
\(348\) 0 0
\(349\) 14.5858 0.780759 0.390380 0.920654i \(-0.372344\pi\)
0.390380 + 0.920654i \(0.372344\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −21.2132 −1.12906 −0.564532 0.825411i \(-0.690943\pi\)
−0.564532 + 0.825411i \(0.690943\pi\)
\(354\) 0 0
\(355\) 11.3137 0.600469
\(356\) 12.2426 0.648859
\(357\) 0 0
\(358\) −3.51472 −0.185759
\(359\) −10.8284 −0.571503 −0.285751 0.958304i \(-0.592243\pi\)
−0.285751 + 0.958304i \(0.592243\pi\)
\(360\) 0 0
\(361\) 19.9706 1.05108
\(362\) 13.3137 0.699753
\(363\) 0 0
\(364\) 0 0
\(365\) −0.686292 −0.0359221
\(366\) 0 0
\(367\) 35.4142 1.84861 0.924303 0.381658i \(-0.124647\pi\)
0.924303 + 0.381658i \(0.124647\pi\)
\(368\) −0.828427 −0.0431847
\(369\) 0 0
\(370\) 9.65685 0.502036
\(371\) 0 0
\(372\) 0 0
\(373\) −31.9411 −1.65385 −0.826924 0.562313i \(-0.809912\pi\)
−0.826924 + 0.562313i \(0.809912\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) −11.8995 −0.613670
\(377\) −4.28427 −0.220651
\(378\) 0 0
\(379\) −24.2843 −1.24740 −0.623700 0.781664i \(-0.714371\pi\)
−0.623700 + 0.781664i \(0.714371\pi\)
\(380\) −12.4853 −0.640481
\(381\) 0 0
\(382\) −17.7990 −0.910676
\(383\) 2.72792 0.139390 0.0696952 0.997568i \(-0.477797\pi\)
0.0696952 + 0.997568i \(0.477797\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −18.9706 −0.965576
\(387\) 0 0
\(388\) −9.89949 −0.502571
\(389\) −22.2843 −1.12986 −0.564929 0.825140i \(-0.691096\pi\)
−0.564929 + 0.825140i \(0.691096\pi\)
\(390\) 0 0
\(391\) −1.65685 −0.0837907
\(392\) 0 0
\(393\) 0 0
\(394\) 4.34315 0.218805
\(395\) 0.970563 0.0488343
\(396\) 0 0
\(397\) 16.8284 0.844595 0.422297 0.906457i \(-0.361224\pi\)
0.422297 + 0.906457i \(0.361224\pi\)
\(398\) −27.2132 −1.36407
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) −33.3137 −1.66361 −0.831804 0.555070i \(-0.812691\pi\)
−0.831804 + 0.555070i \(0.812691\pi\)
\(402\) 0 0
\(403\) −5.79899 −0.288868
\(404\) −0.928932 −0.0462161
\(405\) 0 0
\(406\) 0 0
\(407\) −4.82843 −0.239336
\(408\) 0 0
\(409\) 18.4853 0.914038 0.457019 0.889457i \(-0.348917\pi\)
0.457019 + 0.889457i \(0.348917\pi\)
\(410\) −0.686292 −0.0338935
\(411\) 0 0
\(412\) 2.24264 0.110487
\(413\) 0 0
\(414\) 0 0
\(415\) −18.1421 −0.890562
\(416\) 2.58579 0.126779
\(417\) 0 0
\(418\) 6.24264 0.305338
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) −16.3431 −0.796516 −0.398258 0.917273i \(-0.630385\pi\)
−0.398258 + 0.917273i \(0.630385\pi\)
\(422\) 28.8284 1.40335
\(423\) 0 0
\(424\) 6.48528 0.314953
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 0 0
\(428\) −7.17157 −0.346651
\(429\) 0 0
