Properties

Label 9680.2.a.cy.1.1
Level $9680$
Weight $2$
Character 9680.1
Self dual yes
Analytic conductor $77.295$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9680,2,Mod(1,9680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9680.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.2951891566\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.45753625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 13x^{4} + 11x^{3} + 41x^{2} - 30x - 20 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.04842\) of defining polynomial
Character \(\chi\) \(=\) 9680.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.31441 q^{3} -1.00000 q^{5} +0.185958 q^{7} +7.98529 q^{9} -3.01352 q^{13} +3.31441 q^{15} -5.11840 q^{17} -4.86246 q^{19} -0.616340 q^{21} -6.20391 q^{23} +1.00000 q^{25} -16.5233 q^{27} +0.190393 q^{29} -8.06089 q^{31} -0.185958 q^{35} -2.55988 q^{37} +9.98803 q^{39} +8.95655 q^{41} -7.83103 q^{43} -7.98529 q^{45} +5.30075 q^{47} -6.96542 q^{49} +16.9645 q^{51} +1.30089 q^{53} +16.1162 q^{57} +0.593594 q^{59} +1.13498 q^{61} +1.48493 q^{63} +3.01352 q^{65} +1.73474 q^{67} +20.5623 q^{69} -13.0710 q^{71} -0.894075 q^{73} -3.31441 q^{75} +13.3047 q^{79} +30.8090 q^{81} -16.9499 q^{83} +5.11840 q^{85} -0.631040 q^{87} -7.22907 q^{89} -0.560388 q^{91} +26.7171 q^{93} +4.86246 q^{95} +3.39538 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - 6 q^{5} + 6 q^{7} + 10 q^{9} + 6 q^{13} + 2 q^{15} - 11 q^{17} - 11 q^{19} - 2 q^{21} - 18 q^{23} + 6 q^{25} + q^{27} + 6 q^{29} - q^{31} - 6 q^{35} + 4 q^{37} + 27 q^{39} + 4 q^{41} + 3 q^{43}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.31441 −1.91357 −0.956787 0.290790i \(-0.906082\pi\)
−0.956787 + 0.290790i \(0.906082\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 0.185958 0.0702854 0.0351427 0.999382i \(-0.488811\pi\)
0.0351427 + 0.999382i \(0.488811\pi\)
\(8\) 0 0
\(9\) 7.98529 2.66176
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −3.01352 −0.835800 −0.417900 0.908493i \(-0.637234\pi\)
−0.417900 + 0.908493i \(0.637234\pi\)
\(14\) 0 0
\(15\) 3.31441 0.855776
\(16\) 0 0
\(17\) −5.11840 −1.24139 −0.620697 0.784051i \(-0.713150\pi\)
−0.620697 + 0.784051i \(0.713150\pi\)
\(18\) 0 0
\(19\) −4.86246 −1.11552 −0.557762 0.830001i \(-0.688340\pi\)
−0.557762 + 0.830001i \(0.688340\pi\)
\(20\) 0 0
\(21\) −0.616340 −0.134496
\(22\) 0 0
\(23\) −6.20391 −1.29361 −0.646803 0.762657i \(-0.723894\pi\)
−0.646803 + 0.762657i \(0.723894\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −16.5233 −3.17991
\(28\) 0 0
\(29\) 0.190393 0.0353551 0.0176776 0.999844i \(-0.494373\pi\)
0.0176776 + 0.999844i \(0.494373\pi\)
\(30\) 0 0
\(31\) −8.06089 −1.44778 −0.723889 0.689916i \(-0.757647\pi\)
−0.723889 + 0.689916i \(0.757647\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.185958 −0.0314326
\(36\) 0 0
\(37\) −2.55988 −0.420841 −0.210421 0.977611i \(-0.567483\pi\)
−0.210421 + 0.977611i \(0.567483\pi\)
\(38\) 0 0
\(39\) 9.98803 1.59937
\(40\) 0 0
\(41\) 8.95655 1.39878 0.699389 0.714741i \(-0.253456\pi\)
0.699389 + 0.714741i \(0.253456\pi\)
\(42\) 0 0
\(43\) −7.83103 −1.19422 −0.597111 0.802159i \(-0.703685\pi\)
−0.597111 + 0.802159i \(0.703685\pi\)
\(44\) 0 0
\(45\) −7.98529 −1.19038
\(46\) 0 0
\(47\) 5.30075 0.773193 0.386597 0.922249i \(-0.373651\pi\)
