Properties

Label 9702.2.a.co.1.2
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9702,2,Mod(1,9702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9702, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9702.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1078)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 9702.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.00000 q^{8} +1.00000 q^{11} +4.24264 q^{13} +1.00000 q^{16} +2.82843 q^{17} -4.24264 q^{19} -1.00000 q^{22} -6.00000 q^{23} -5.00000 q^{25} -4.24264 q^{26} +4.00000 q^{29} -7.07107 q^{31} -1.00000 q^{32} -2.82843 q^{34} +2.00000 q^{37} +4.24264 q^{38} -2.82843 q^{41} +10.0000 q^{43} +1.00000 q^{44} +6.00000 q^{46} +12.7279 q^{47} +5.00000 q^{50} +4.24264 q^{52} -2.00000 q^{53} -4.00000 q^{58} -11.3137 q^{59} -9.89949 q^{61} +7.07107 q^{62} +1.00000 q^{64} +8.00000 q^{67} +2.82843 q^{68} -16.0000 q^{71} -8.48528 q^{73} -2.00000 q^{74} -4.24264 q^{76} -8.00000 q^{79} +2.82843 q^{82} +12.7279 q^{83} -10.0000 q^{86} -1.00000 q^{88} -7.07107 q^{89} -6.00000 q^{92} -12.7279 q^{94} -7.07107 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} + 2 q^{11} + 2 q^{16} - 2 q^{22} - 12 q^{23} - 10 q^{25} + 8 q^{29} - 2 q^{32} + 4 q^{37} + 20 q^{43} + 2 q^{44} + 12 q^{46} + 10 q^{50} - 4 q^{53} - 8 q^{58} + 2 q^{64} + 16 q^{67} - 32 q^{71} - 4 q^{74} - 16 q^{79} - 20 q^{86} - 2 q^{88} - 12 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.24264 1.17670 0.588348 0.808608i \(-0.299778\pi\)
0.588348 + 0.808608i \(0.299778\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.82843 0.685994 0.342997 0.939336i \(-0.388558\pi\)
0.342997 + 0.939336i \(0.388558\pi\)
\(18\) 0 0
\(19\) −4.24264 −0.973329 −0.486664 0.873589i \(-0.661786\pi\)
−0.486664 + 0.873589i \(0.661786\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) −4.24264 −0.832050
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −7.07107 −1.27000 −0.635001 0.772512i \(-0.719000\pi\)
−0.635001 + 0.772512i \(0.719000\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −2.82843 −0.485071
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 4.24264 0.688247
\(39\) 0 0
\(40\) 0 0
\(41\) −2.82843 −0.441726 −0.220863 0.975305i \(-0.570887\pi\)
−0.220863 + 0.975305i \(0.570887\pi\)
\(42\) 0 0
\(43\) 10.0000 1.52499 0.762493 0.646997i \(-0.223975\pi\)
0.762493 + 0.646997i \(0.223975\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 12.7279 1.85656 0.928279 0.371884i \(-0.121288\pi\)
0.928279 + 0.371884i \(0.121288\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) 4.24264 0.588348
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −4.00000 −0.525226
\(59\) −11.3137 −1.47292 −0.736460 0.676481i \(-0.763504\pi\)
−0.736460 + 0.676481i \(0.763504\pi\)
\(60\) 0 0
\(61\) −9.89949 −1.26750 −0.633750 0.773538i \(-0.718485\pi\)
−0.633750 + 0.773538i \(0.718485\pi\)
\(62\) 7.07107 0.898027
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 2.82843 0.342997
\(69\) 0 0
\(70\) 0 0
\(71\) −16.0000 −1.89885 −0.949425 0.313993i \(-0.898333\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(72\) 0 0
\(73\) −8.48528 −0.993127 −0.496564 0.868000i \(-0.665405\pi\)
−0.496564 + 0.868000i \(0.665405\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −4.24264 −0.486664
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 2.82843 0.312348
\(83\) 12.7279 1.39707 0.698535 0.715575i \(-0.253835\pi\)
0.698535 + 0.715575i \(0.253835\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10.0000 −1.07833
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −7.07107 −0.749532 −0.374766 0.927119i \(-0.622277\pi\)
