Properties

Label 9702.2.a.bg.1.1
Level $9702$
Weight $2$
Character 9702.1
Self dual yes
Analytic conductor $77.471$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 9702 = 2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9702.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(77.4708600410\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1386)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9702.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} +1.00000 q^{8} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{4} -2.00000 q^{5} +1.00000 q^{8} -2.00000 q^{10} -1.00000 q^{11} +2.00000 q^{13} +1.00000 q^{16} -3.00000 q^{17} +7.00000 q^{19} -2.00000 q^{20} -1.00000 q^{22} -7.00000 q^{23} -1.00000 q^{25} +2.00000 q^{26} -5.00000 q^{29} +2.00000 q^{31} +1.00000 q^{32} -3.00000 q^{34} +3.00000 q^{37} +7.00000 q^{38} -2.00000 q^{40} +6.00000 q^{41} +11.0000 q^{43} -1.00000 q^{44} -7.00000 q^{46} -7.00000 q^{47} -1.00000 q^{50} +2.00000 q^{52} -4.00000 q^{53} +2.00000 q^{55} -5.00000 q^{58} +11.0000 q^{59} +10.0000 q^{61} +2.00000 q^{62} +1.00000 q^{64} -4.00000 q^{65} -4.00000 q^{67} -3.00000 q^{68} -5.00000 q^{71} -8.00000 q^{73} +3.00000 q^{74} +7.00000 q^{76} -8.00000 q^{79} -2.00000 q^{80} +6.00000 q^{82} +14.0000 q^{83} +6.00000 q^{85} +11.0000 q^{86} -1.00000 q^{88} +2.00000 q^{89} -7.00000 q^{92} -7.00000 q^{94} -14.0000 q^{95} +15.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −2.00000 −0.632456
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) 7.00000 1.13555
\(39\) 0 0
\(40\) −2.00000 −0.316228
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −7.00000 −1.03209
\(47\) −7.00000 −1.02105 −0.510527 0.859861i \(-0.670550\pi\)
−0.510527 + 0.859861i \(0.670550\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) 0 0
\(58\) −5.00000 −0.656532
\(59\) 11.0000 1.43208 0.716039 0.698060i \(-0.245953\pi\)
0.716039 + 0.698060i \(0.245953\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 3.00000 0.348743
\(75\) 0 0
\(76\) 7.00000 0.802955
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) −2.00000 −0.223607
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 11.0000 1.18616
\(87\) 0 0
\(88\) −1.00000 −0.106600
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.00000 −0.729800
\(93\) 0 0
\(94\) −7.00000 −0.721995
\(95\) −14.0000 −1.43637
\(96\) 0 0
\(97\) 15.0000 1.52302 0.761510 0.648154i \(-0.224459\pi\)
0.761510 + 0.648154i \(0.224459\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −4.00000 −0.388514
\(107\) 18.0000 1.74013 0.870063 0.492941i \(-0.164078\pi\)
0.870063 + 0.492941i \(0.164078\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 2.00000 0.190693
\(111\) 0 0
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 14.0000 1.30551
\(116\) −5.00000 −0.464238
\(117\) 0 0
\(118\) 11.0000 1.01263
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 10.0000 0.905357
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0 0
\(130\) −4.00000 −0.350823
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) 17.0000 1.44192 0.720961 0.692976i \(-0.243701\pi\)
0.720961 + 0.692976i \(0.243701\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5.00000 −0.419591
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) −8.00000 −0.662085
\(147\) 0 0