0.386597 + 0.922249i \(0.373651\pi\)
\(48\) 0 0
\(49\) −6.96542 −0.995060
\(50\) 0 0
\(51\) 16.9645 2.37550
\(52\) 0 0
\(53\) 1.30089 0.178690 0.0893452 0.996001i \(-0.471523\pi\)
0.0893452 + 0.996001i \(0.471523\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 16.1162 2.13464
\(58\) 0 0
\(59\) 0.593594 0.0772793 0.0386397 0.999253i \(-0.487698\pi\)
0.0386397 + 0.999253i \(0.487698\pi\)
\(60\) 0 0
\(61\) 1.13498 0.145319 0.0726595 0.997357i \(-0.476851\pi\)
0.0726595 + 0.997357i \(0.476851\pi\)
\(62\) 0 0
\(63\) 1.48493 0.187083
\(64\) 0 0
\(65\) 3.01352 0.373781
\(66\) 0 0
\(67\) 1.73474 0.211932 0.105966 0.994370i \(-0.466207\pi\)
0.105966 + 0.994370i \(0.466207\pi\)
\(68\) 0 0
\(69\) 20.5623 2.47541
\(70\) 0 0
\(71\) −13.0710 −1.55125 −0.775623 0.631197i \(-0.782564\pi\)
−0.775623 + 0.631197i \(0.782564\pi\)
\(72\) 0 0
\(73\) −0.894075 −0.104644 −0.0523218 0.998630i \(-0.516662\pi\)
−0.0523218 + 0.998630i \(0.516662\pi\)
\(74\) 0 0
\(75\) −3.31441 −0.382715
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.3047 1.49689 0.748446 0.663196i \(-0.230800\pi\)
0.748446 + 0.663196i \(0.230800\pi\)
\(80\) 0 0
\(81\) 30.8090 3.42322
\(82\) 0 0
\(83\) −16.9499 −1.86049 −0.930246 0.366937i \(-0.880407\pi\)
−0.930246 + 0.366937i \(0.880407\pi\)
\(84\) 0 0
\(85\) 5.11840 0.555168
\(86\) 0 0
\(87\) −0.631040 −0.0676546
\(88\) 0 0
\(89\) −7.22907 −0.766280 −0.383140 0.923690i \(-0.625157\pi\)
−0.383140 + 0.923690i \(0.625157\pi\)
\(90\) 0 0
\(91\) −0.560388 −0.0587446
\(92\) 0 0
\(93\) 26.7171 2.77043
\(94\) 0 0
\(95\) 4.86246 0.498878
\(96\) 0 0
\(97\) 3.39538 0.344748 0.172374 0.985032i \(-0.444856\pi\)
0.172374 + 0.985032i \(0.444856\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.289237 0.0287802 0.0143901 0.999896i \(-0.495419\pi\)
0.0143901 + 0.999896i \(0.495419\pi\)
\(102\) 0 0
\(103\) −17.3893 −1.71342 −0.856711 0.515797i \(-0.827496\pi\)
−0.856711 + 0.515797i \(0.827496\pi\)
\(104\) 0 0
\(105\) 0.616340 0.0601486
\(106\) 0 0
\(107\) −12.1746 −1.17697 −0.588483 0.808510i \(-0.700275\pi\)
−0.588483 + 0.808510i \(0.700275\pi\)
\(108\) 0 0
\(109\) −14.0940 −1.34996 −0.674978 0.737838i \(-0.735847\pi\)
−0.674978 + 0.737838i \(0.735847\pi\)
\(110\) 0 0
\(111\) 8.48448 0.805311
\(112\) 0 0
\(113\) 10.4723 0.985148 0.492574 0.870271i \(-0.336056\pi\)
0.492574 + 0.870271i \(0.336056\pi\)
\(114\) 0 0
\(115\) 6.20391 0.578518
\(116\) 0 0
\(117\) −24.0638 −2.22470
\(118\) 0 0
\(119\) −0.951806 −0.0872519
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −29.6856 −2.67666
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 1.09867 0.0974909 0.0487454 0.998811i \(-0.484478\pi\)
0.0487454 + 0.998811i \(0.484478\pi\)
\(128\) 0 0
\(129\) 25.9552 2.28523
\(130\) 0 0
\(131\) 7.88959 0.689317 0.344659 0.938728i \(-0.387995\pi\)
0.344659 + 0.938728i \(0.387995\pi\)
\(132\) 0 0
\(133\) −0.904212 −0.0784051
\(134\) 0 0
\(135\) 16.5233 1.42210
\(136\) 0 0
\(137\) 5.06861 0.433040 0.216520 0.976278i \(-0.430529\pi\)
0.216520 + 0.976278i \(0.430529\pi\)
\(138\) 0 0
\(139\) −8.35531 −0.708689 −0.354344 0.935115i \(-0.615296\pi\)
−0.354344 + 0.935115i \(0.615296\pi\)
\(140\) 0 0
\(141\) −17.5688 −1.47956
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −0.190393 −0.0158113
\(146\) 0 0
\(147\) 23.0862 1.90412
\(148\) 0 0
