Properties

Label 9702.2.a.c.1.1
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1386)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9702.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -3.00000 q^{5} -1.00000 q^{8} +3.00000 q^{10} +1.00000 q^{11} +2.00000 q^{13} +1.00000 q^{16} +3.00000 q^{17} +2.00000 q^{19} -3.00000 q^{20} -1.00000 q^{22} -3.00000 q^{23} +4.00000 q^{25} -2.00000 q^{26} +2.00000 q^{31} -1.00000 q^{32} -3.00000 q^{34} +8.00000 q^{37} -2.00000 q^{38} +3.00000 q^{40} +9.00000 q^{41} -4.00000 q^{43} +1.00000 q^{44} +3.00000 q^{46} -3.00000 q^{47} -4.00000 q^{50} +2.00000 q^{52} -6.00000 q^{53} -3.00000 q^{55} -6.00000 q^{59} +5.00000 q^{61} -2.00000 q^{62} +1.00000 q^{64} -6.00000 q^{65} +11.0000 q^{67} +3.00000 q^{68} +2.00000 q^{73} -8.00000 q^{74} +2.00000 q^{76} -13.0000 q^{79} -3.00000 q^{80} -9.00000 q^{82} -9.00000 q^{83} -9.00000 q^{85} +4.00000 q^{86} -1.00000 q^{88} -12.0000 q^{89} -3.00000 q^{92} +3.00000 q^{94} -6.00000 q^{95} +5.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 3.00000 0.948683
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −2.00000 −0.324443
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) 3.00000 0.442326
\(47\) −3.00000 −0.437595 −0.218797 0.975770i \(-0.570213\pi\)
−0.218797 + 0.975770i \(0.570213\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −6.00000 −0.744208
\(66\) 0 0
\(67\) 11.0000 1.34386 0.671932 0.740613i \(-0.265465\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −8.00000 −0.929981
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) −9.00000 −0.993884
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) 0 0
\(85\) −9.00000 −0.976187
\(86\) 4.00000 0.431331
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −3.00000 −0.312772
\(93\) 0 0
\(94\) 3.00000 0.309426
\(95\) −6.00000 −0.615587
\(96\) 0 0
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) 20.0000 1.97066 0.985329 0.170664i \(-0.0545913\pi\)
0.985329 + 0.170664i \(0.0545913\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 0 0
\(109\) −1.00000 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(110\) 3.00000 0.286039
\(111\) 0 0
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 9.00000 0.839254
\(116\) 0 0
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −5.00000 −0.452679
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 6.00000 0.526235
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) −2.00000 −0.162221
\(153\) 0 0
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 13.0000 1.03422
\(159\) 0 0
\(160\) 3.00000 0.237171
\(161\) 0 0
\(162\) 0 0
\(163\) −19.0000 −1.48819 −0.744097 0.668071i \(-0.767120\pi\)
−0.744097 + 0.668071i \(0.767120\pi\)
\(164\) 9.00000 0.702782
\(165\) 0 0
\(166\) 9.00000 0.698535
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 12.0000 0.899438
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.00000 0.221163
\(185\) −24.0000 −1.76452
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) −3.00000 −0.218797
\(189\) 0 0
\(190\) 6.00000 0.435286
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) −5.00000 −0.358979
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) −4.00000 −0.282843
\(201\) 0 0
\(202\) −12.0000 −0.844317
\(203\) 0 0
\(204\) 0 0
\(205\) −27.0000 −1.88576
\(206\) −20.0000 −1.39347
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) 3.00000 0.205076
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) 0 0
\(218\) 1.00000 0.0677285
\(219\) 0 0
\(220\) −3.00000 −0.202260
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) 26.0000 1.74109 0.870544 0.492090i \(-0.163767\pi\)
0.870544 + 0.492090i \(0.163767\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −18.0000 −1.19734
\(227\) −15.0000 −0.995585 −0.497792 0.867296i \(-0.665856\pi\)
−0.497792 + 0.867296i \(0.665856\pi\)
