# Properties

 Label 9702.2.a.br Level $9702$ Weight $2$ Character orbit 9702.a Self dual yes Analytic conductor $77.471$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [9702,2,Mod(1,9702)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(9702, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("9702.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9702.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$77.4708600410$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 154) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + q^{8}+O(q^{10})$$ q + q^2 + q^4 + q^8 $$q + q^{2} + q^{4} + q^{8} + q^{11} - q^{13} + q^{16} + 6 q^{17} + 2 q^{19} + q^{22} + 6 q^{23} - 5 q^{25} - q^{26} - 9 q^{29} - 4 q^{31} + q^{32} + 6 q^{34} + 2 q^{37} + 2 q^{38} + 6 q^{41} - 4 q^{43} + q^{44} + 6 q^{46} + 6 q^{47} - 5 q^{50} - q^{52} - 9 q^{58} + 3 q^{59} + 11 q^{61} - 4 q^{62} + q^{64} + 11 q^{67} + 6 q^{68} + 2 q^{73} + 2 q^{74} + 2 q^{76} + 5 q^{79} + 6 q^{82} + 6 q^{83} - 4 q^{86} + q^{88} + 18 q^{89} + 6 q^{92} + 6 q^{94} - 13 q^{97}+O(q^{100})$$ q + q^2 + q^4 + q^8 + q^11 - q^13 + q^16 + 6 * q^17 + 2 * q^19 + q^22 + 6 * q^23 - 5 * q^25 - q^26 - 9 * q^29 - 4 * q^31 + q^32 + 6 * q^34 + 2 * q^37 + 2 * q^38 + 6 * q^41 - 4 * q^43 + q^44 + 6 * q^46 + 6 * q^47 - 5 * q^50 - q^52 - 9 * q^58 + 3 * q^59 + 11 * q^61 - 4 * q^62 + q^64 + 11 * q^67 + 6 * q^68 + 2 * q^73 + 2 * q^74 + 2 * q^76 + 5 * q^79 + 6 * q^82 + 6 * q^83 - 4 * q^86 + q^88 + 18 * q^89 + 6 * q^92 + 6 * q^94 - 13 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 1.00000 0 0 0 1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$7$$ $$1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9702.2.a.br 1
3.b odd 2 1 1078.2.a.e 1
7.b odd 2 1 9702.2.a.bs 1
7.c even 3 2 1386.2.k.e 2
12.b even 2 1 8624.2.a.k 1
21.c even 2 1 1078.2.a.c 1
21.g even 6 2 1078.2.e.k 2
21.h odd 6 2 154.2.e.c 2
84.h odd 2 1 8624.2.a.u 1
84.n even 6 2 1232.2.q.d 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.e.c 2 21.h odd 6 2
1078.2.a.c 1 21.c even 2 1
1078.2.a.e 1 3.b odd 2 1
1078.2.e.k 2 21.g even 6 2
1232.2.q.d 2 84.n even 6 2
1386.2.k.e 2 7.c even 3 2
8624.2.a.k 1 12.b even 2 1
8624.2.a.u 1 84.h odd 2 1
9702.2.a.br 1 1.a even 1 1 trivial
9702.2.a.bs 1 7.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(9702))$$:

 $$T_{5}$$ T5 $$T_{13} + 1$$ T13 + 1 $$T_{17} - 6$$ T17 - 6 $$T_{19} - 2$$ T19 - 2 $$T_{23} - 6$$ T23 - 6 $$T_{29} + 9$$ T29 + 9

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T - 1$$
$13$ $$T + 1$$
$17$ $$T - 6$$
$19$ $$T - 2$$
$23$ $$T - 6$$
$29$ $$T + 9$$
$31$ $$T + 4$$
$37$ $$T - 2$$
$41$ $$T - 6$$
$43$ $$T + 4$$
$47$ $$T - 6$$
$53$ $$T$$
$59$ $$T - 3$$
$61$ $$T - 11$$
$67$ $$T - 11$$
$71$ $$T$$
$73$ $$T - 2$$
$79$ $$T - 5$$
$83$ $$T - 6$$
$89$ $$T - 18$$
$97$ $$T + 13$$