−0.374766 + 0.927119i \(0.622277\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) −12.7279 −1.31278
\(95\) 0 0
\(96\) 0 0
\(97\) −7.07107 −0.717958 −0.358979 0.933346i \(-0.616875\pi\)
−0.358979 + 0.933346i \(0.616875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 1.41421 0.140720 0.0703598 0.997522i \(-0.477585\pi\)
0.0703598 + 0.997522i \(0.477585\pi\)
\(102\) 0 0
\(103\) −1.41421 −0.139347 −0.0696733 0.997570i \(-0.522196\pi\)
−0.0696733 + 0.997570i \(0.522196\pi\)
\(104\) −4.24264 −0.416025
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 14.0000 1.35343 0.676716 0.736245i \(-0.263403\pi\)
0.676716 + 0.736245i \(0.263403\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −16.0000 −1.50515 −0.752577 0.658505i \(-0.771189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 11.3137 1.04151
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 9.89949 0.896258
\(123\) 0 0
\(124\) −7.07107 −0.635001
\(125\) 0 0
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −7.07107 −0.617802 −0.308901 0.951094i \(-0.599961\pi\)
−0.308901 + 0.951094i \(0.599961\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) −2.82843 −0.242536
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) 18.3848 1.55938 0.779688 0.626168i \(-0.215378\pi\)
0.779688 + 0.626168i \(0.215378\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 16.0000 1.34269
\(143\) 4.24264 0.354787
\(144\) 0 0
\(145\) 0 0
\(146\) 8.48528 0.702247
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) −8.00000 −0.655386 −0.327693 0.944784i \(-0.606271\pi\)
−0.327693 + 0.944784i \(0.606271\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 4.24264 0.344124
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 8.48528 0.677199 0.338600 0.940931i \(-0.390047\pi\)
0.338600 + 0.940931i \(0.390047\pi\)
\(158\) 8.00000 0.636446
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −2.82843 −0.220863
\(165\) 0 0
\(166\) −12.7279 −0.987878
\(167\) 14.1421 1.09435 0.547176 0.837018i \(-0.315703\pi\)
0.547176 + 0.837018i \(0.315703\pi\)
\(168\) 0 0
\(169\) 5.00000 0.384615
\(170\) 0 0
\(171\) 0 0
\(172\) 10.0000 0.762493
\(173\) −7.07107 −0.537603 −0.268802 0.963196i \(-0.586628\pi\)
−0.268802 + 0.963196i \(0.586628\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 7.07107 0.529999
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 11.3137 0.840941 0.420471 0.907306i \(-0.361865\pi\)
0.420471 + 0.907306i \(0.361865\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) 0 0
\(186\) 0 0
\(187\) 2.82843 0.206835
\(188\) 12.7279 0.928279
\(189\) 0 0
\(190\) 0 0
\(191\) −10.0000 −0.723575 −0.361787 0.932261i \(-0.617833\pi\)
−0.361787 + 0.932261i \(0.617833\pi\)
\(192\) 0 0
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 7.07107 0.507673
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) 9.89949 0.701757 0.350878 0.936421i \(-0.385883\pi\)
0.350878 + 0.936421i \(0.385883\pi\)
\(200\) 5.00000 0.353553
\(201\) 0 0
\(202\) −1.41421 −0.0995037
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 1.41421 0.0985329
\(207\) 0 0
\(208\) 4.24264 0.294174
\(209\) −4.24264 −0.293470
\(210\) 0 0
\(211\) 26.0000 1.78991 0.894957 0.446153i \(-0.147206\pi\)
0.894957 + 0.446153i \(0.147206\pi\)
\(212\) −2.00000 −0.137361
\(213\) 0 0
\(214\) −14.0000 −0.957020
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 14.0000 0.948200
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 21.2132 1.42054 0.710271 0.703929i \(-0.248573\pi\)