\(228\) 0 0
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) −9.00000 −0.593442
\(231\) 0 0
\(232\) 0 0
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 5.00000 0.320092
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) −3.00000 −0.189737
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −3.00000 −0.188608
\(254\) 19.0000 1.19217
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −6.00000 −0.372104
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 30.0000 1.84988 0.924940 0.380114i \(-0.124115\pi\)
0.924940 + 0.380114i \(0.124115\pi\)
\(264\) 0 0
\(265\) 18.0000 1.10573
\(266\) 0 0
\(267\) 0 0
\(268\) 11.0000 0.671932
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 14.0000 0.841178 0.420589 0.907251i \(-0.361823\pi\)
0.420589 + 0.907251i \(0.361823\pi\)
\(278\) −2.00000 −0.119952
\(279\) 0 0
\(280\) 0 0
\(281\) 27.0000 1.61068 0.805342 0.592810i \(-0.201981\pi\)
0.805342 + 0.592810i \(0.201981\pi\)
\(282\) 0 0
\(283\) −16.0000 −0.951101 −0.475551 0.879688i \(-0.657751\pi\)
−0.475551 + 0.879688i \(0.657751\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 2.00000 0.117041
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 18.0000 1.04800
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 12.0000 0.695141
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 0 0
\(302\) −5.00000 −0.287718
\(303\) 0 0
\(304\) 2.00000 0.114708
\(305\) −15.0000 −0.858898
\(306\) 0 0
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.00000 0.340777
\(311\) 3.00000 0.170114 0.0850572 0.996376i \(-0.472893\pi\)
0.0850572 + 0.996376i \(0.472893\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −13.0000 −0.731307
\(317\) 15.0000 0.842484 0.421242 0.906948i \(-0.361594\pi\)
0.421242 + 0.906948i \(0.361594\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) 0 0
\(323\) 6.00000 0.333849
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) 19.0000 1.05231
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) −19.0000 −1.04433 −0.522167 0.852843i \(-0.674876\pi\)
−0.522167 + 0.852843i \(0.674876\pi\)
\(332\) −9.00000 −0.493939
\(333\) 0 0
\(334\) 0 0
\(335\) −33.0000 −1.80298
\(336\) 0 0
\(337\) −22.0000 −1.19842 −0.599208 0.800593i \(-0.704518\pi\)
−0.599208 + 0.800593i \(0.704518\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) −9.00000 −0.488094
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 21.0000 1.12734 0.563670 0.826000i \(-0.309389\pi\)
0.563670 + 0.826000i \(0.309389\pi\)
\(348\) 0 0
\(349\) 23.0000 1.23116 0.615581 0.788074i \(-0.288921\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) 6.00000 0.317110
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −20.0000 −1.05118
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −10.0000 −0.521996 −0.260998 0.965339i \(-0.584052\pi\)
−0.260998 + 0.965339i \(0.584052\pi\)
\(368\) −3.00000 −0.156386
\(369\) 0 0
\(370\) 24.0000 1.24770
\(371\) 0 0
\(372\) 0 0
\(373\) 23.0000 1.19089 0.595447 0.803394i \(-0.296975\pi\)
0.595447 + 0.803394i \(0.296975\pi\)
\(374\) −3.00000 −0.155126
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 0 0
\(378\) 0 0
\(379\) −1.00000 −0.0513665 −0.0256833 0.999670i \(-0.508176\pi\)
−0.0256833 + 0.999670i \(0.508176\pi\)
\(380\) −6.00000 −0.307794
\(381\) 0 0
\(382\) 12.0000 0.613973
\(383\) 24.0000 1.22634 0.613171 0.789950i \(-0.289894\pi\)
0.613171 + 0.789950i \(0.289894\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 16.0000 0.814379
\(387\) 0 0
\(388\) 5.00000 0.253837
\(389\) 21.0000 1.06474 0.532371 0.846511i \(-0.321301\pi\)
0.532371 + 0.846511i \(0.321301\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 39.0000 1.96230
\(396\) 0 0
\(397\) −28.0000 −1.40528 −0.702640 0.711546i \(-0.747995\pi\)
−0.702640 + 0.711546i \(0.747995\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 12.0000 0.597022