\(149\) −20.3880 −1.67025 −0.835126 0.550058i \(-0.814606\pi\)
−0.835126 + 0.550058i \(0.814606\pi\)
\(150\) 0 0
\(151\) 13.1942 1.07373 0.536864 0.843669i \(-0.319609\pi\)
0.536864 + 0.843669i \(0.319609\pi\)
\(152\) 0 0
\(153\) −40.8719 −3.30430
\(154\) 0 0
\(155\) 8.06089 0.647466
\(156\) 0 0
\(157\) −18.2689 −1.45801 −0.729007 0.684506i \(-0.760018\pi\)
−0.729007 + 0.684506i \(0.760018\pi\)
\(158\) 0 0
\(159\) −4.31167 −0.341937
\(160\) 0 0
\(161\) −1.15367 −0.0909216
\(162\) 0 0
\(163\) −13.5139 −1.05849 −0.529245 0.848469i \(-0.677525\pi\)
−0.529245 + 0.848469i \(0.677525\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.74944 −0.290141 −0.145070 0.989421i \(-0.546341\pi\)
−0.145070 + 0.989421i \(0.546341\pi\)
\(168\) 0 0
\(169\) −3.91869 −0.301438
\(170\) 0 0
\(171\) −38.8281 −2.96926
\(172\) 0 0
\(173\) −9.68177 −0.736092 −0.368046 0.929808i \(-0.619973\pi\)
−0.368046 + 0.929808i \(0.619973\pi\)
\(174\) 0 0
\(175\) 0.185958 0.0140571
\(176\) 0 0
\(177\) −1.96741 −0.147880
\(178\) 0 0
\(179\) −10.9136 −0.815722 −0.407861 0.913044i \(-0.633725\pi\)
−0.407861 + 0.913044i \(0.633725\pi\)
\(180\) 0 0
\(181\) −8.06298 −0.599317 −0.299658 0.954047i \(-0.596873\pi\)
−0.299658 + 0.954047i \(0.596873\pi\)
\(182\) 0 0
\(183\) −3.76178 −0.278079
\(184\) 0 0
\(185\) 2.55988 0.188206
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −3.07263 −0.223501
\(190\) 0 0
\(191\) 12.7826 0.924917 0.462459 0.886641i \(-0.346967\pi\)
0.462459 + 0.886641i \(0.346967\pi\)
\(192\) 0 0
\(193\) −10.4395 −0.751449 −0.375725 0.926731i \(-0.622606\pi\)
−0.375725 + 0.926731i \(0.622606\pi\)
\(194\) 0 0
\(195\) −9.98803 −0.715258
\(196\) 0 0
\(197\) 19.4651 1.38683 0.693417 0.720537i \(-0.256105\pi\)
0.693417 + 0.720537i \(0.256105\pi\)
\(198\) 0 0
\(199\) 16.0219 1.13576 0.567882 0.823110i \(-0.307763\pi\)
0.567882 + 0.823110i \(0.307763\pi\)
\(200\) 0 0
\(201\) −5.74963 −0.405548
\(202\) 0 0
\(203\) 0.0354051 0.00248495
\(204\) 0 0
\(205\) −8.95655 −0.625553
\(206\) 0 0
\(207\) −49.5401 −3.44327
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 8.78115 0.604519 0.302260 0.953226i \(-0.402259\pi\)
0.302260 + 0.953226i \(0.402259\pi\)
\(212\) 0 0
\(213\) 43.3227 2.96842
\(214\) 0 0
\(215\) 7.83103 0.534072
\(216\) 0 0
\(217\) −1.49899 −0.101758
\(218\) 0 0
\(219\) 2.96333 0.200243
\(220\) 0 0
\(221\) 15.4244 1.03756
\(222\) 0 0
\(223\) −2.82855 −0.189414 −0.0947069 0.995505i \(-0.530191\pi\)
−0.0947069 + 0.995505i \(0.530191\pi\)
\(224\) 0 0
\(225\) 7.98529 0.532353
\(226\) 0 0
\(227\) −17.2352 −1.14394 −0.571971 0.820274i \(-0.693821\pi\)
−0.571971 + 0.820274i \(0.693821\pi\)
\(228\) 0 0
\(229\) −11.0399 −0.729540 −0.364770 0.931098i \(-0.618852\pi\)
−0.364770 + 0.931098i \(0.618852\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −23.7716 −1.55733 −0.778665 0.627440i \(-0.784103\pi\)
−0.778665 + 0.627440i \(0.784103\pi\)
\(234\) 0 0
\(235\) −5.30075 −0.345783
\(236\) 0 0
\(237\) −44.0971 −2.86441
\(238\) 0 0
\(239\) 21.1341 1.36705 0.683527 0.729925i \(-0.260445\pi\)
0.683527 + 0.729925i \(0.260445\pi\)
\(240\) 0 0
\(241\) −2.31116 −0.148875 −0.0744373 0.997226i \(-0.523716\pi\)
−0.0744373 + 0.997226i \(0.523716\pi\)
\(242\) 0 0
\(243\) −52.5437 −3.37068
\(244\) 0 0
\(245\) 6.96542 0.445004
\(246\) 0 0
\(247\) 14.6531 0.932356