\(148\) 3.00000 0.246598
\(149\) 17.0000 1.39269 0.696347 0.717705i \(-0.254807\pi\)
0.696347 + 0.717705i \(0.254807\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 7.00000 0.567775
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) −2.00000 −0.158114
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 14.0000 1.08661
\(167\) −10.0000 −0.773823 −0.386912 0.922117i \(-0.626458\pi\)
−0.386912 + 0.922117i \(0.626458\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) 11.0000 0.838742
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) 2.00000 0.149906
\(179\) −9.00000 −0.672692 −0.336346 0.941739i \(-0.609191\pi\)
−0.336346 + 0.941739i \(0.609191\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −7.00000 −0.516047
\(185\) −6.00000 −0.441129
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) −7.00000 −0.510527
\(189\) 0 0
\(190\) −14.0000 −1.01567
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 24.0000 1.72756 0.863779 0.503871i \(-0.168091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) 15.0000 1.07694
\(195\) 0 0
\(196\) 0 0
\(197\) 15.0000 1.06871 0.534353 0.845262i \(-0.320555\pi\)
0.534353 + 0.845262i \(0.320555\pi\)
\(198\) 0 0
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) 3.00000 0.211079
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) −10.0000 −0.696733
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) −7.00000 −0.484200
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) −4.00000 −0.274721
\(213\) 0 0
\(214\) 18.0000 1.23045
\(215\) −22.0000 −1.50039
\(216\) 0 0
\(217\) 0 0
\(218\) 4.00000 0.270914
\(219\) 0 0
\(220\) 2.00000 0.134840
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) 10.0000 0.663723 0.331862 0.943328i \(-0.392323\pi\)
0.331862 + 0.943328i \(0.392323\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 14.0000 0.923133
\(231\) 0 0
\(232\) −5.00000 −0.328266
\(233\) −9.00000 −0.589610 −0.294805 0.955557i \(-0.595255\pi\)
−0.294805 + 0.955557i \(0.595255\pi\)
\(234\) 0 0
\(235\) 14.0000 0.913259
\(236\) 11.0000 0.716039
\(237\) 0 0
\(238\) 0 0
\(239\) −10.0000 −0.646846 −0.323423 0.946254i \(-0.604834\pi\)
−0.323423 + 0.946254i \(0.604834\pi\)
\(240\) 0 0
\(241\) −4.00000 −0.257663 −0.128831 0.991667i \(-0.541123\pi\)
−0.128831 + 0.991667i \(0.541123\pi\)
\(242\) 1.00000 0.0642824
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 14.0000 0.890799
\(248\) 2.00000 0.127000
\(249\) 0 0
\(250\) 12.0000 0.758947
\(251\) 5.00000 0.315597 0.157799 0.987471i \(-0.449560\pi\)
0.157799 + 0.987471i \(0.449560\pi\)
\(252\) 0 0
\(253\) 7.00000 0.440086
\(254\) −19.0000 −1.19217
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) −8.00000 −0.494242
\(263\) 30.0000 1.84988 0.924940 0.380114i \(-0.124115\pi\)
0.924940 + 0.380114i \(0.124115\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 6.00000 0.362473
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 24.0000 1.44202 0.721010 0.692925i \(-0.243678\pi\)
0.721010 + 0.692925i \(0.243678\pi\)
\(278\) 17.0000 1.01959
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00000 0.178965 0.0894825 0.995988i \(-0.471479\pi\)
0.0894825 + 0.995988i \(0.471479\pi\)
\(282\) 0 0
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) −5.00000 −0.296695
\(285\) 0 0
\(286\) −2.00000 −0.118262