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) 2.00000 0.0988936 0.0494468 0.998777i \(-0.484254\pi\)
0.0494468 + 0.998777i \(0.484254\pi\)
\(410\) 27.0000 1.33343
\(411\) 0 0
\(412\) 20.0000 0.985329
\(413\) 0 0
\(414\) 0 0
\(415\) 27.0000 1.32538
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) −2.00000 −0.0978232
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) −20.0000 −0.973585
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 0 0
\(428\) −3.00000 −0.145010
\(429\) 0 0
\(430\) −12.0000 −0.578691
\(431\) 30.0000 1.44505 0.722525 0.691345i \(-0.242982\pi\)
0.722525 + 0.691345i \(0.242982\pi\)
\(432\) 0 0
\(433\) 35.0000 1.68199 0.840996 0.541041i \(-0.181970\pi\)
0.840996 + 0.541041i \(0.181970\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.00000 −0.0478913
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) 35.0000 1.67046 0.835229 0.549902i \(-0.185335\pi\)
0.835229 + 0.549902i \(0.185335\pi\)
\(440\) 3.00000 0.143019
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) 36.0000 1.70656
\(446\) −26.0000 −1.23114
\(447\) 0 0
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) 18.0000 0.846649
\(453\) 0 0
\(454\) 15.0000 0.703985
\(455\) 0 0
\(456\) 0 0
\(457\) −40.0000 −1.87112 −0.935561 0.353166i \(-0.885105\pi\)
−0.935561 + 0.353166i \(0.885105\pi\)
\(458\) −20.0000 −0.934539
\(459\) 0 0
\(460\) 9.00000 0.419627
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 21.0000 0.972806
\(467\) 42.0000 1.94353 0.971764 0.235954i \(-0.0758216\pi\)
0.971764 + 0.235954i \(0.0758216\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −9.00000 −0.415139
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) −4.00000 −0.183920
\(474\) 0 0
\(475\) 8.00000 0.367065
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 4.00000 0.182195
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −15.0000 −0.681115
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) −5.00000 −0.226339
\(489\) 0 0
\(490\) 0 0
\(491\) −9.00000 −0.406164 −0.203082 0.979162i \(-0.565096\pi\)
−0.203082 + 0.979162i \(0.565096\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 3.00000 0.134164
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −36.0000 −1.60198
\(506\) 3.00000 0.133366
\(507\) 0 0
\(508\) −19.0000 −0.842989
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −24.0000 −1.05859
\(515\) −60.0000 −2.64392
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) 0 0
\(519\) 0 0
\(520\) 6.00000 0.263117
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) −10.0000 −0.437269 −0.218635 0.975807i \(-0.570160\pi\)
−0.218635 + 0.975807i \(0.570160\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) −30.0000 −1.30806
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) −18.0000 −0.781870
\(531\) 0 0
\(532\) 0 0
\(533\) 18.0000 0.779667
\(534\) 0 0
\(535\) 9.00000 0.389104
\(536\) −11.0000 −0.475128
\(537\) 0 0
\(538\) 15.0000 0.646696
\(539\) 0 0
\(540\) 0 0
\(541\) 11.0000 0.472927 0.236463 0.971640i \(-0.424012\pi\)
0.236463 + 0.971640i \(0.424012\pi\)
\(542\) −8.00000 −0.343629
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) 3.00000 0.128506
\(546\) 0 0
\(547\) 14.0000 0.598597 0.299298 0.954160i \(-0.403247\pi\)
0.299298 + 0.954160i \(0.403247\pi\)
\(548\) −6.00000 −0.256307
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −14.0000 −0.594803
\(555\) 0 0
\(556\) 2.00000 0.0848189
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −27.0000 −1.13893
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) −54.0000 −2.27180
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 2.00000 0.0836242
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) 17.0000 0.707719 0.353860 0.935299i \(-0.384869\pi\)