0.710271 + 0.703929i \(0.248573\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 16.0000 1.06430
\(227\) 7.07107 0.469323 0.234662 0.972077i \(-0.424602\pi\)
0.234662 + 0.972077i \(0.424602\pi\)
\(228\) 0 0
\(229\) −22.6274 −1.49526 −0.747631 0.664114i \(-0.768809\pi\)
−0.747631 + 0.664114i \(0.768809\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.00000 −0.262613
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11.3137 −0.736460
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −8.48528 −0.546585 −0.273293 0.961931i \(-0.588113\pi\)
−0.273293 + 0.961931i \(0.588113\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) −9.89949 −0.633750
\(245\) 0 0
\(246\) 0 0
\(247\) −18.0000 −1.14531
\(248\) 7.07107 0.449013
\(249\) 0 0
\(250\) 0 0
\(251\) 5.65685 0.357057 0.178529 0.983935i \(-0.442866\pi\)
0.178529 + 0.983935i \(0.442866\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 20.0000 1.25491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −7.07107 −0.441081 −0.220541 0.975378i \(-0.570782\pi\)
−0.220541 + 0.975378i \(0.570782\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 7.07107 0.436852
\(263\) −4.00000 −0.246651 −0.123325 0.992366i \(-0.539356\pi\)
−0.123325 + 0.992366i \(0.539356\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) −11.3137 −0.689809 −0.344904 0.938638i \(-0.612089\pi\)
−0.344904 + 0.938638i \(0.612089\pi\)
\(270\) 0 0
\(271\) 8.48528 0.515444 0.257722 0.966219i \(-0.417028\pi\)
0.257722 + 0.966219i \(0.417028\pi\)
\(272\) 2.82843 0.171499
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) −5.00000 −0.301511
\(276\) 0 0
\(277\) −8.00000 −0.480673 −0.240337 0.970690i \(-0.577258\pi\)
−0.240337 + 0.970690i \(0.577258\pi\)
\(278\) −18.3848 −1.10265
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 7.07107 0.420331 0.210166 0.977666i \(-0.432600\pi\)
0.210166 + 0.977666i \(0.432600\pi\)
\(284\) −16.0000 −0.949425
\(285\) 0 0
\(286\) −4.24264 −0.250873
\(287\) 0 0
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) −8.48528 −0.496564
\(293\) 21.2132 1.23929 0.619644 0.784883i \(-0.287277\pi\)
0.619644 + 0.784883i \(0.287277\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 8.00000 0.463428
\(299\) −25.4558 −1.47215
\(300\) 0 0
\(301\) 0 0
\(302\) 8.00000 0.460348
\(303\) 0 0
\(304\) −4.24264 −0.243332
\(305\) 0 0
\(306\) 0 0
\(307\) 21.2132 1.21070 0.605351 0.795959i \(-0.293033\pi\)
0.605351 + 0.795959i \(0.293033\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.41421 0.0801927 0.0400963 0.999196i \(-0.487234\pi\)
0.0400963 + 0.999196i \(0.487234\pi\)
\(312\) 0 0
\(313\) −29.6985 −1.67866 −0.839329 0.543624i \(-0.817052\pi\)
−0.839329 + 0.543624i \(0.817052\pi\)
\(314\) −8.48528 −0.478852
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −21.2132 −1.17670
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 2.82843 0.156174
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 12.7279 0.698535
\(333\) 0 0
\(334\) −14.1421 −0.773823
\(335\) 0 0
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) −5.00000 −0.271964
\(339\) 0 0
\(340\) 0 0
\(341\) −7.07107 −0.382920
\(342\) 0 0
\(343\) 0 0
\(344\) −10.0000 −0.539164
\(345\) 0 0
\(346\) 7.07107 0.380143
\(347\) −26.0000 −1.39575 −0.697877 0.716218i \(-0.745872\pi\)
−0.697877 + 0.716218i \(0.745872\pi\)
\(348\) 0 0
\(349\) −26.8701 −1.43832 −0.719161 0.694844i \(-0.755473\pi\)
−0.719161 + 0.694844i \(0.755473\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) −15.5563 −0.827981 −0.413990 0.910281i \(-0.635865\pi\)
−0.413990 + 0.910281i \(0.635865\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.07107 −0.374766