\(430\) −1.65685 −0.0799006
\(431\) 26.1421 1.25922 0.629611 0.776910i \(-0.283214\pi\)
0.629611 + 0.776910i \(0.283214\pi\)
\(432\) 0 0
\(433\) −2.38478 −0.114605 −0.0573025 0.998357i \(-0.518250\pi\)
−0.0573025 + 0.998357i \(0.518250\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 15.6569 0.749827
\(437\) 5.17157 0.247390
\(438\) 0 0
\(439\) 34.8284 1.66227 0.831135 0.556071i \(-0.187692\pi\)
0.831135 + 0.556071i \(0.187692\pi\)
\(440\) −2.00000 −0.0953463
\(441\) 0 0
\(442\) 5.17157 0.245987
\(443\) 4.48528 0.213102 0.106551 0.994307i \(-0.466019\pi\)
0.106551 + 0.994307i \(0.466019\pi\)
\(444\) 0 0
\(445\) 24.4853 1.16071
\(446\) −2.24264 −0.106192
\(447\) 0 0
\(448\) 0 0
\(449\) 16.9706 0.800890 0.400445 0.916321i \(-0.368855\pi\)
0.400445 + 0.916321i \(0.368855\pi\)
\(450\) 0 0
\(451\) 0.343146 0.0161581
\(452\) 5.65685 0.266076
\(453\) 0 0
\(454\) −7.89949 −0.370742
\(455\) 0 0
\(456\) 0 0
\(457\) −6.68629 −0.312772 −0.156386 0.987696i \(-0.549984\pi\)
−0.156386 + 0.987696i \(0.549984\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) −1.65685 −0.0772512
\(461\) −33.4142 −1.55626 −0.778128 0.628106i \(-0.783830\pi\)
−0.778128 + 0.628106i \(0.783830\pi\)
\(462\) 0 0
\(463\) 19.3137 0.897584 0.448792 0.893636i \(-0.351854\pi\)
0.448792 + 0.893636i \(0.351854\pi\)
\(464\) 1.65685 0.0769175
\(465\) 0 0
\(466\) 3.65685 0.169401
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −23.7990 −1.09777
\(471\) 0 0
\(472\) −1.17157 −0.0539260
\(473\) 0.828427 0.0380911
\(474\) 0 0
\(475\) 6.24264 0.286432
\(476\) 0 0
\(477\) 0 0
\(478\) 23.3137 1.06634
\(479\) −15.3137 −0.699701 −0.349851 0.936806i \(-0.613768\pi\)
−0.349851 + 0.936806i \(0.613768\pi\)
\(480\) 0 0
\(481\) 12.4853 0.569280
\(482\) 3.65685 0.166565
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −19.7990 −0.899026
\(486\) 0 0
\(487\) −28.1421 −1.27524 −0.637621 0.770350i \(-0.720081\pi\)
−0.637621 + 0.770350i \(0.720081\pi\)
\(488\) 5.41421 0.245090
\(489\) 0 0
\(490\) 0 0
\(491\) −2.62742 −0.118574 −0.0592868 0.998241i \(-0.518883\pi\)
−0.0592868 + 0.998241i \(0.518883\pi\)
\(492\) 0 0
\(493\) 3.31371 0.149242
\(494\) −16.1421 −0.726269
\(495\) 0 0
\(496\) 2.24264 0.100698
\(497\) 0 0
\(498\) 0 0
\(499\) 22.1421 0.991218 0.495609 0.868546i \(-0.334945\pi\)
0.495609 + 0.868546i \(0.334945\pi\)
\(500\) −12.0000 −0.536656
\(501\) 0 0
\(502\) 8.48528 0.378717
\(503\) 8.48528 0.378340 0.189170 0.981944i \(-0.439420\pi\)
0.189170 + 0.981944i \(0.439420\pi\)
\(504\) 0 0
\(505\) −1.85786 −0.0826739
\(506\) 0.828427 0.0368281
\(507\) 0 0
\(508\) −14.1421 −0.627456