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 10.0000 0.587220
\(291\) 0 0
\(292\) −8.00000 −0.468165
\(293\) −3.00000 −0.175262 −0.0876309 0.996153i \(-0.527930\pi\)
−0.0876309 + 0.996153i \(0.527930\pi\)
\(294\) 0 0
\(295\) −22.0000 −1.28089
\(296\) 3.00000 0.174371
\(297\) 0 0
\(298\) 17.0000 0.984784
\(299\) −14.0000 −0.809641
\(300\) 0 0
\(301\) 0 0
\(302\) −5.00000 −0.287718
\(303\) 0 0
\(304\) 7.00000 0.401478
\(305\) −20.0000 −1.14520
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.00000 −0.227185
\(311\) 27.0000 1.53103 0.765515 0.643418i \(-0.222484\pi\)
0.765515 + 0.643418i \(0.222484\pi\)
\(312\) 0 0
\(313\) 15.0000 0.847850 0.423925 0.905697i \(-0.360652\pi\)
0.423925 + 0.905697i \(0.360652\pi\)
\(314\) 1.00000 0.0564333
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 0 0
\(319\) 5.00000 0.279946
\(320\) −2.00000 −0.111803
\(321\) 0 0
\(322\) 0 0
\(323\) −21.0000 −1.16847
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 6.00000 0.332309
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −14.0000 −0.769510 −0.384755 0.923019i \(-0.625714\pi\)
−0.384755 + 0.923019i \(0.625714\pi\)
\(332\) 14.0000 0.768350
\(333\) 0 0
\(334\) −10.0000 −0.547176
\(335\) 8.00000 0.437087
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) −9.00000 −0.489535
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) 0 0
\(344\) 11.0000 0.593080
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 24.0000 1.28839 0.644194 0.764862i \(-0.277193\pi\)
0.644194 + 0.764862i \(0.277193\pi\)
\(348\) 0 0
\(349\) 8.00000 0.428230 0.214115 0.976808i \(-0.431313\pi\)
0.214115 + 0.976808i \(0.431313\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 −0.0533002
\(353\) 10.0000 0.532246 0.266123 0.963939i \(-0.414257\pi\)
0.266123 + 0.963939i \(0.414257\pi\)
\(354\) 0 0
\(355\) 10.0000 0.530745
\(356\) 2.00000 0.106000
\(357\) 0 0
\(358\) −9.00000 −0.475665
\(359\) −18.0000 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) 0 0
\(365\) 16.0000 0.837478
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −7.00000 −0.364900
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 3.00000 0.155126
\(375\) 0 0
\(376\) −7.00000 −0.360997
\(377\) −10.0000 −0.515026
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) −14.0000 −0.718185
\(381\) 0 0
\(382\) −8.00000 −0.409316
\(383\) 31.0000 1.58403 0.792013 0.610504i \(-0.209033\pi\)
0.792013 + 0.610504i \(0.209033\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) 0 0
\(388\) 15.0000 0.761510
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 21.0000 1.06202
\(392\) 0 0
\(393\) 0 0
\(394\) 15.0000 0.755689
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) −3.00000 −0.150566 −0.0752828 0.997162i \(-0.523986\pi\)
−0.0752828 + 0.997162i \(0.523986\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) −1.00000 −0.0500000
\(401\) 32.0000 1.59800 0.799002 0.601329i \(-0.205362\pi\)
0.799002 + 0.601329i \(0.205362\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 3.00000 0.149256
\(405\) 0 0
\(406\) 0 0
\(407\) −3.00000 −0.148704
\(408\) 0 0
\(409\) 32.0000 1.58230 0.791149 0.611623i \(-0.209483\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) −12.0000 −0.592638
\(411\) 0 0
\(412\) −10.0000 −0.492665
\(413\) 0 0
\(414\) 0 0