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −11.3137 −0.594635
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −21.2132 −1.10732 −0.553660 0.832743i \(-0.686769\pi\)
−0.553660 + 0.832743i \(0.686769\pi\)
\(368\) −6.00000 −0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) −2.82843 −0.146254
\(375\) 0 0
\(376\) −12.7279 −0.656392
\(377\) 16.9706 0.874028
\(378\) 0 0
\(379\) 24.0000 1.23280 0.616399 0.787434i \(-0.288591\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 10.0000 0.511645
\(383\) 15.5563 0.794892 0.397446 0.917625i \(-0.369897\pi\)
0.397446 + 0.917625i \(0.369897\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −6.00000 −0.305392
\(387\) 0 0
\(388\) −7.07107 −0.358979
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −16.9706 −0.858238
\(392\) 0 0
\(393\) 0 0
\(394\) −2.00000 −0.100759
\(395\) 0 0
\(396\) 0 0
\(397\) 25.4558 1.27759 0.638796 0.769376i \(-0.279433\pi\)
0.638796 + 0.769376i \(0.279433\pi\)
\(398\) −9.89949 −0.496217
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 30.0000 1.49813 0.749064 0.662497i \(-0.230503\pi\)
0.749064 + 0.662497i \(0.230503\pi\)
\(402\) 0 0
\(403\) −30.0000 −1.49441
\(404\) 1.41421 0.0703598
\(405\) 0 0
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) 28.2843 1.39857 0.699284 0.714844i \(-0.253502\pi\)
0.699284 + 0.714844i \(0.253502\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.41421 −0.0696733
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −4.24264 −0.208013
\(417\) 0 0
\(418\) 4.24264 0.207514
\(419\) −14.1421 −0.690889 −0.345444 0.938439i \(-0.612272\pi\)
−0.345444 + 0.938439i \(0.612272\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) −26.0000 −1.26566
\(423\) 0 0
\(424\) 2.00000 0.0971286
\(425\) −14.1421 −0.685994
\(426\) 0 0
\(427\) 0 0
\(428\) 14.0000 0.676716
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 29.6985 1.42722 0.713609 0.700544i \(-0.247059\pi\)
0.713609 + 0.700544i \(0.247059\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.0000 −0.670478
\(437\) 25.4558 1.21772
\(438\) 0 0
\(439\) 25.4558 1.21494 0.607471 0.794342i \(-0.292184\pi\)
0.607471 + 0.794342i \(0.292184\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −21.2132 −1.00447
\(447\) 0 0
\(448\) 0 0
\(449\) −16.0000 −0.755087 −0.377543 0.925992i \(-0.623231\pi\)
−0.377543 + 0.925992i \(0.623231\pi\)
\(450\) 0 0
\(451\) −2.82843 −0.133185
\(452\) −16.0000 −0.752577
\(453\) 0 0
\(454\) −7.07107 −0.331862
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 22.6274 1.05731
\(459\) 0 0
\(460\) 0 0
\(461\) −1.41421 −0.0658665 −0.0329332 0.999458i \(-0.510485\pi\)
−0.0329332 + 0.999458i \(0.510485\pi\)
\(462\) 0 0
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 4.00000 0.185695
\(465\) 0 0
\(466\) 26.0000 1.20443
\(467\) −25.4558 −1.17796 −0.588978 0.808149i \(-0.700470\pi\)
−0.588978 + 0.808149i \(0.700470\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 11.3137 0.520756
\(473\) 10.0000 0.459800
\(474\) 0 0
\(475\) 21.2132 0.973329
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 28.2843 1.29234 0.646171 0.763193i \(-0.276369\pi\)
0.646171 + 0.763193i \(0.276369\pi\)
\(480\) 0 0
\(481\) 8.48528 0.386896
\(482\) 8.48528 0.386494
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) 9.89949 0.448129
\(489\) 0 0
\(490\) 0 0
\(491\) −12.0000 −0.541552 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(492\) 0 0
\(493\) 11.3137 0.509544
\(494\) 18.0000 0.809858
\(495\) 0 0
\(496\) −7.07107 −0.317500
\(497\) 0 0
\(498\) 0 0