0.353860 + 0.935299i \(0.384869\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −6.00000 −0.248495
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) −18.0000 −0.741048
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −12.0000 −0.491539
\(597\) 0 0
\(598\) 6.00000 0.245358
\(599\) −15.0000 −0.612883 −0.306442 0.951889i \(-0.599138\pi\)
−0.306442 + 0.951889i \(0.599138\pi\)
\(600\) 0 0
\(601\) −40.0000 −1.63163 −0.815817 0.578310i \(-0.803712\pi\)
−0.815817 + 0.578310i \(0.803712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 5.00000 0.203447
\(605\) −3.00000 −0.121967
\(606\) 0 0
\(607\) 41.0000 1.66414 0.832069 0.554672i \(-0.187156\pi\)
0.832069 + 0.554672i \(0.187156\pi\)
\(608\) −2.00000 −0.0811107
\(609\) 0 0
\(610\) 15.0000 0.607332
\(611\) −6.00000 −0.242734
\(612\) 0 0
\(613\) 17.0000 0.686624 0.343312 0.939222i \(-0.388451\pi\)
0.343312 + 0.939222i \(0.388451\pi\)
\(614\) −8.00000 −0.322854
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −31.0000 −1.24600 −0.622998 0.782224i \(-0.714085\pi\)
−0.622998 + 0.782224i \(0.714085\pi\)
\(620\) −6.00000 −0.240966
\(621\) 0 0
\(622\) −3.00000 −0.120289
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) −4.00000 −0.159617
\(629\) 24.0000 0.956943
\(630\) 0 0
\(631\) −10.0000 −0.398094 −0.199047 0.979990i \(-0.563785\pi\)
−0.199047 + 0.979990i \(0.563785\pi\)
\(632\) 13.0000 0.517112
\(633\) 0 0
\(634\) −15.0000 −0.595726
\(635\) 57.0000 2.26198
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 3.00000 0.118585
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −15.0000 −0.589711 −0.294855 0.955542i \(-0.595271\pi\)
−0.294855 + 0.955542i \(0.595271\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) −8.00000 −0.313786
\(651\) 0 0
\(652\) −19.0000 −0.744097
\(653\) 15.0000 0.586995 0.293498 0.955960i \(-0.405181\pi\)
0.293498 + 0.955960i \(0.405181\pi\)
\(654\) 0 0
\(655\) 36.0000 1.40664
\(656\) 9.00000 0.351391
\(657\) 0 0
\(658\) 0 0
\(659\) 45.0000 1.75295 0.876476 0.481446i \(-0.159888\pi\)
0.876476 + 0.481446i \(0.159888\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 19.0000 0.738456
\(663\) 0 0
\(664\) 9.00000 0.349268
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 33.0000 1.27490
\(671\) 5.00000 0.193023
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 22.0000 0.847408
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) −2.00000 −0.0765840
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) −4.00000 −0.152499
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 23.0000 0.874961 0.437481 0.899228i \(-0.355871\pi\)
0.437481 + 0.899228i \(0.355871\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −21.0000 −0.797149
\(695\) −6.00000 −0.227593
\(696\) 0 0
\(697\) 27.0000 1.02270
\(698\) −23.0000 −0.870563
\(699\) 0 0
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 1.00000 0.0376889
\(705\) 0 0
\(706\) −30.0000 −1.12906
\(707\) 0 0
\(708\) 0 0
\(709\) 14.0000 0.525781 0.262891 0.964826i \(-0.415324\pi\)
0.262891 + 0.964826i \(0.415324\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.0000 0.449719
\(713\) −6.00000 −0.224702
\(714\) 0 0
\(715\) −6.00000 −0.224387
\(716\) −6.00000 −0.224231
\(717\) 0 0
\(718\) 12.0000 0.447836
\(719\) −39.0000 −1.45445 −0.727227 0.686397i \(-0.759191\pi\)
−0.727227 + 0.686397i \(0.759191\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 15.0000 0.558242
\(723\) 0 0
\(724\) 20.0000 0.743294
\(725\) 0 0
\(726\) 0 0
\(727\) −4.00000 −0.148352 −0.0741759 0.997245i \(-0.523633\pi\)
−0.0741759 + 0.997245i \(0.523633\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 6.00000 0.222070
\(731\) −12.0000 −0.443836
\(732\) 0 0
\(733\) 47.0000 1.73598 0.867992 0.496578i \(-0.165410\pi\)
0.867992 + 0.496578i \(0.165410\pi\)
\(734\) 10.0000 0.369107
\(735\) 0 0
\(736\) 3.00000 0.110581
\(737\) 11.0000 0.405190