\(509\) 34.0000 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −13.2132 −0.582809
\(515\) 4.48528 0.197645
\(516\) 0 0
\(517\) 11.8995 0.523339
\(518\) 0 0
\(519\) 0 0
\(520\) 5.17157 0.226788
\(521\) −21.2132 −0.929367 −0.464684 0.885477i \(-0.653832\pi\)
−0.464684 + 0.885477i \(0.653832\pi\)
\(522\) 0 0
\(523\) −5.07107 −0.221742 −0.110871 0.993835i \(-0.535364\pi\)
−0.110871 + 0.993835i \(0.535364\pi\)
\(524\) −13.5563 −0.592212
\(525\) 0 0
\(526\) 14.8284 0.646550
\(527\) 4.48528 0.195382
\(528\) 0 0
\(529\) −22.3137 −0.970161
\(530\) 12.9706 0.563405
\(531\) 0 0
\(532\) 0 0
\(533\) −0.887302 −0.0384333
\(534\) 0 0
\(535\) −14.3431 −0.620108
\(536\) 6.82843 0.294943
\(537\) 0 0
\(538\) 17.3137 0.746447
\(539\) 0 0
\(540\) 0 0
\(541\) −22.6863 −0.975360 −0.487680 0.873023i \(-0.662157\pi\)
−0.487680 + 0.873023i \(0.662157\pi\)
\(542\) −6.14214 −0.263827
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 31.3137 1.34133
\(546\) 0 0
\(547\) 2.62742 0.112340 0.0561701 0.998421i \(-0.482111\pi\)
0.0561701 + 0.998421i \(0.482111\pi\)
\(548\) −17.3137 −0.739605
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −10.3431 −0.440633
\(552\) 0 0
\(553\) 0 0
\(554\) 16.0000 0.679775
\(555\) 0 0
\(556\) −19.8995 −0.843927
\(557\) −8.34315 −0.353510 −0.176755 0.984255i \(-0.556560\pi\)
−0.176755 + 0.984255i \(0.556560\pi\)
\(558\) 0 0
\(559\) −2.14214 −0.0906027
\(560\) 0 0
\(561\) 0 0
\(562\) 21.3137 0.899065
\(563\) −6.92893 −0.292020 −0.146010 0.989283i \(-0.546643\pi\)
−0.146010 + 0.989283i \(0.546643\pi\)
\(564\) 0 0
\(565\) 11.3137 0.475971
\(566\) 6.24264 0.262398
\(567\) 0 0
\(568\) −5.65685 −0.237356
\(569\) 33.3137 1.39658 0.698292 0.715813i \(-0.253944\pi\)
0.698292 + 0.715813i \(0.253944\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) −2.58579 −0.108117
\(573\) 0 0
\(574\) 0 0
\(575\) 0.828427 0.0345478
\(576\) 0 0
\(577\) 35.5563 1.48023 0.740115 0.672480i \(-0.234771\pi\)
0.740115 + 0.672480i \(0.234771\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) 3.31371 0.137594
\(581\) 0 0
\(582\) 0 0
\(583\) −6.48528 −0.268593
\(584\) 0.343146 0.0141995
\(585\) 0 0
\(586\) 19.0711 0.787819
\(587\) −27.7990 −1.14739 −0.573694 0.819070i \(-0.694490\pi\)
−0.573694 + 0.819070i \(0.694490\pi\)
\(588\) 0 0
\(589\) −14.0000 −0.576860
\(590\) −2.34315 −0.0964658
\(591\) 0 0
\(592\) −4.82843 −0.198447
\(593\) −14.6863 −0.603094 −0.301547 0.953451i \(-0.597503\pi\)
−0.301547 + 0.953451i \(0.597503\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.00000 −0.163846
\(597\) 0 0
\(598\) −2.14214 −0.0875984