\(499\) 36.0000 1.61158 0.805791 0.592200i \(-0.201741\pi\)
0.805791 + 0.592200i \(0.201741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −5.65685 −0.252478
\(503\) −19.7990 −0.882793 −0.441397 0.897312i \(-0.645517\pi\)
−0.441397 + 0.897312i \(0.645517\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.00000 0.266733
\(507\) 0 0
\(508\) −20.0000 −0.887357
\(509\) −16.9706 −0.752207 −0.376103 0.926578i \(-0.622736\pi\)
−0.376103 + 0.926578i \(0.622736\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 7.07107 0.311891
\(515\) 0 0
\(516\) 0 0
\(517\) 12.7279 0.559773
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.41421 0.0619578 0.0309789 0.999520i \(-0.490138\pi\)
0.0309789 + 0.999520i \(0.490138\pi\)
\(522\) 0 0
\(523\) 4.24264 0.185518 0.0927589 0.995689i \(-0.470431\pi\)
0.0927589 + 0.995689i \(0.470431\pi\)
\(524\) −7.07107 −0.308901
\(525\) 0 0
\(526\) 4.00000 0.174408
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) 11.3137 0.487769
\(539\) 0 0
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) −8.48528 −0.364474
\(543\) 0 0
\(544\) −2.82843 −0.121268
\(545\) 0 0
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 5.00000 0.213201
\(551\) −16.9706 −0.722970
\(552\) 0 0
\(553\) 0 0
\(554\) 8.00000 0.339887
\(555\) 0 0
\(556\) 18.3848 0.779688
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 0 0
\(559\) 42.4264 1.79445
\(560\) 0 0
\(561\) 0 0
\(562\) 22.0000 0.928014
\(563\) −41.0122 −1.72846 −0.864229 0.503099i \(-0.832193\pi\)
−0.864229 + 0.503099i \(0.832193\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −7.07107 −0.297219
\(567\) 0 0
\(568\) 16.0000 0.671345
\(569\) −42.0000 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 4.24264 0.177394
\(573\) 0 0
\(574\) 0 0
\(575\) 30.0000 1.25109
\(576\) 0 0
\(577\) −9.89949 −0.412121 −0.206061 0.978539i \(-0.566064\pi\)
−0.206061 + 0.978539i \(0.566064\pi\)
\(578\) 9.00000 0.374351
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.00000 −0.0828315
\(584\) 8.48528 0.351123
\(585\) 0 0
\(586\) −21.2132 −0.876309
\(587\) −5.65685 −0.233483 −0.116742 0.993162i \(-0.537245\pi\)
−0.116742 + 0.993162i \(0.537245\pi\)
\(588\) 0 0
\(589\) 30.0000 1.23613
\(590\) 0 0
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) −8.48528 −0.348449 −0.174224 0.984706i \(-0.555742\pi\)
−0.174224 + 0.984706i \(0.555742\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.00000 −0.327693
\(597\) 0 0
\(598\) 25.4558 1.04097
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 11.3137 0.461496 0.230748 0.973014i \(-0.425883\pi\)
0.230748 + 0.973014i \(0.425883\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 0 0
\(607\) −16.9706 −0.688814 −0.344407 0.938820i \(-0.611920\pi\)
−0.344407 + 0.938820i \(0.611920\pi\)
\(608\) 4.24264 0.172062
\(609\) 0 0
\(610\) 0 0
\(611\) 54.0000 2.18461
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) −21.2132 −0.856095
\(615\) 0 0
\(616\) 0 0
\(617\) −28.0000 −1.12724 −0.563619 0.826035i \(-0.690591\pi\)
−0.563619 + 0.826035i \(0.690591\pi\)
\(618\) 0 0
\(619\) −14.1421 −0.568420 −0.284210 0.958762i \(-0.591731\pi\)
−0.284210 + 0.958762i \(0.591731\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1.41421 −0.0567048
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 29.6985 1.18699
\(627\) 0 0
\(628\) 8.48528 0.338600
\(629\) 5.65685 0.225554
\(630\) 0 0
\(631\) −30.0000 −1.19428 −0.597141 0.802137i \(-0.703697\pi\)
−0.597141 + 0.802137i \(0.703697\pi\)
\(632\) 8.00000 0.318223
\(633\) 0 0
\(634\) 18.0000 0.714871
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −4.00000 −0.158362