\(415\) −28.0000 −1.37447
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) −7.00000 −0.342381
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) −17.0000 −0.828529 −0.414265 0.910156i \(-0.635961\pi\)
−0.414265 + 0.910156i \(0.635961\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) −4.00000 −0.194257
\(425\) 3.00000 0.145521
\(426\) 0 0
\(427\) 0 0
\(428\) 18.0000 0.870063
\(429\) 0 0
\(430\) −22.0000 −1.06093
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) −49.0000 −2.34399
\(438\) 0 0
\(439\) 5.00000 0.238637 0.119318 0.992856i \(-0.461929\pi\)
0.119318 + 0.992856i \(0.461929\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 41.0000 1.94797 0.973984 0.226615i \(-0.0727659\pi\)
0.973984 + 0.226615i \(0.0727659\pi\)
\(444\) 0 0
\(445\) −4.00000 −0.189618
\(446\) −14.0000 −0.662919
\(447\) 0 0
\(448\) 0 0
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 2.00000 0.0940721
\(453\) 0 0
\(454\) 10.0000 0.469323
\(455\) 0 0
\(456\) 0 0
\(457\) 40.0000 1.87112 0.935561 0.353166i \(-0.114895\pi\)
0.935561 + 0.353166i \(0.114895\pi\)
\(458\) −10.0000 −0.467269
\(459\) 0 0
\(460\) 14.0000 0.652753
\(461\) 13.0000 0.605470 0.302735 0.953075i \(-0.402100\pi\)
0.302735 + 0.953075i \(0.402100\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −5.00000 −0.232119
\(465\) 0 0
\(466\) −9.00000 −0.416917
\(467\) 13.0000 0.601568 0.300784 0.953692i \(-0.402752\pi\)
0.300784 + 0.953692i \(0.402752\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 14.0000 0.645772
\(471\) 0 0
\(472\) 11.0000 0.506316
\(473\) −11.0000 −0.505781
\(474\) 0 0
\(475\) −7.00000 −0.321182
\(476\) 0 0
\(477\) 0 0
\(478\) −10.0000 −0.457389
\(479\) 18.0000 0.822441 0.411220 0.911536i \(-0.365103\pi\)
0.411220 + 0.911536i \(0.365103\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) −4.00000 −0.182195
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −30.0000 −1.36223
\(486\) 0 0
\(487\) 18.0000 0.815658 0.407829 0.913058i \(-0.366286\pi\)
0.407829 + 0.913058i \(0.366286\pi\)
\(488\) 10.0000 0.452679
\(489\) 0 0
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 15.0000 0.675566
\(494\) 14.0000 0.629890
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 0 0
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 12.0000 0.536656
\(501\) 0 0
\(502\) 5.00000 0.223161
\(503\) −30.0000 −1.33763 −0.668817 0.743427i \(-0.733199\pi\)
−0.668817 + 0.743427i \(0.733199\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 7.00000 0.311188
\(507\) 0 0
\(508\) −19.0000 −0.842989
\(509\) 4.00000 0.177297 0.0886484 0.996063i \(-0.471745\pi\)
0.0886484 + 0.996063i \(0.471745\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −14.0000 −0.617514
\(515\) 20.0000 0.881305
\(516\) 0 0
\(517\) 7.00000 0.307860
\(518\) 0 0
\(519\) 0 0
\(520\) −4.00000 −0.175412
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) −8.00000 −0.349482
\(525\) 0 0
\(526\) 30.0000 1.30806
\(527\) −6.00000 −0.261364
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 8.00000 0.347498
\(531\) 0 0
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −36.0000 −1.55642
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) −20.0000 −0.862261
\(539\) 0 0
\(540\) 0 0
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) −8.00000 −0.342682