\(248\) 0 0
\(249\) 56.1788 3.56019
\(250\) 0 0
\(251\) −6.10022 −0.385043 −0.192521 0.981293i \(-0.561666\pi\)
−0.192521 + 0.981293i \(0.561666\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −16.9645 −1.06236
\(256\) 0 0
\(257\) 8.39635 0.523750 0.261875 0.965102i \(-0.415659\pi\)
0.261875 + 0.965102i \(0.415659\pi\)
\(258\) 0 0
\(259\) −0.476029 −0.0295790
\(260\) 0 0
\(261\) 1.52034 0.0941070
\(262\) 0 0
\(263\) 2.04759 0.126260 0.0631299 0.998005i \(-0.479892\pi\)
0.0631299 + 0.998005i \(0.479892\pi\)
\(264\) 0 0
\(265\) −1.30089 −0.0799128
\(266\) 0 0
\(267\) 23.9601 1.46633
\(268\) 0 0
\(269\) −19.2656 −1.17465 −0.587323 0.809353i \(-0.699818\pi\)
−0.587323 + 0.809353i \(0.699818\pi\)
\(270\) 0 0
\(271\) −19.3285 −1.17412 −0.587062 0.809542i \(-0.699715\pi\)
−0.587062 + 0.809542i \(0.699715\pi\)
\(272\) 0 0
\(273\) 1.85735 0.112412
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.2455 1.57694 0.788471 0.615072i \(-0.210873\pi\)
0.788471 + 0.615072i \(0.210873\pi\)
\(278\) 0 0
\(279\) −64.3686 −3.85364
\(280\) 0 0
\(281\) −4.01816 −0.239703 −0.119852 0.992792i \(-0.538242\pi\)
−0.119852 + 0.992792i \(0.538242\pi\)
\(282\) 0 0
\(283\) −6.68519 −0.397393 −0.198697 0.980061i \(-0.563671\pi\)
−0.198697 + 0.980061i \(0.563671\pi\)
\(284\) 0 0
\(285\) −16.1162 −0.954639
\(286\) 0 0
\(287\) 1.66554 0.0983137
\(288\) 0 0
\(289\) 9.19800 0.541059
\(290\) 0 0
\(291\) −11.2537 −0.659701
\(292\) 0 0
\(293\) 8.38301 0.489741 0.244870 0.969556i \(-0.421255\pi\)
0.244870 + 0.969556i \(0.421255\pi\)
\(294\) 0 0
\(295\) −0.593594 −0.0345604
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.6956 1.08120
\(300\) 0 0
\(301\) −1.45624 −0.0839364
\(302\) 0 0
\(303\) −0.958650 −0.0550730
\(304\) 0 0
\(305\) −1.13498 −0.0649887
\(306\) 0 0
\(307\) 5.76000 0.328741 0.164370 0.986399i \(-0.447441\pi\)
0.164370 + 0.986399i \(0.447441\pi\)
\(308\) 0 0
\(309\) 57.6353 3.27876
\(310\) 0 0
\(311\) 1.02983 0.0583965 0.0291982 0.999574i \(-0.490705\pi\)
0.0291982 + 0.999574i \(0.490705\pi\)
\(312\) 0 0
\(313\) −7.93402 −0.448457 −0.224229 0.974537i \(-0.571986\pi\)
−0.224229 + 0.974537i \(0.571986\pi\)
\(314\) 0 0
\(315\) −1.48493 −0.0836662
\(316\) 0 0
\(317\) −21.3964 −1.20174 −0.600871 0.799346i \(-0.705179\pi\)
−0.600871 + 0.799346i \(0.705179\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 40.3517 2.25221
\(322\) 0 0
\(323\) 24.8880 1.38481
\(324\) 0 0
\(325\) −3.01352 −0.167160
\(326\) 0 0
\(327\) 46.7131 2.58324
\(328\) 0 0
\(329\) 0.985715 0.0543442
\(330\) 0 0
\(331\) 18.0669 0.993047 0.496523 0.868023i \(-0.334610\pi\)
0.496523 + 0.868023i \(0.334610\pi\)
\(332\) 0 0
\(333\) −20.4414 −1.12018
\(334\) 0 0
\(335\) −1.73474 −0.0947789
\(336\) 0 0
\(337\) −2.38869 −0.130120 −0.0650601 0.997881i \(-0.520724\pi\)
−0.0650601 + 0.997881i \(0.520724\pi\)
\(338\) 0 0
\(339\) −34.7094 −1.88515
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −2.59698 −0.140224
\(344\) 0 0
\(345\) −20.5623 −1.10704
\(346\) 0 0
\(347\) 19.3558 1.03908 0.519538 0.854447i \(-0.326104\pi\)
0.519538 + 0.854447i \(0.326104\pi\)
\(348\) 0 0
\(349\) 30.0338 1.60767 0.803837 0.594849i \(-0.202788\pi\)
0.803837 + 0.594849i \(0.202788\pi\)
\(350\) 0 0
\(351\) 49.7933 2.65777
\(352\) 0 0
\(353\) −23.8329 −1.26850 −0.634249 0.773129i \(-0.718691\pi\)