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) −20.8284 −0.849609 −0.424805 0.905285i \(-0.639657\pi\)
−0.424805 + 0.905285i \(0.639657\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.00000 0.162758
\(605\) 2.00000 0.0813116
\(606\) 0 0
\(607\) 12.6863 0.514921 0.257460 0.966289i \(-0.417114\pi\)
0.257460 + 0.966289i \(0.417114\pi\)
\(608\) 6.24264 0.253173
\(609\) 0 0
\(610\) 10.8284 0.438430
\(611\) −30.7696 −1.24480
\(612\) 0 0
\(613\) −41.6569 −1.68250 −0.841252 0.540643i \(-0.818181\pi\)
−0.841252 + 0.540643i \(0.818181\pi\)
\(614\) −10.9289 −0.441056
\(615\) 0 0
\(616\) 0 0
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) 10.3431 0.415726 0.207863 0.978158i \(-0.433349\pi\)
0.207863 + 0.978158i \(0.433349\pi\)
\(620\) 4.48528 0.180133
\(621\) 0 0
\(622\) −27.8995 −1.11867
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0.242641 0.00969787
\(627\) 0 0
\(628\) −7.17157 −0.286177
\(629\) −9.65685 −0.385044
\(630\) 0 0
\(631\) 7.85786 0.312817 0.156408 0.987692i \(-0.450008\pi\)
0.156408 + 0.987692i \(0.450008\pi\)
\(632\) −0.485281 −0.0193035
\(633\) 0 0
\(634\) 7.17157 0.284820
\(635\) −28.2843 −1.12243
\(636\) 0 0
\(637\) 0 0
\(638\) −1.65685 −0.0655955
\(639\) 0 0
\(640\) −2.00000 −0.0790569
\(641\) 12.6863 0.501078 0.250539 0.968106i \(-0.419392\pi\)
0.250539 + 0.968106i \(0.419392\pi\)
\(642\) 0 0
\(643\) 13.4558 0.530647 0.265323 0.964159i \(-0.414521\pi\)
0.265323 + 0.964159i \(0.414521\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.4853 0.491227
\(647\) −13.0711 −0.513877 −0.256938 0.966428i \(-0.582714\pi\)
−0.256938 + 0.966428i \(0.582714\pi\)
\(648\) 0 0
\(649\) 1.17157 0.0459883
\(650\) −2.58579 −0.101423
\(651\) 0 0
\(652\) −13.6569 −0.534844
\(653\) 34.2843 1.34165 0.670824 0.741617i \(-0.265941\pi\)
0.670824 + 0.741617i \(0.265941\pi\)
\(654\) 0 0
\(655\) −27.1127 −1.05938
\(656\) 0.343146 0.0133976
\(657\) 0 0
\(658\) 0 0
\(659\) −13.1127 −0.510798 −0.255399 0.966836i \(-0.582207\pi\)
−0.255399 + 0.966836i \(0.582207\pi\)
\(660\) 0 0
\(661\) −27.9411 −1.08678 −0.543392 0.839479i \(-0.682860\pi\)
−0.543392 + 0.839479i \(0.682860\pi\)
\(662\) −11.7990 −0.458581
\(663\) 0 0
\(664\) 9.07107 0.352026
\(665\) 0 0
\(666\) 0 0
\(667\) −1.37258 −0.0531466
\(668\) −10.8284 −0.418964
\(669\) 0 0
\(670\) 13.6569 0.527610
\(671\) −5.41421 −0.209013
\(672\) 0 0
\(673\) −34.4853 −1.32931 −0.664655 0.747150i \(-0.731421\pi\)
−0.664655 + 0.747150i \(0.731421\pi\)
\(674\) −7.17157 −0.276239
\(675\) 0 0
\(676\) −6.31371 −0.242835
\(677\) 12.0416 0.462797 0.231399 0.972859i \(-0.425670\pi\)