\(639\) 0 0
\(640\) 0 0
\(641\) −44.0000 −1.73790 −0.868948 0.494904i \(-0.835203\pi\)
−0.868948 + 0.494904i \(0.835203\pi\)
\(642\) 0 0
\(643\) −33.9411 −1.33851 −0.669254 0.743034i \(-0.733386\pi\)
−0.669254 + 0.743034i \(0.733386\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) −32.5269 −1.27876 −0.639382 0.768889i \(-0.720810\pi\)
−0.639382 + 0.768889i \(0.720810\pi\)
\(648\) 0 0
\(649\) −11.3137 −0.444102
\(650\) 21.2132 0.832050
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −2.82843 −0.110432
\(657\) 0 0
\(658\) 0 0
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −16.9706 −0.660078 −0.330039 0.943967i \(-0.607062\pi\)
−0.330039 + 0.943967i \(0.607062\pi\)
\(662\) −8.00000 −0.310929
\(663\) 0 0
\(664\) −12.7279 −0.493939
\(665\) 0 0
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 14.1421 0.547176
\(669\) 0 0
\(670\) 0 0
\(671\) −9.89949 −0.382166
\(672\) 0 0
\(673\) −46.0000 −1.77317 −0.886585 0.462566i \(-0.846929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) 5.00000 0.192308
\(677\) −9.89949 −0.380468 −0.190234 0.981739i \(-0.560925\pi\)
−0.190234 + 0.981739i \(0.560925\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 7.07107 0.270765
\(683\) −32.0000 −1.22445 −0.612223 0.790685i \(-0.709725\pi\)
−0.612223 + 0.790685i \(0.709725\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 10.0000 0.381246
\(689\) −8.48528 −0.323263
\(690\) 0 0
\(691\) 39.5980 1.50638 0.753189 0.657804i \(-0.228515\pi\)
0.753189 + 0.657804i \(0.228515\pi\)
\(692\) −7.07107 −0.268802
\(693\) 0 0
\(694\) 26.0000 0.986947
\(695\) 0 0
\(696\) 0 0
\(697\) −8.00000 −0.303022
\(698\) 26.8701 1.01705
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000 0.377695 0.188847 0.982006i \(-0.439525\pi\)
0.188847 + 0.982006i \(0.439525\pi\)
\(702\) 0 0
\(703\) −8.48528 −0.320028
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) 15.5563 0.585471
\(707\) 0 0
\(708\) 0 0
\(709\) −38.0000 −1.42712 −0.713560 0.700594i \(-0.752918\pi\)
−0.713560 + 0.700594i \(0.752918\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.07107 0.264999
\(713\) 42.4264 1.58888
\(714\) 0 0
\(715\) 0 0
\(716\) 12.0000 0.448461
\(717\) 0 0
\(718\) 12.0000 0.447836
\(719\) −32.5269 −1.21305 −0.606525 0.795065i \(-0.707437\pi\)
−0.606525 + 0.795065i \(0.707437\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.00000 0.0372161
\(723\) 0 0
\(724\) 11.3137 0.420471
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) −46.6690 −1.73086 −0.865430 0.501031i \(-0.832954\pi\)
−0.865430 + 0.501031i \(0.832954\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 28.2843 1.04613
\(732\) 0 0
\(733\) 7.07107 0.261176 0.130588 0.991437i \(-0.458314\pi\)
0.130588 + 0.991437i \(0.458314\pi\)
\(734\) 21.2132 0.782994
\(735\) 0 0
\(736\) 6.00000 0.221163
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −12.0000 −0.441427 −0.220714 0.975339i \(-0.570839\pi\)
−0.220714 + 0.975339i \(0.570839\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.00000 0.293492 0.146746 0.989174i \(-0.453120\pi\)
0.146746 + 0.989174i \(0.453120\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) 2.82843 0.103418
\(749\) 0 0
\(750\) 0 0
\(751\) −2.00000 −0.0729810 −0.0364905 0.999334i \(-0.511618\pi\)
−0.0364905 + 0.999334i \(0.511618\pi\)
\(752\) 12.7279 0.464140
\(753\) 0 0
\(754\) −16.9706 −0.618031
\(755\) 0 0
\(756\) 0 0
\(757\) 46.0000 1.67190 0.835949 0.548807i \(-0.184918\pi\)
0.835949 + 0.548807i \(0.184918\pi\)
\(758\) −24.0000 −0.871719
\(759\) 0 0
\(760\) 0 0