−0.634249 + 0.773129i \(0.718691\pi\)
\(354\) 0 0
\(355\) 13.0710 0.693738
\(356\) 0 0
\(357\) 3.15467 0.166963
\(358\) 0 0
\(359\) −7.32283 −0.386484 −0.193242 0.981151i \(-0.561900\pi\)
−0.193242 + 0.981151i \(0.561900\pi\)
\(360\) 0 0
\(361\) 4.64350 0.244395
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.894075 0.0467980
\(366\) 0 0
\(367\) 33.6772 1.75794 0.878969 0.476879i \(-0.158232\pi\)
0.878969 + 0.476879i \(0.158232\pi\)
\(368\) 0 0
\(369\) 71.5207 3.72322
\(370\) 0 0
\(371\) 0.241910 0.0125593
\(372\) 0 0
\(373\) 28.3365 1.46721 0.733605 0.679576i \(-0.237836\pi\)
0.733605 + 0.679576i \(0.237836\pi\)
\(374\) 0 0
\(375\) 3.31441 0.171155
\(376\) 0 0
\(377\) −0.573754 −0.0295498
\(378\) 0 0
\(379\) 14.4046 0.739915 0.369957 0.929049i \(-0.379372\pi\)
0.369957 + 0.929049i \(0.379372\pi\)
\(380\) 0 0
\(381\) −3.64143 −0.186556
\(382\) 0 0
\(383\) 16.2257 0.829093 0.414547 0.910028i \(-0.363940\pi\)
0.414547 + 0.910028i \(0.363940\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −62.5331 −3.17874
\(388\) 0 0
\(389\) 32.3071 1.63803 0.819017 0.573770i \(-0.194520\pi\)
0.819017 + 0.573770i \(0.194520\pi\)
\(390\) 0 0
\(391\) 31.7541 1.60587
\(392\) 0 0
\(393\) −26.1493 −1.31906
\(394\) 0 0
\(395\) −13.3047 −0.669430
\(396\) 0 0
\(397\) −7.36161 −0.369469 −0.184734 0.982788i \(-0.559142\pi\)
−0.184734 + 0.982788i \(0.559142\pi\)
\(398\) 0 0
\(399\) 2.99693 0.150034
\(400\) 0 0
\(401\) −35.2451 −1.76006 −0.880029 0.474920i \(-0.842477\pi\)
−0.880029 + 0.474920i \(0.842477\pi\)
\(402\) 0 0
\(403\) 24.2917 1.21005
\(404\) 0 0
\(405\) −30.8090 −1.53091
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 14.3104 0.707605 0.353803 0.935320i \(-0.384888\pi\)
0.353803 + 0.935320i \(0.384888\pi\)
\(410\) 0 0
\(411\) −16.7994 −0.828654
\(412\) 0 0
\(413\) 0.110383 0.00543161
\(414\) 0 0
\(415\) 16.9499 0.832037
\(416\) 0 0
\(417\) 27.6929 1.35613
\(418\) 0 0
\(419\) −8.62183 −0.421204 −0.210602 0.977572i \(-0.567542\pi\)
−0.210602 + 0.977572i \(0.567542\pi\)
\(420\) 0 0
\(421\) −36.5707 −1.78235 −0.891174 0.453661i \(-0.850118\pi\)
−0.891174 + 0.453661i \(0.850118\pi\)
\(422\) 0 0
\(423\) 42.3280 2.05806
\(424\) 0 0
\(425\) −5.11840 −0.248279
\(426\) 0 0
\(427\) 0.211058 0.0102138
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.4029 −0.549257 −0.274629 0.961550i \(-0.588555\pi\)
−0.274629 + 0.961550i \(0.588555\pi\)
\(432\) 0 0
\(433\) −3.41134 −0.163938 −0.0819692 0.996635i \(-0.526121\pi\)
−0.0819692 + 0.996635i \(0.526121\pi\)
\(434\) 0 0
\(435\) 0.631040 0.0302561
\(436\) 0 0
\(437\) 30.1663 1.44305
\(438\) 0 0
\(439\) 2.90901 0.138839 0.0694196 0.997588i \(-0.477885\pi\)
0.0694196 + 0.997588i \(0.477885\pi\)
\(440\) 0 0
\(441\) −55.6209 −2.64861
\(442\) 0 0
\(443\) −15.0524 −0.715162 −0.357581 0.933882i \(-0.616398\pi\)
−0.357581 + 0.933882i \(0.616398\pi\)
\(444\) 0 0
\(445\) 7.22907 0.342691
\(446\) 0 0
\(447\) 67.5742 3.19615
\(448\) 0 0
\(449\) 2.60396 0.122889 0.0614443 0.998111i \(-0.480429\pi\)
0.0614443 + 0.998111i \(0.480429\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −43.7309 −2.05466
\(454\) 0 0
\(455\) 0.560388 0.0262714
\(456\) 0 0
\(457\) 5.13890 0.240388 0.120194 0.992750i \(-0.461648\pi\)
0.120194 + 0.992750i \(0.461648\pi\)
\(458\) 0 0
\(459\) 84.5728 3.94752