0.231399 + 0.972859i \(0.425670\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.00000 −0.153393
\(681\) 0 0
\(682\) −2.24264 −0.0858752
\(683\) 44.7696 1.71306 0.856530 0.516098i \(-0.172616\pi\)
0.856530 + 0.516098i \(0.172616\pi\)
\(684\) 0 0
\(685\) −34.6274 −1.32305
\(686\) 0 0
\(687\) 0 0
\(688\) 0.828427 0.0315835
\(689\) 16.7696 0.638869
\(690\) 0 0
\(691\) −14.1421 −0.537992 −0.268996 0.963141i \(-0.586692\pi\)
−0.268996 + 0.963141i \(0.586692\pi\)
\(692\) 13.8995 0.528380
\(693\) 0 0
\(694\) −31.4558 −1.19405
\(695\) −39.7990 −1.50966
\(696\) 0 0
\(697\) 0.686292 0.0259951
\(698\) −14.5858 −0.552080
\(699\) 0 0
\(700\) 0 0
\(701\) 13.3137 0.502852 0.251426 0.967877i \(-0.419101\pi\)
0.251426 + 0.967877i \(0.419101\pi\)
\(702\) 0 0
\(703\) 30.1421 1.13683
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 21.2132 0.798369
\(707\) 0 0
\(708\) 0 0
\(709\) 38.7696 1.45602 0.728011 0.685566i \(-0.240445\pi\)
0.728011 + 0.685566i \(0.240445\pi\)
\(710\) −11.3137 −0.424596
\(711\) 0 0
\(712\) −12.2426 −0.458812
\(713\) −1.85786 −0.0695776
\(714\) 0 0
\(715\) −5.17157 −0.193406
\(716\) 3.51472 0.131351
\(717\) 0 0
\(718\) 10.8284 0.404113
\(719\) 32.1838 1.20025 0.600126 0.799906i \(-0.295117\pi\)
0.600126 + 0.799906i \(0.295117\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −19.9706 −0.743227
\(723\) 0 0
\(724\) −13.3137 −0.494800
\(725\) −1.65685 −0.0615340
\(726\) 0 0
\(727\) 11.2132 0.415875 0.207937 0.978142i \(-0.433325\pi\)
0.207937 + 0.978142i \(0.433325\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0.686292 0.0254008
\(731\) 1.65685 0.0612810
\(732\) 0 0
\(733\) 11.5563 0.426843 0.213422 0.976960i \(-0.431539\pi\)
0.213422 + 0.976960i \(0.431539\pi\)
\(734\) −35.4142 −1.30716
\(735\) 0 0
\(736\) 0.828427 0.0305362
\(737\) −6.82843 −0.251528
\(738\) 0 0
\(739\) −42.6274 −1.56807 −0.784037 0.620714i \(-0.786843\pi\)
−0.784037 + 0.620714i \(0.786843\pi\)
\(740\) −9.65685 −0.354993
\(741\) 0 0
\(742\) 0 0
\(743\) −26.6274 −0.976865 −0.488433 0.872602i \(-0.662431\pi\)
−0.488433 + 0.872602i \(0.662431\pi\)
\(744\) 0 0
\(745\) −8.00000 −0.293097
\(746\) 31.9411 1.16945
\(747\) 0 0
\(748\) 2.00000 0.0731272
\(749\) 0 0
\(750\) 0 0
\(751\) 16.1421 0.589035 0.294517 0.955646i \(-0.404841\pi\)
0.294517 + 0.955646i \(0.404841\pi\)
\(752\) 11.8995 0.433930
\(753\) 0 0
\(754\) 4.28427 0.156024
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −19.8579 −0.721746 −0.360873 0.932615i \(-0.617521\pi\)
−0.360873 + 0.932615i \(0.617521\pi\)
\(758\) 24.2843 0.882044
\(759\) 0 0
\(760\) 12.4853 0.452889
\(761\) −18.4853 −0.670091 −0.335045 0.942202i \(-0.608752\pi\)