\(761\) 33.9411 1.23036 0.615182 0.788385i \(-0.289082\pi\)
0.615182 + 0.788385i \(0.289082\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −10.0000 −0.361787
\(765\) 0 0
\(766\) −15.5563 −0.562074
\(767\) −48.0000 −1.73318
\(768\) 0 0
\(769\) 5.65685 0.203991 0.101996 0.994785i \(-0.467477\pi\)
0.101996 + 0.994785i \(0.467477\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 6.00000 0.215945
\(773\) 48.0833 1.72943 0.864717 0.502259i \(-0.167498\pi\)
0.864717 + 0.502259i \(0.167498\pi\)
\(774\) 0 0
\(775\) 35.3553 1.27000
\(776\) 7.07107 0.253837
\(777\) 0 0
\(778\) −30.0000 −1.07555
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 16.9706 0.606866
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 9.89949 0.352879 0.176439 0.984311i \(-0.443542\pi\)
0.176439 + 0.984311i \(0.443542\pi\)
\(788\) 2.00000 0.0712470
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −42.0000 −1.49146
\(794\) −25.4558 −0.903394
\(795\) 0 0
\(796\) 9.89949 0.350878
\(797\) 2.82843 0.100188 0.0500940 0.998745i \(-0.484048\pi\)
0.0500940 + 0.998745i \(0.484048\pi\)
\(798\) 0 0
\(799\) 36.0000 1.27359
\(800\) 5.00000 0.176777
\(801\) 0 0
\(802\) −30.0000 −1.05934
\(803\) −8.48528 −0.299439
\(804\) 0 0
\(805\) 0 0
\(806\) 30.0000 1.05670
\(807\) 0 0
\(808\) −1.41421 −0.0497519
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −15.5563 −0.546257 −0.273129 0.961978i \(-0.588058\pi\)
−0.273129 + 0.961978i \(0.588058\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.00000 −0.0701000
\(815\) 0 0
\(816\) 0 0
\(817\) −42.4264 −1.48431
\(818\) −28.2843 −0.988936
\(819\) 0 0
\(820\) 0 0
\(821\) 8.00000 0.279202 0.139601 0.990208i \(-0.455418\pi\)
0.139601 + 0.990208i \(0.455418\pi\)
\(822\) 0 0
\(823\) −2.00000 −0.0697156 −0.0348578 0.999392i \(-0.511098\pi\)
−0.0348578 + 0.999392i \(0.511098\pi\)
\(824\) 1.41421 0.0492665
\(825\) 0 0
\(826\) 0 0
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) 33.9411 1.17882 0.589412 0.807833i \(-0.299359\pi\)
0.589412 + 0.807833i \(0.299359\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 4.24264 0.147087
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −4.24264 −0.146735
\(837\) 0 0
\(838\) 14.1421 0.488532
\(839\) 43.8406 1.51355 0.756773 0.653678i \(-0.226775\pi\)
0.756773 + 0.653678i \(0.226775\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 2.00000 0.0689246
\(843\) 0 0
\(844\) 26.0000 0.894957
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −2.00000 −0.0686803
\(849\) 0 0
\(850\) 14.1421 0.485071
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) −15.5563 −0.532639 −0.266320 0.963885i \(-0.585808\pi\)
−0.266320 + 0.963885i \(0.585808\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −14.0000 −0.478510
\(857\) −16.9706 −0.579703 −0.289852 0.957072i \(-0.593606\pi\)
−0.289852 + 0.957072i \(0.593606\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 8.00000 0.272481
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −29.6985 −1.00920
\(867\) 0 0
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 33.9411 1.15005
\(872\) 14.0000 0.474100
\(873\) 0 0
\(874\) −25.4558 −0.861057
\(875\) 0 0
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) −25.4558 −0.859093
\(879\) 0 0
\(880\) 0 0
\(881\) 12.7279 0.428815 0.214407 0.976744i \(-0.431218\pi\)
0.214407 + 0.976744i \(0.431218\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) −22.6274 −0.759754 −0.379877 0.925037i \(-0.624034\pi\)
−0.379877 + 0.925037i \(0.624034\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 21.2132 0.710271
\(893\) −54.0000 −1.80704