\(546\) 0 0
\(547\) −11.0000 −0.470326 −0.235163 0.971956i \(-0.575562\pi\)
−0.235163 + 0.971956i \(0.575562\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) −35.0000 −1.49105
\(552\) 0 0
\(553\) 0 0
\(554\) 24.0000 1.01966
\(555\) 0 0
\(556\) 17.0000 0.720961
\(557\) 9.00000 0.381342 0.190671 0.981654i \(-0.438934\pi\)
0.190671 + 0.981654i \(0.438934\pi\)
\(558\) 0 0
\(559\) 22.0000 0.930501
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 0.126547
\(563\) −42.0000 −1.77009 −0.885044 0.465506i \(-0.845872\pi\)
−0.885044 + 0.465506i \(0.845872\pi\)
\(564\) 0 0
\(565\) −4.00000 −0.168281
\(566\) 24.0000 1.00880
\(567\) 0 0
\(568\) −5.00000 −0.209795
\(569\) 13.0000 0.544988 0.272494 0.962157i \(-0.412151\pi\)
0.272494 + 0.962157i \(0.412151\pi\)
\(570\) 0 0
\(571\) −43.0000 −1.79949 −0.899747 0.436412i \(-0.856249\pi\)
−0.899747 + 0.436412i \(0.856249\pi\)
\(572\) −2.00000 −0.0836242
\(573\) 0 0
\(574\) 0 0
\(575\) 7.00000 0.291920
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) −8.00000 −0.332756
\(579\) 0 0
\(580\) 10.0000 0.415227
\(581\) 0 0
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) −3.00000 −0.123929
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 14.0000 0.576860
\(590\) −22.0000 −0.905726
\(591\) 0 0
\(592\) 3.00000 0.123299
\(593\) −21.0000 −0.862367 −0.431183 0.902264i \(-0.641904\pi\)
−0.431183 + 0.902264i \(0.641904\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 17.0000 0.696347
\(597\) 0 0
\(598\) −14.0000 −0.572503
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.00000 −0.203447
\(605\) −2.00000 −0.0813116
\(606\) 0 0
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) 7.00000 0.283887
\(609\) 0 0
\(610\) −20.0000 −0.809776
\(611\) −14.0000 −0.566379
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 28.0000 1.12999
\(615\) 0 0
\(616\) 0 0
\(617\) −20.0000 −0.805170 −0.402585 0.915383i \(-0.631888\pi\)
−0.402585 + 0.915383i \(0.631888\pi\)
\(618\) 0 0
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) 27.0000 1.08260
\(623\) 0 0
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 15.0000 0.599521
\(627\) 0 0
\(628\) 1.00000 0.0399043
\(629\) −9.00000 −0.358854
\(630\) 0 0
\(631\) −10.0000 −0.398094 −0.199047 0.979990i \(-0.563785\pi\)
−0.199047 + 0.979990i \(0.563785\pi\)
\(632\) −8.00000 −0.318223
\(633\) 0 0
\(634\) 30.0000 1.19145
\(635\) 38.0000 1.50798
\(636\) 0 0
\(637\) 0 0
\(638\) 5.00000 0.197952
\(639\) 0 0
\(640\) −2.00000 −0.0790569
\(641\) −12.0000 −0.473972 −0.236986 0.971513i \(-0.576159\pi\)
−0.236986 + 0.971513i \(0.576159\pi\)
\(642\) 0 0
\(643\) 40.0000 1.57745 0.788723 0.614749i \(-0.210743\pi\)
0.788723 + 0.614749i \(0.210743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −21.0000 −0.826234
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −11.0000 −0.431788
\(650\) −2.00000 −0.0784465
\(651\) 0 0
\(652\) 6.00000 0.234978
\(653\) −10.0000 −0.391330 −0.195665 0.980671i \(-0.562687\pi\)
−0.195665 + 0.980671i \(0.562687\pi\)
\(654\) 0 0
\(655\) 16.0000 0.625172
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) −11.0000 −0.427850 −0.213925 0.976850i \(-0.568625\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) −14.0000 −0.544125
\(663\) 0 0
\(664\) 14.0000 0.543305
\(665\) 0 0
\(666\) 0 0