−0.335045 + 0.942202i \(0.608752\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 17.7990 0.643945
\(765\) 0 0
\(766\) −2.72792 −0.0985638
\(767\) −3.02944 −0.109387
\(768\) 0 0
\(769\) 44.1421 1.59181 0.795903 0.605424i \(-0.206996\pi\)
0.795903 + 0.605424i \(0.206996\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 18.9706 0.682765
\(773\) 22.4853 0.808739 0.404370 0.914596i \(-0.367491\pi\)
0.404370 + 0.914596i \(0.367491\pi\)
\(774\) 0 0
\(775\) −2.24264 −0.0805580
\(776\) 9.89949 0.355371
\(777\) 0 0
\(778\) 22.2843 0.798930
\(779\) −2.14214 −0.0767500
\(780\) 0 0
\(781\) 5.65685 0.202418
\(782\) 1.65685 0.0592490
\(783\) 0 0
\(784\) 0 0
\(785\) −14.3431 −0.511929
\(786\) 0 0
\(787\) 0.585786 0.0208810 0.0104405 0.999945i \(-0.496677\pi\)
0.0104405 + 0.999945i \(0.496677\pi\)
\(788\) −4.34315 −0.154718
\(789\) 0 0
\(790\) −0.970563 −0.0345311
\(791\) 0 0
\(792\) 0 0
\(793\) 14.0000 0.497155
\(794\) −16.8284 −0.597219
\(795\) 0 0
\(796\) 27.2132 0.964546
\(797\) 34.4853 1.22153 0.610766 0.791811i \(-0.290862\pi\)
0.610766 + 0.791811i \(0.290862\pi\)
\(798\) 0 0
\(799\) 23.7990 0.841948
\(800\) 1.00000 0.0353553
\(801\) 0 0
\(802\) 33.3137 1.17635
\(803\) −0.343146 −0.0121094
\(804\) 0 0
\(805\) 0 0
\(806\) 5.79899 0.204261
\(807\) 0 0
\(808\) 0.928932 0.0326797
\(809\) 46.7696 1.64433 0.822165 0.569249i \(-0.192766\pi\)
0.822165 + 0.569249i \(0.192766\pi\)
\(810\) 0 0
\(811\) 0.384776 0.0135113 0.00675566 0.999977i \(-0.497850\pi\)
0.00675566 + 0.999977i \(0.497850\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.82843 0.169236
\(815\) −27.3137 −0.956757
\(816\) 0 0
\(817\) −5.17157 −0.180930
\(818\) −18.4853 −0.646323
\(819\) 0 0
\(820\) 0.686292 0.0239663
\(821\) −24.6863 −0.861558 −0.430779 0.902458i \(-0.641761\pi\)
−0.430779 + 0.902458i \(0.641761\pi\)
\(822\) 0 0
\(823\) 0.142136 0.00495454 0.00247727 0.999997i \(-0.499211\pi\)
0.00247727 + 0.999997i \(0.499211\pi\)
\(824\) −2.24264 −0.0781261
\(825\) 0 0
\(826\) 0 0
\(827\) −16.6863 −0.580239 −0.290120 0.956990i \(-0.593695\pi\)
−0.290120 + 0.956990i \(0.593695\pi\)
\(828\) 0 0
\(829\) 6.28427 0.218262 0.109131 0.994027i \(-0.465193\pi\)
0.109131 + 0.994027i \(0.465193\pi\)
\(830\) 18.1421 0.629723
\(831\) 0 0
\(832\) −2.58579 −0.0896460
\(833\) 0 0
\(834\) 0 0
\(835\) −21.6569 −0.749466
\(836\) −6.24264 −0.215906
\(837\) 0 0
\(838\) −16.0000 −0.552711
\(839\) −2.92893 −0.101118 −0.0505590 0.998721i \(-0.516100\pi\)
−0.0505590 + 0.998721i \(0.516100\pi\)
\(840\) 0 0
\(841\) −26.2548 −0.905339
\(842\) 16.3431 0.563222
\(843\) 0 0