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) −24.0000 −0.882258
\(741\) 0 0
\(742\) 0 0
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) 36.0000 1.31894
\(746\) −23.0000 −0.842090
\(747\) 0 0
\(748\) 3.00000 0.109691
\(749\) 0 0
\(750\) 0 0
\(751\) 50.0000 1.82453 0.912263 0.409605i \(-0.134333\pi\)
0.912263 + 0.409605i \(0.134333\pi\)
\(752\) −3.00000 −0.109399
\(753\) 0 0
\(754\) 0 0
\(755\) −15.0000 −0.545906
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 1.00000 0.0363216
\(759\) 0 0
\(760\) 6.00000 0.217643
\(761\) 15.0000 0.543750 0.271875 0.962333i \(-0.412356\pi\)
0.271875 + 0.962333i \(0.412356\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) −12.0000 −0.433295
\(768\) 0 0
\(769\) −22.0000 −0.793340 −0.396670 0.917961i \(-0.629834\pi\)
−0.396670 + 0.917961i \(0.629834\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −16.0000 −0.575853
\(773\) 21.0000 0.755318 0.377659 0.925945i \(-0.376729\pi\)
0.377659 + 0.925945i \(0.376729\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) −5.00000 −0.179490
\(777\) 0 0
\(778\) −21.0000 −0.752886
\(779\) 18.0000 0.644917
\(780\) 0 0
\(781\) 0 0
\(782\) 9.00000 0.321839
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) 38.0000 1.35455 0.677277 0.735728i \(-0.263160\pi\)
0.677277 + 0.735728i \(0.263160\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) −39.0000 −1.38756
\(791\) 0 0
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 28.0000 0.993683
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) 45.0000 1.59398 0.796991 0.603991i \(-0.206424\pi\)
0.796991 + 0.603991i \(0.206424\pi\)
\(798\) 0 0
\(799\) −9.00000 −0.318397
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) 12.0000 0.423735
\(803\) 2.00000 0.0705785
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) −12.0000 −0.422159
\(809\) 39.0000 1.37117 0.685583 0.727994i \(-0.259547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −8.00000 −0.280400
\(815\) 57.0000 1.99662
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) −2.00000 −0.0699284
\(819\) 0 0
\(820\) −27.0000 −0.942881
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) −34.0000 −1.18517 −0.592583 0.805510i \(-0.701892\pi\)
−0.592583 + 0.805510i \(0.701892\pi\)
\(824\) −20.0000 −0.696733
\(825\) 0 0
\(826\) 0 0
\(827\) −45.0000 −1.56480 −0.782402 0.622774i \(-0.786006\pi\)
−0.782402 + 0.622774i \(0.786006\pi\)
\(828\) 0 0
\(829\) −52.0000 −1.80603 −0.903017 0.429604i \(-0.858653\pi\)
−0.903017 + 0.429604i \(0.858653\pi\)
\(830\) −27.0000 −0.937184
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 2.00000 0.0691714
\(837\) 0 0
\(838\) 18.0000 0.621800
\(839\) −9.00000 −0.310715 −0.155357 0.987858i \(-0.549653\pi\)
−0.155357 + 0.987858i \(0.549653\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −8.00000 −0.275698
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) 27.0000 0.928828
\(846\) 0 0
\(847\) 0 0
\(848\) −6.00000 −0.206041
\(849\) 0 0
\(850\) −12.0000 −0.411597
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) −19.0000 −0.650548 −0.325274 0.945620i \(-0.605456\pi\)
−0.325274 + 0.945620i \(0.605456\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 39.0000 1.33221 0.666107 0.745856i \(-0.267959\pi\)
0.666107 + 0.745856i \(0.267959\pi\)
\(858\) 0 0
\(859\) −7.00000 −0.238837 −0.119418 0.992844i \(-0.538103\pi\)
−0.119418 + 0.992844i \(0.538103\pi\)
\(860\) 12.0000 0.409197
\(861\) 0 0
\(862\) −30.0000 −1.02180
\(863\) 33.0000 1.12333 0.561667 0.827364i \(-0.310160\pi\)
0.561667 + 0.827364i \(0.310160\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) −35.0000 −1.18935
\(867\) 0 0
\(868\) 0 0
\(869\) −13.0000 −0.440995
\(870\) 0 0
\(871\) 22.0000 0.745442
\(872\) 1.00000 0.0338643
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) 0 0
\(876\) 0 0