\(667\) 35.0000 1.35521
\(668\) −10.0000 −0.386912
\(669\) 0 0
\(670\) 8.00000 0.309067
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) −10.0000 −0.385472 −0.192736 0.981251i \(-0.561736\pi\)
−0.192736 + 0.981251i \(0.561736\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −21.0000 −0.807096 −0.403548 0.914959i \(-0.632223\pi\)
−0.403548 + 0.914959i \(0.632223\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 6.00000 0.230089
\(681\) 0 0
\(682\) −2.00000 −0.0765840
\(683\) 39.0000 1.49229 0.746147 0.665782i \(-0.231902\pi\)
0.746147 + 0.665782i \(0.231902\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 0 0
\(688\) 11.0000 0.419371
\(689\) −8.00000 −0.304776
\(690\) 0 0
\(691\) 18.0000 0.684752 0.342376 0.939563i \(-0.388768\pi\)
0.342376 + 0.939563i \(0.388768\pi\)
\(692\) 14.0000 0.532200
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) −34.0000 −1.28969
\(696\) 0 0
\(697\) −18.0000 −0.681799
\(698\) 8.00000 0.302804
\(699\) 0 0
\(700\) 0 0
\(701\) −27.0000 −1.01978 −0.509888 0.860241i \(-0.670313\pi\)
−0.509888 + 0.860241i \(0.670313\pi\)
\(702\) 0 0
\(703\) 21.0000 0.792030
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) 10.0000 0.376355
\(707\) 0 0
\(708\) 0 0
\(709\) −31.0000 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 10.0000 0.375293
\(711\) 0 0
\(712\) 2.00000 0.0749532
\(713\) −14.0000 −0.524304
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) −9.00000 −0.336346
\(717\) 0 0
\(718\) −18.0000 −0.671754
\(719\) 9.00000 0.335643 0.167822 0.985817i \(-0.446327\pi\)
0.167822 + 0.985817i \(0.446327\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 30.0000 1.11648
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 5.00000 0.185695
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 16.0000 0.592187
\(731\) −33.0000 −1.22055
\(732\) 0 0
\(733\) 22.0000 0.812589 0.406294 0.913742i \(-0.366821\pi\)
0.406294 + 0.913742i \(0.366821\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −7.00000 −0.258023
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) −6.00000 −0.220564
\(741\) 0 0
\(742\) 0 0
\(743\) −4.00000 −0.146746 −0.0733729 0.997305i \(-0.523376\pi\)
−0.0733729 + 0.997305i \(0.523376\pi\)
\(744\) 0 0
\(745\) −34.0000 −1.24566
\(746\) −22.0000 −0.805477
\(747\) 0 0
\(748\) 3.00000 0.109691
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) −7.00000 −0.255264
\(753\) 0 0
\(754\) −10.0000 −0.364179
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) 15.0000 0.545184 0.272592 0.962130i \(-0.412119\pi\)
0.272592 + 0.962130i \(0.412119\pi\)
\(758\) −16.0000 −0.581146
\(759\) 0 0
\(760\) −14.0000 −0.507833
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 31.0000 1.12008
\(767\) 22.0000 0.794374
\(768\) 0 0
\(769\) 28.0000 1.00971 0.504853 0.863205i \(-0.331547\pi\)
0.504853 + 0.863205i \(0.331547\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 24.0000 0.863779
\(773\) 4.00000 0.143870 0.0719350 0.997409i \(-0.477083\pi\)
0.0719350 + 0.997409i \(0.477083\pi\)
\(774\) 0 0
\(775\) −2.00000 −0.0718421
\(776\) 15.0000 0.538469
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 42.0000 1.50481
\(780\) 0 0
\(781\) 5.00000 0.178914
\(782\) 21.0000 0.750958
\(783\) 0 0
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) −37.0000 −1.31891 −0.659454 0.751745i \(-0.729212\pi\)