\(844\) −28.8284 −0.992315
\(845\) −12.6274 −0.434396
\(846\) 0 0
\(847\) 0 0
\(848\) −6.48528 −0.222705
\(849\) 0 0
\(850\) 2.00000 0.0685994
\(851\) 4.00000 0.137118
\(852\) 0 0
\(853\) −4.44365 −0.152148 −0.0760739 0.997102i \(-0.524238\pi\)
−0.0760739 + 0.997102i \(0.524238\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 7.17157 0.245119
\(857\) −28.1421 −0.961317 −0.480659 0.876908i \(-0.659602\pi\)
−0.480659 + 0.876908i \(0.659602\pi\)
\(858\) 0 0
\(859\) −54.4264 −1.85701 −0.928503 0.371326i \(-0.878903\pi\)
−0.928503 + 0.371326i \(0.878903\pi\)
\(860\) 1.65685 0.0564983
\(861\) 0 0
\(862\) −26.1421 −0.890405
\(863\) −34.7696 −1.18357 −0.591785 0.806096i \(-0.701576\pi\)
−0.591785 + 0.806096i \(0.701576\pi\)
\(864\) 0 0
\(865\) 27.7990 0.945194
\(866\) 2.38478 0.0810380
\(867\) 0 0
\(868\) 0 0
\(869\) 0.485281 0.0164620
\(870\) 0 0
\(871\) 17.6569 0.598280
\(872\) −15.6569 −0.530208
\(873\) 0 0
\(874\) −5.17157 −0.174931
\(875\) 0 0
\(876\) 0 0
\(877\) −29.3137 −0.989854 −0.494927 0.868935i \(-0.664805\pi\)
−0.494927 + 0.868935i \(0.664805\pi\)
\(878\) −34.8284 −1.17540
\(879\) 0 0
\(880\) 2.00000 0.0674200
\(881\) 18.1005 0.609822 0.304911 0.952381i \(-0.401373\pi\)
0.304911 + 0.952381i \(0.401373\pi\)
\(882\) 0 0
\(883\) 34.6274 1.16531 0.582653 0.812721i \(-0.302015\pi\)
0.582653 + 0.812721i \(0.302015\pi\)
\(884\) −5.17157 −0.173939
\(885\) 0 0
\(886\) −4.48528 −0.150686
\(887\) −52.2843 −1.75553 −0.877767 0.479088i \(-0.840968\pi\)
−0.877767 + 0.479088i \(0.840968\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −24.4853 −0.820748
\(891\) 0 0
\(892\) 2.24264 0.0750892
\(893\) −74.2843 −2.48583
\(894\) 0 0
\(895\) 7.02944 0.234968
\(896\) 0 0
\(897\) 0 0
\(898\) −16.9706 −0.566315
\(899\) 3.71573 0.123926
\(900\) 0 0
\(901\) −12.9706 −0.432112
\(902\) −0.343146 −0.0114255
\(903\) 0 0
\(904\) −5.65685 −0.188144
\(905\) −26.6274 −0.885125
\(906\) 0 0
\(907\) −47.7990 −1.58714 −0.793570 0.608479i \(-0.791780\pi\)
−0.793570 + 0.608479i \(0.791780\pi\)
\(908\) 7.89949 0.262154
\(909\) 0 0
\(910\) 0 0
\(911\) −39.4558 −1.30723 −0.653615 0.756827i \(-0.726749\pi\)
−0.653615 + 0.756827i \(0.726749\pi\)
\(912\) 0 0
\(913\) −9.07107 −0.300209
\(914\) 6.68629 0.221163
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) 32.9706 1.08760 0.543799 0.839215i \(-0.316985\pi\)
0.543799 + 0.839215i \(0.316985\pi\)
\(920\) 1.65685 0.0546249
\(921\) 0 0
\(922\) 33.4142 1.10044
\(923\) −14.6274 −0.481467
\(924\) 0 0
\(925\) 4.82843 0.158758
\(926\) −19.3137 −0.634688
\(927\) 0 0
\(928\) −1.65685 −0.0543889