\(877\) 11.0000 0.371444 0.185722 0.982602i \(-0.440538\pi\)
0.185722 + 0.982602i \(0.440538\pi\)
\(878\) −35.0000 −1.18119
\(879\) 0 0
\(880\) −3.00000 −0.101130
\(881\) 54.0000 1.81931 0.909653 0.415369i \(-0.136347\pi\)
0.909653 + 0.415369i \(0.136347\pi\)
\(882\) 0 0
\(883\) −7.00000 −0.235569 −0.117784 0.993039i \(-0.537579\pi\)
−0.117784 + 0.993039i \(0.537579\pi\)
\(884\) 6.00000 0.201802
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) −30.0000 −1.00730 −0.503651 0.863907i \(-0.668010\pi\)
−0.503651 + 0.863907i \(0.668010\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −36.0000 −1.20672
\(891\) 0 0
\(892\) 26.0000 0.870544
\(893\) −6.00000 −0.200782
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) −36.0000 −1.20134
\(899\) 0 0
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) −9.00000 −0.299667
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) −60.0000 −1.99447
\(906\) 0 0
\(907\) 41.0000 1.36138 0.680691 0.732570i \(-0.261680\pi\)
0.680691 + 0.732570i \(0.261680\pi\)
\(908\) −15.0000 −0.497792
\(909\) 0 0
\(910\) 0 0
\(911\) 27.0000 0.894550 0.447275 0.894397i \(-0.352395\pi\)
0.447275 + 0.894397i \(0.352395\pi\)
\(912\) 0 0
\(913\) −9.00000 −0.297857
\(914\) 40.0000 1.32308
\(915\) 0 0
\(916\) 20.0000 0.660819
\(917\) 0 0
\(918\) 0 0
\(919\) −37.0000 −1.22052 −0.610259 0.792202i \(-0.708935\pi\)
−0.610259 + 0.792202i \(0.708935\pi\)
\(920\) −9.00000 −0.296721
\(921\) 0 0
\(922\) 18.0000 0.592798
\(923\) 0 0
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 4.00000 0.131448
\(927\) 0 0
\(928\) 0 0
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −21.0000 −0.687878
\(933\) 0 0
\(934\) −42.0000 −1.37428
\(935\) −9.00000 −0.294331
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 9.00000 0.293548
\(941\) 30.0000 0.977972 0.488986 0.872292i \(-0.337367\pi\)
0.488986 + 0.872292i \(0.337367\pi\)
\(942\) 0 0
\(943\) −27.0000 −0.879241
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) 42.0000 1.36482 0.682408 0.730971i \(-0.260933\pi\)
0.682408 + 0.730971i \(0.260933\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) −8.00000 −0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) −45.0000 −1.45769 −0.728846 0.684677i \(-0.759943\pi\)
−0.728846 + 0.684677i \(0.759943\pi\)
\(954\) 0 0
\(955\) 36.0000 1.16493
\(956\) 0 0
\(957\) 0 0
\(958\) −12.0000 −0.387702
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −16.0000 −0.515861
\(963\) 0 0
\(964\) −4.00000 −0.128831
\(965\) 48.0000 1.54517
\(966\) 0 0
\(967\) 47.0000 1.51142 0.755709 0.654907i \(-0.227292\pi\)
0.755709 + 0.654907i \(0.227292\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) 15.0000 0.481621
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −38.0000 −1.21760
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) 0 0
\(982\) 9.00000 0.287202
\(983\) 21.0000 0.669796 0.334898 0.942254i \(-0.391298\pi\)
0.334898 + 0.942254i \(0.391298\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 4.00000 0.127257
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) 0 0
\(995\) 30.0000 0.951064
\(996\) 0 0
\(997\) 50.0000 1.58352 0.791758 0.610835i \(-0.209166\pi\)
0.791758 + 0.610835i \(0.209166\pi\)
\(998\) −20.0000 −0.633089
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.c.1.1 1
3.2 odd 2 9702.2.a.cd.1.1 1
7.2 even 3 1386.2.k.p.991.1 yes 2
7.4 even 3 1386.2.k.p.793.1 yes 2
7.6 odd 2 9702.2.a.z.1.1 1
21.2 odd 6 1386.2.k.b.991.1 yes 2
21.11 odd 6 1386.2.k.b.793.1 2
21.20 even 2 9702.2.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1386.2.k.b.793.1 2 21.11 odd 6
1386.2.k.b.991.1 yes 2 21.2 odd 6
1386.2.k.p.793.1 yes 2 7.4 even 3
1386.2.k.p.991.1 yes 2 7.2 even 3
9702.2.a.c.1.1 1 1.1 even 1 trivial
9702.2.a.z.1.1 1 7.6 odd 2
9702.2.a.bc.1.1 1 21.20 even 2
9702.2.a.cd.1.1 1 3.2 odd 2