−0.659454 + 0.751745i \(0.729212\pi\)
\(788\) 15.0000 0.534353
\(789\) 0 0
\(790\) 16.0000 0.569254
\(791\) 0 0
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) −3.00000 −0.106466
\(795\) 0 0
\(796\) 10.0000 0.354441
\(797\) −50.0000 −1.77109 −0.885545 0.464553i \(-0.846215\pi\)
−0.885545 + 0.464553i \(0.846215\pi\)
\(798\) 0 0
\(799\) 21.0000 0.742927
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 32.0000 1.12996
\(803\) 8.00000 0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 0.140894
\(807\) 0 0
\(808\) 3.00000 0.105540
\(809\) −14.0000 −0.492214 −0.246107 0.969243i \(-0.579151\pi\)
−0.246107 + 0.969243i \(0.579151\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −3.00000 −0.105150
\(815\) −12.0000 −0.420342
\(816\) 0 0
\(817\) 77.0000 2.69389
\(818\) 32.0000 1.11885
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) 50.0000 1.74501 0.872506 0.488603i \(-0.162493\pi\)
0.872506 + 0.488603i \(0.162493\pi\)
\(822\) 0 0
\(823\) −4.00000 −0.139431 −0.0697156 0.997567i \(-0.522209\pi\)
−0.0697156 + 0.997567i \(0.522209\pi\)
\(824\) −10.0000 −0.348367
\(825\) 0 0
\(826\) 0 0
\(827\) −10.0000 −0.347734 −0.173867 0.984769i \(-0.555626\pi\)
−0.173867 + 0.984769i \(0.555626\pi\)
\(828\) 0 0
\(829\) −17.0000 −0.590434 −0.295217 0.955430i \(-0.595392\pi\)
−0.295217 + 0.955430i \(0.595392\pi\)
\(830\) −28.0000 −0.971894
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) 0 0
\(834\) 0 0
\(835\) 20.0000 0.692129
\(836\) −7.00000 −0.242100
\(837\) 0 0
\(838\) 3.00000 0.103633
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −17.0000 −0.585859
\(843\) 0 0
\(844\) 20.0000 0.688428
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 0 0
\(848\) −4.00000 −0.137361
\(849\) 0 0
\(850\) 3.00000 0.102899
\(851\) −21.0000 −0.719871
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 18.0000 0.615227
\(857\) 21.0000 0.717346 0.358673 0.933463i \(-0.383229\pi\)
0.358673 + 0.933463i \(0.383229\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) −22.0000 −0.750194
\(861\) 0 0
\(862\) 40.0000 1.36241
\(863\) −28.0000 −0.953131 −0.476566 0.879139i \(-0.658119\pi\)
−0.476566 + 0.879139i \(0.658119\pi\)
\(864\) 0 0
\(865\) −28.0000 −0.952029
\(866\) 5.00000 0.169907
\(867\) 0 0
\(868\) 0 0
\(869\) 8.00000 0.271381
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 4.00000 0.135457
\(873\) 0 0
\(874\) −49.0000 −1.65745
\(875\) 0 0
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 5.00000 0.168742
\(879\) 0 0
\(880\) 2.00000 0.0674200
\(881\) 36.0000 1.21287 0.606435 0.795133i \(-0.292599\pi\)
0.606435 + 0.795133i \(0.292599\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) −6.00000 −0.201802
\(885\) 0 0
\(886\) 41.0000 1.37742
\(887\) −20.0000 −0.671534 −0.335767 0.941945i \(-0.608996\pi\)
−0.335767 + 0.941945i \(0.608996\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −4.00000 −0.134080
\(891\) 0 0
\(892\) −14.0000 −0.468755
\(893\) −49.0000 −1.63972
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) −36.0000 −1.20134
\(899\) −10.0000 −0.333519
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) −6.00000 −0.199778
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) −24.0000 −0.796907 −0.398453 0.917189i \(-0.630453\pi\)