\(929\) 53.2132 1.74587 0.872934 0.487838i \(-0.162214\pi\)
0.872934 + 0.487838i \(0.162214\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.65685 −0.119784
\(933\) 0 0
\(934\) −12.0000 −0.392652
\(935\) 4.00000 0.130814
\(936\) 0 0
\(937\) −44.9117 −1.46720 −0.733600 0.679581i \(-0.762162\pi\)
−0.733600 + 0.679581i \(0.762162\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 23.7990 0.776237
\(941\) −3.55635 −0.115934 −0.0579668 0.998319i \(-0.518462\pi\)
−0.0579668 + 0.998319i \(0.518462\pi\)
\(942\) 0 0
\(943\) −0.284271 −0.00925715
\(944\) 1.17157 0.0381314
\(945\) 0 0
\(946\) −0.828427 −0.0269345
\(947\) −60.5685 −1.96821 −0.984107 0.177579i \(-0.943174\pi\)
−0.984107 + 0.177579i \(0.943174\pi\)
\(948\) 0 0
\(949\) 0.887302 0.0288030
\(950\) −6.24264 −0.202538
\(951\) 0 0
\(952\) 0 0
\(953\) −26.4853 −0.857942 −0.428971 0.903318i \(-0.641124\pi\)
−0.428971 + 0.903318i \(0.641124\pi\)
\(954\) 0 0
\(955\) 35.5980 1.15192
\(956\) −23.3137 −0.754019
\(957\) 0 0
\(958\) 15.3137 0.494763
\(959\) 0 0
\(960\) 0 0
\(961\) −25.9706 −0.837760
\(962\) −12.4853 −0.402542
\(963\) 0 0
\(964\) −3.65685 −0.117779
\(965\) 37.9411 1.22137
\(966\) 0 0
\(967\) 57.9411 1.86326 0.931630 0.363407i \(-0.118387\pi\)
0.931630 + 0.363407i \(0.118387\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 19.7990 0.635707
\(971\) 27.3137 0.876539 0.438269 0.898844i \(-0.355592\pi\)
0.438269 + 0.898844i \(0.355592\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 28.1421 0.901732
\(975\) 0 0
\(976\) −5.41421 −0.173305
\(977\) 18.6274 0.595944 0.297972 0.954575i \(-0.403690\pi\)
0.297972 + 0.954575i \(0.403690\pi\)
\(978\) 0 0
\(979\) 12.2426 0.391276
\(980\) 0 0
\(981\) 0 0
\(982\) 2.62742 0.0838442
\(983\) −52.8701 −1.68629 −0.843146 0.537684i \(-0.819299\pi\)
−0.843146 + 0.537684i \(0.819299\pi\)
\(984\) 0 0
\(985\) −8.68629 −0.276768
\(986\) −3.31371 −0.105530
\(987\) 0 0
\(988\) 16.1421 0.513550
\(989\) −0.686292 −0.0218228
\(990\) 0 0
\(991\) −50.9117 −1.61726 −0.808632 0.588315i \(-0.799791\pi\)
−0.808632 + 0.588315i \(0.799791\pi\)
\(992\) −2.24264 −0.0712039
\(993\) 0 0
\(994\) 0 0
\(995\) 54.4264 1.72543
\(996\) 0 0
\(997\) −33.4142 −1.05824 −0.529119 0.848547i \(-0.677478\pi\)
−0.529119 + 0.848547i \(0.677478\pi\)
\(998\) −22.1421 −0.700897
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.cy.1.2 2
3.2 odd 2 3234.2.a.bd.1.2 yes 2
7.6 odd 2 9702.2.a.ci.1.1 2
21.20 even 2 3234.2.a.bc.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3234.2.a.bc.1.1 2 21.20 even 2
3234.2.a.bd.1.2 yes 2 3.2 odd 2
9702.2.a.ci.1.1 2 7.6 odd 2
9702.2.a.cy.1.2 2 1.1 even 1 trivial