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 16.0000 0.533927
\(899\) −28.2843 −0.943333
\(900\) 0 0
\(901\) −5.65685 −0.188457
\(902\) 2.82843 0.0941763
\(903\) 0 0
\(904\) 16.0000 0.532152
\(905\) 0 0
\(906\) 0 0
\(907\) 16.0000 0.531271 0.265636 0.964073i \(-0.414418\pi\)
0.265636 + 0.964073i \(0.414418\pi\)
\(908\) 7.07107 0.234662
\(909\) 0 0
\(910\) 0 0
\(911\) −30.0000 −0.993944 −0.496972 0.867766i \(-0.665555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(912\) 0 0
\(913\) 12.7279 0.421233
\(914\) 22.0000 0.727695
\(915\) 0 0
\(916\) −22.6274 −0.747631
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.41421 0.0465746
\(923\) −67.8823 −2.23437
\(924\) 0 0
\(925\) −10.0000 −0.328798
\(926\) 16.0000 0.525793
\(927\) 0 0
\(928\) −4.00000 −0.131306
\(929\) 26.8701 0.881578 0.440789 0.897611i \(-0.354699\pi\)
0.440789 + 0.897611i \(0.354699\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −26.0000 −0.851658
\(933\) 0 0
\(934\) 25.4558 0.832941
\(935\) 0 0
\(936\) 0 0
\(937\) −8.48528 −0.277202 −0.138601 0.990348i \(-0.544261\pi\)
−0.138601 + 0.990348i \(0.544261\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −32.5269 −1.06035 −0.530174 0.847889i \(-0.677873\pi\)
−0.530174 + 0.847889i \(0.677873\pi\)
\(942\) 0 0
\(943\) 16.9706 0.552638
\(944\) −11.3137 −0.368230
\(945\) 0 0
\(946\) −10.0000 −0.325128
\(947\) −4.00000 −0.129983 −0.0649913 0.997886i \(-0.520702\pi\)
−0.0649913 + 0.997886i \(0.520702\pi\)
\(948\) 0 0
\(949\) −36.0000 −1.16861
\(950\) −21.2132 −0.688247
\(951\) 0 0
\(952\) 0 0
\(953\) 46.0000 1.49009 0.745043 0.667016i \(-0.232429\pi\)
0.745043 + 0.667016i \(0.232429\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) −28.2843 −0.913823
\(959\) 0 0
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) −8.48528 −0.273576
\(963\) 0 0
\(964\) −8.48528 −0.273293
\(965\) 0 0
\(966\) 0 0
\(967\) −52.0000 −1.67221 −0.836104 0.548572i \(-0.815172\pi\)
−0.836104 + 0.548572i \(0.815172\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 0 0
\(971\) 14.1421 0.453843 0.226921 0.973913i \(-0.427134\pi\)
0.226921 + 0.973913i \(0.427134\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −38.0000 −1.21760
\(975\) 0 0
\(976\) −9.89949 −0.316875
\(977\) 32.0000 1.02377 0.511885 0.859054i \(-0.328947\pi\)
0.511885 + 0.859054i \(0.328947\pi\)
\(978\) 0 0
\(979\) −7.07107 −0.225992
\(980\) 0 0
\(981\) 0 0
\(982\) 12.0000 0.382935
\(983\) 26.8701 0.857022 0.428511 0.903537i \(-0.359038\pi\)
0.428511 + 0.903537i \(0.359038\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −11.3137 −0.360302
\(987\) 0 0
\(988\) −18.0000 −0.572656
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 7.07107 0.224507
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −21.2132 −0.671829 −0.335914 0.941893i \(-0.609045\pi\)
−0.335914 + 0.941893i \(0.609045\pi\)
\(998\) −36.0000 −1.13956
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.co.1.2 2
3.2 odd 2 1078.2.a.v.1.2 yes 2
7.6 odd 2 inner 9702.2.a.co.1.1 2
12.11 even 2 8624.2.a.bz.1.1 2
21.2 odd 6 1078.2.e.o.67.1 4
21.5 even 6 1078.2.e.o.67.2 4
21.11 odd 6 1078.2.e.o.177.1 4
21.17 even 6 1078.2.e.o.177.2 4
21.20 even 2 1078.2.a.v.1.1 2
84.83 odd 2 8624.2.a.bz.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1078.2.a.v.1.1 2 21.20 even 2
1078.2.a.v.1.2 yes 2 3.2 odd 2
1078.2.e.o.67.1 4 21.2 odd 6
1078.2.e.o.67.2 4 21.5 even 6
1078.2.e.o.177.1 4 21.11 odd 6
1078.2.e.o.177.2 4 21.17 even 6
8624.2.a.bz.1.1 2 12.11 even 2
8624.2.a.bz.1.2 2 84.83 odd 2
9702.2.a.co.1.1 2 7.6 odd 2 inner
9702.2.a.co.1.2 2 1.1 even 1 trivial