−0.398453 + 0.917189i \(0.630453\pi\)
\(908\) 10.0000 0.331862
\(909\) 0 0
\(910\) 0 0
\(911\) 13.0000 0.430709 0.215355 0.976536i \(-0.430909\pi\)
0.215355 + 0.976536i \(0.430909\pi\)
\(912\) 0 0
\(913\) −14.0000 −0.463332
\(914\) 40.0000 1.32308
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) 43.0000 1.41844 0.709220 0.704988i \(-0.249047\pi\)
0.709220 + 0.704988i \(0.249047\pi\)
\(920\) 14.0000 0.461566
\(921\) 0 0
\(922\) 13.0000 0.428132
\(923\) −10.0000 −0.329154
\(924\) 0 0
\(925\) −3.00000 −0.0986394
\(926\) −24.0000 −0.788689
\(927\) 0 0
\(928\) −5.00000 −0.164133
\(929\) 4.00000 0.131236 0.0656179 0.997845i \(-0.479098\pi\)
0.0656179 + 0.997845i \(0.479098\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −9.00000 −0.294805
\(933\) 0 0
\(934\) 13.0000 0.425373
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 14.0000 0.456630
\(941\) 15.0000 0.488986 0.244493 0.969651i \(-0.421378\pi\)
0.244493 + 0.969651i \(0.421378\pi\)
\(942\) 0 0
\(943\) −42.0000 −1.36771
\(944\) 11.0000 0.358020
\(945\) 0 0
\(946\) −11.0000 −0.357641
\(947\) −27.0000 −0.877382 −0.438691 0.898638i \(-0.644558\pi\)
−0.438691 + 0.898638i \(0.644558\pi\)
\(948\) 0 0
\(949\) −16.0000 −0.519382
\(950\) −7.00000 −0.227110
\(951\) 0 0
\(952\) 0 0
\(953\) −10.0000 −0.323932 −0.161966 0.986796i \(-0.551783\pi\)
−0.161966 + 0.986796i \(0.551783\pi\)
\(954\) 0 0
\(955\) 16.0000 0.517748
\(956\) −10.0000 −0.323423
\(957\) 0 0
\(958\) 18.0000 0.581554
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 6.00000 0.193448
\(963\) 0 0
\(964\) −4.00000 −0.128831
\(965\) −48.0000 −1.54517
\(966\) 0 0
\(967\) −3.00000 −0.0964735 −0.0482367 0.998836i \(-0.515360\pi\)
−0.0482367 + 0.998836i \(0.515360\pi\)
\(968\) 1.00000 0.0321412
\(969\) 0 0
\(970\) −30.0000 −0.963242
\(971\) −36.0000 −1.15529 −0.577647 0.816286i \(-0.696029\pi\)
−0.577647 + 0.816286i \(0.696029\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 18.0000 0.576757
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) −44.0000 −1.40768 −0.703842 0.710356i \(-0.748534\pi\)
−0.703842 + 0.710356i \(0.748534\pi\)
\(978\) 0 0
\(979\) −2.00000 −0.0639203
\(980\) 0 0
\(981\) 0 0
\(982\) −26.0000 −0.829693
\(983\) 49.0000 1.56286 0.781429 0.623995i \(-0.214491\pi\)
0.781429 + 0.623995i \(0.214491\pi\)
\(984\) 0 0
\(985\) −30.0000 −0.955879
\(986\) 15.0000 0.477697
\(987\) 0 0
\(988\) 14.0000 0.445399
\(989\) −77.0000 −2.44846
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 2.00000 0.0635001
\(993\) 0 0
\(994\) 0 0
\(995\) −20.0000 −0.634043
\(996\) 0 0
\(997\) 30.0000 0.950110 0.475055 0.879956i \(-0.342428\pi\)
0.475055 + 0.879956i \(0.342428\pi\)
\(998\) −40.0000 −1.26618
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9702.2.a.bg.1.1 1
3.2 odd 2 9702.2.a.w.1.1 1
7.2 even 3 1386.2.k.i.991.1 yes 2
7.4 even 3 1386.2.k.i.793.1 2
7.6 odd 2 9702.2.a.bx.1.1 1
21.2 odd 6 1386.2.k.k.991.1 yes 2
21.11 odd 6 1386.2.k.k.793.1 yes 2
21.20 even 2 9702.2.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1386.2.k.i.793.1 2 7.4 even 3
1386.2.k.i.991.1 yes 2 7.2 even 3
1386.2.k.k.793.1 yes 2 21.11 odd 6
1386.2.k.k.991.1 yes 2 21.2 odd 6
9702.2.a.j.1.1 1 21.20 even 2
9702.2.a.w.1.1 1 3.2 odd 2
9702.2.a.bg.1.1 1 1.1 even 1 trivial
9702.2.a.bx.1.1 1 7.6 odd 2