\(460\) 0 0
\(461\) −37.7325 −1.75738 −0.878688 0.477396i \(-0.841581\pi\)
−0.878688 + 0.477396i \(0.841581\pi\)
\(462\) 0 0
\(463\) 14.7816 0.686961 0.343481 0.939160i \(-0.388394\pi\)
0.343481 + 0.939160i \(0.388394\pi\)
\(464\) 0 0
\(465\) −26.7171 −1.23897
\(466\) 0 0
\(467\) 8.75904 0.405320 0.202660 0.979249i \(-0.435041\pi\)
0.202660 + 0.979249i \(0.435041\pi\)
\(468\) 0 0
\(469\) 0.322588 0.0148957
\(470\) 0 0
\(471\) 60.5504 2.79002
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.86246 −0.223105
\(476\) 0 0
\(477\) 10.3880 0.475632
\(478\) 0 0
\(479\) 1.14200 0.0521793 0.0260897 0.999660i \(-0.491694\pi\)
0.0260897 + 0.999660i \(0.491694\pi\)
\(480\) 0 0
\(481\) 7.71425 0.351739
\(482\) 0 0
\(483\) 3.82372 0.173985
\(484\) 0 0
\(485\) −3.39538 −0.154176
\(486\) 0 0
\(487\) −1.40585 −0.0637054 −0.0318527 0.999493i \(-0.510141\pi\)
−0.0318527 + 0.999493i \(0.510141\pi\)
\(488\) 0 0
\(489\) 44.7905 2.02550
\(490\) 0 0
\(491\) −31.7045 −1.43081 −0.715403 0.698712i \(-0.753757\pi\)
−0.715403 + 0.698712i \(0.753757\pi\)
\(492\) 0 0
\(493\) −0.974508 −0.0438896
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.43066 −0.109030
\(498\) 0 0
\(499\) 9.59073 0.429340 0.214670 0.976687i \(-0.431132\pi\)
0.214670 + 0.976687i \(0.431132\pi\)
\(500\) 0 0
\(501\) 12.4272 0.555205
\(502\) 0 0
\(503\) −42.3759 −1.88945 −0.944725 0.327865i \(-0.893671\pi\)
−0.944725 + 0.327865i \(0.893671\pi\)
\(504\) 0 0
\(505\) −0.289237 −0.0128709
\(506\) 0 0
\(507\) 12.9881 0.576824
\(508\) 0 0
\(509\) 32.1889 1.42675 0.713374 0.700784i \(-0.247166\pi\)
0.713374 + 0.700784i \(0.247166\pi\)
\(510\) 0 0
\(511\) −0.166260 −0.00735492
\(512\) 0 0
\(513\) 80.3438 3.54726
\(514\) 0 0
\(515\) 17.3893 0.766265
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 32.0893 1.40857
\(520\) 0 0
\(521\) 16.9751 0.743692 0.371846 0.928294i \(-0.378725\pi\)
0.371846 + 0.928294i \(0.378725\pi\)
\(522\) 0 0
\(523\) −3.13310 −0.137001 −0.0685004 0.997651i \(-0.521821\pi\)
−0.0685004 + 0.997651i \(0.521821\pi\)
\(524\) 0 0
\(525\) −0.616340 −0.0268993
\(526\) 0 0
\(527\) 41.2588 1.79726
\(528\) 0 0
\(529\) 15.4885 0.673415
\(530\) 0 0
\(531\) 4.74002 0.205699
\(532\) 0 0
\(533\) −26.9907 −1.16910
\(534\) 0 0
\(535\) 12.1746 0.526355
\(536\) 0 0
\(537\) 36.1722 1.56094
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.9558 −0.900961 −0.450480 0.892786i \(-0.648747\pi\)
−0.450480 + 0.892786i \(0.648747\pi\)
\(542\) 0 0
\(543\) 26.7240 1.14684
\(544\) 0 0
\(545\) 14.0940 0.603719
\(546\) 0 0
\(547\) −16.9309 −0.723914 −0.361957 0.932195i \(-0.617891\pi\)
−0.361957 + 0.932195i \(0.617891\pi\)
\(548\) 0 0
\(549\) 9.06313 0.386805
\(550\) 0 0
\(551\) −0.925779 −0.0394395
\(552\) 0 0
\(553\) 2.47411 0.105210
\(554\) 0 0
\(555\) −8.48448 −0.360146
\(556\) 0 0
\(557\) −0.152225 −0.00644999 −0.00322499 0.999995i \(-0.501027\pi\)
−0.00322499 + 0.999995i \(0.501027\pi\)
\(558\) 0 0
\(559\) 23.5990 0.998131
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 35.3689 1.49062 0.745311 0.666717i \(-0.232301\pi\)
0.745311 + 0.666717i \(0.232301\pi\)
\(564\) 0 0
\(565\) −10.4723 −0.440572
\(566\) 0 0
\(567\) 5.72918 0.240603
\(568\) 0 0
\(569\) −27.2403 −1.14197 −0.570986 0.820960i \(-0.693439\pi\)
−0.570986 + 0.820960i \(0.693439\pi\)
\(570\) 0 0
