Properties

Label 9702.2.a.ce
Level $9702$
Weight $2$
Character orbit 9702.a
Self dual yes
Analytic conductor $77.471$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 462)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + 3q^{5} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} + 3q^{5} + q^{8} + 3q^{10} + q^{11} - 6q^{13} + q^{16} - 5q^{17} - 6q^{19} + 3q^{20} + q^{22} - 5q^{23} + 4q^{25} - 6q^{26} + 6q^{29} - 4q^{31} + q^{32} - 5q^{34} - 2q^{37} - 6q^{38} + 3q^{40} + 5q^{41} - 10q^{43} + q^{44} - 5q^{46} + 9q^{47} + 4q^{50} - 6q^{52} - 2q^{53} + 3q^{55} + 6q^{58} - 12q^{59} + 5q^{61} - 4q^{62} + q^{64} - 18q^{65} + 5q^{67} - 5q^{68} - 4q^{71} - 12q^{73} - 2q^{74} - 6q^{76} - q^{79} + 3q^{80} + 5q^{82} + q^{83} - 15q^{85} - 10q^{86} + q^{88} + 6q^{89} - 5q^{92} + 9q^{94} - 18q^{95} - 9q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 3.00000 0 0 1.00000 0 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9702.2.a.ce 1
3.b odd 2 1 3234.2.a.a 1
7.b odd 2 1 9702.2.a.be 1
7.d odd 6 2 1386.2.k.j 2
21.c even 2 1 3234.2.a.o 1
21.g even 6 2 462.2.i.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.i.a 2 21.g even 6 2
1386.2.k.j 2 7.d odd 6 2
3234.2.a.a 1 3.b odd 2 1
3234.2.a.o 1 21.c even 2 1
9702.2.a.be 1 7.b odd 2 1
9702.2.a.ce 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9702))\):

\( T_{5} - 3 \)
\( T_{13} + 6 \)
\( T_{17} + 5 \)
\( T_{19} + 6 \)
\( T_{23} + 5 \)
\( T_{29} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( -3 + T \)
$7$ \( T \)
$11$ \( -1 + T \)
$13$ \( 6 + T \)
$17$ \( 5 + T \)
$19$ \( 6 + T \)
$23$ \( 5 + T \)
$29$ \( -6 + T \)
$31$ \( 4 + T \)
$37$ \( 2 + T \)
$41$ \( -5 + T \)
$43$ \( 10 + T \)
$47$ \( -9 + T \)
$53$ \( 2 + T \)
$59$ \( 12 + T \)
$61$ \( -5 + T \)
$67$ \( -5 + T \)
$71$ \( 4 + T \)
$73$ \( 12 + T \)
$79$ \( 1 + T \)
$83$ \( -1 + T \)
$89$ \( -6 + T \)
$97$ \( 9 + T \)
show more
show less