\(571\) 17.9295 0.750325 0.375162 0.926959i \(-0.377587\pi\)
0.375162 + 0.926959i \(0.377587\pi\)
\(572\) 0 0
\(573\) −42.3668 −1.76990
\(574\) 0 0
\(575\) −6.20391 −0.258721
\(576\) 0 0
\(577\) −8.63847 −0.359624 −0.179812 0.983701i \(-0.557549\pi\)
−0.179812 + 0.983701i \(0.557549\pi\)
\(578\) 0 0
\(579\) 34.6006 1.43795
\(580\) 0 0
\(581\) −3.15196 −0.130766
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 24.0638 0.994917
\(586\) 0 0
\(587\) −16.4297 −0.678128 −0.339064 0.940763i \(-0.610110\pi\)
−0.339064 + 0.940763i \(0.610110\pi\)
\(588\) 0 0
\(589\) 39.1957 1.61503
\(590\) 0 0
\(591\) −64.5154 −2.65381
\(592\) 0 0
\(593\) 9.98760 0.410141 0.205071 0.978747i \(-0.434258\pi\)
0.205071 + 0.978747i \(0.434258\pi\)
\(594\) 0 0
\(595\) 0.951806 0.0390203
\(596\) 0 0
\(597\) −53.1032 −2.17337
\(598\) 0 0
\(599\) −20.4634 −0.836110 −0.418055 0.908422i \(-0.637288\pi\)
−0.418055 + 0.908422i \(0.637288\pi\)
\(600\) 0 0
\(601\) 23.0934 0.941998 0.470999 0.882134i \(-0.343894\pi\)
0.470999 + 0.882134i \(0.343894\pi\)
\(602\) 0 0
\(603\) 13.8524 0.564113
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.88119 0.0763551 0.0381776 0.999271i \(-0.487845\pi\)
0.0381776 + 0.999271i \(0.487845\pi\)
\(608\) 0 0
\(609\) −0.117347 −0.00475514
\(610\) 0 0
\(611\) −15.9739 −0.646235
\(612\) 0 0
\(613\) 17.2042 0.694871 0.347435 0.937704i \(-0.387053\pi\)
0.347435 + 0.937704i \(0.387053\pi\)
\(614\) 0 0
\(615\) 29.6856 1.19704
\(616\) 0 0
\(617\) −17.5502 −0.706546 −0.353273 0.935520i \(-0.614931\pi\)
−0.353273 + 0.935520i \(0.614931\pi\)
\(618\) 0 0
\(619\) 33.8060 1.35878 0.679389 0.733778i \(-0.262245\pi\)
0.679389 + 0.733778i \(0.262245\pi\)
\(620\) 0 0
\(621\) 102.509 4.11355
\(622\) 0 0
\(623\) −1.34430 −0.0538584
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 13.1025 0.522430
\(630\) 0 0
\(631\) 30.3134 1.20676 0.603380 0.797454i \(-0.293820\pi\)
0.603380 + 0.797454i \(0.293820\pi\)
\(632\) 0 0
\(633\) −29.1043 −1.15679
\(634\) 0 0
\(635\) −1.09867 −0.0435992
\(636\) 0 0
\(637\) 20.9904 0.831671
\(638\) 0 0
\(639\) −104.376 −4.12905
\(640\) 0 0
\(641\) −3.68875 −0.145697 −0.0728484 0.997343i \(-0.523209\pi\)
−0.0728484 + 0.997343i \(0.523209\pi\)
\(642\) 0 0
\(643\) 4.76467 0.187900 0.0939501 0.995577i \(-0.470051\pi\)
0.0939501 + 0.995577i \(0.470051\pi\)
\(644\) 0 0
\(645\) −25.9552 −1.02199
\(646\) 0 0
\(647\) −34.6861 −1.36365 −0.681826 0.731514i \(-0.738814\pi\)
−0.681826 + 0.731514i \(0.738814\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 4.96825 0.194721
\(652\) 0 0
\(653\) −6.35710 −0.248773 −0.124386 0.992234i \(-0.539696\pi\)
−0.124386 + 0.992234i \(0.539696\pi\)
\(654\) 0 0
\(655\) −7.88959 −0.308272
\(656\) 0 0
\(657\) −7.13945 −0.278536
\(658\) 0 0
\(659\) 8.61834 0.335723 0.167861 0.985811i \(-0.446314\pi\)
0.167861 + 0.985811i \(0.446314\pi\)
\(660\) 0 0
\(661\) −17.5983 −0.684494 −0.342247 0.939610i \(-0.611188\pi\)
−0.342247 + 0.939610i \(0.611188\pi\)
\(662\) 0 0
\(663\) −51.1227 −1.98544
\(664\) 0 0
\(665\) 0.904212 0.0350638
\(666\) 0 0
\(667\) −1.18118 −0.0457356
\(668\) 0 0
\(669\) 9.37497 0.362457
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 51.0036 1.96604 0.983022 0.183486i \(-0.0587383\pi\)
0.983022 + 0.183486i \(0.0587383\pi\)
\(674\) 0 0
\(675\) −16.5233 −0.635982
\(676\) 0 0
\(677\) −4.86576 −0.187007 −0.0935033 0.995619i \(-0.529807\pi\)
−0.0935033 + 0.995619i \(0.529807\pi\)
\(678\) 0 0
\(679\) 0.631397 0.0242308
\(680\) 0 0
\(681\) 57.1245 2.18902
\(682\) 0 0
\(683\) 9.50423 0.363669 0.181835 0.983329i \(-0.441796\pi\)
0.181835 + 0.983329i \(0.441796\pi\)
\(684\) 0 0
\(685\) −5.06861 −0.193661
\(686\) 0 0
\(687\) 36.5909 1.39603
\(688\) 0 0
\(689\) −3.92025 −0.149350
\(690\) 0 0
\(691\) 26.8072 1.01979 0.509897 0.860235i \(-0.329684\pi\)
0.509897 + 0.860235i \(0.329684\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.35531 0.316935
\(696\) 0 0
\(697\) −45.8432 −1.73643
\(698\) 0 0
\(699\) 78.7888 2.98007
\(700\) 0 0
\(701\) 26.0457 0.983732 0.491866 0.870671i \(-0.336315\pi\)
0.491866 + 0.870671i \(0.336315\pi\)
\(702\) 0 0
\(703\) 12.4473 0.469459
\(704\) 0 0
\(705\) 17.5688 0.661680
\(706\) 0 0
\(707\) 0.0537859 0.00202283
\(708\) 0 0
\(709\) 18.7635 0.704679 0.352340 0.935872i \(-0.385386\pi\)
0.352340 + 0.935872i \(0.385386\pi\)
\(710\) 0 0
\(711\) 106.242 3.98437
\(712\) 0 0
\(713\) 50.0091 1.87285
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −70.0471 −2.61596
\(718\) 0 0
\(719\) −30.7426 −1.14651 −0.573253 0.819378i \(-0.694319\pi\)
−0.573253 + 0.819378i \(0.694319\pi\)
\(720\) 0 0
\(721\) −3.23368 −0.120429
\(722\) 0 0
\(723\) 7.66011 0.284883
\(724\) 0 0
\(725\) 0.190393 0.00707102
\(726\) 0 0
\(727\) 15.2620 0.566037 0.283019 0.959114i \(-0.408664\pi\)
0.283019 + 0.959114i \(0.408664\pi\)
\(728\) 0 0
\(729\) 81.7243 3.02683
\(730\) 0 0
\(731\) 40.0823 1.48250
\(732\) 0 0
\(733\) 7.80089 0.288133 0.144066 0.989568i \(-0.453982\pi\)
0.144066 + 0.989568i \(0.453982\pi\)
\(734\) 0 0
\(735\) −23.0862 −0.851549
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 20.0951 0.739209 0.369604 0.929189i \(-0.379493\pi\)
0.369604 + 0.929189i \(0.379493\pi\)
\(740\) 0 0
\(741\) −48.5664 −1.78413
\(742\) 0 0
\(743\) 27.9809 1.02652 0.513259 0.858234i \(-0.328438\pi\)
0.513259 + 0.858234i \(0.328438\pi\)
\(744\) 0 0
\(745\) 20.3880 0.746960
\(746\) 0 0
\(747\) −135.350 −4.95219
\(748\) 0 0
\(749\) −2.26397 −0.0827236
\(750\) 0 0
\(751\) −29.8830 −1.09045 −0.545223 0.838291i \(-0.683555\pi\)
−0.545223 + 0.838291i \(0.683555\pi\)
\(752\) 0 0
\(753\) 20.2186 0.736808
\(754\) 0 0
\(755\) −13.1942 −0.480185
\(756\) 0 0
\(757\) 6.89865 0.250736 0.125368 0.992110i \(-0.459989\pi\)
0.125368 + 0.992110i \(0.459989\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −18.6369 −0.675588 −0.337794 0.941220i \(-0.609681\pi\)
−0.337794 + 0.941220i \(0.609681\pi\)
\(762\) 0 0
\(763\) −2.62088 −0.0948822
\(764\) 0 0
\(765\) 40.8719 1.47773
\(766\) 0 0
\(767\) −1.78881 −0.0645901
\(768\) 0 0
\(769\) 23.0644 0.831723 0.415861 0.909428i \(-0.363480\pi\)
0.415861 + 0.909428i \(0.363480\pi\)
\(770\) 0 0
\(771\) −27.8289 −1.00223
\(772\) 0 0
\(773\) −1.58562 −0.0570309 −0.0285155 0.999593i \(-0.509078\pi\)
−0.0285155 + 0.999593i \(0.509078\pi\)
\(774\) 0 0
\(775\) −8.06089 −0.289556
\(776\) 0 0
\(777\) 1.57775 0.0566016
\(778\) 0 0
\(779\) −43.5508 −1.56037
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −3.14592 −0.112426
\(784\) 0 0
\(785\) 18.2689 0.652044
\(786\) 0 0
\(787\) 20.8524 0.743309 0.371655 0.928371i \(-0.378791\pi\)
0.371655 + 0.928371i \(0.378791\pi\)
\(788\) 0 0
\(789\) −6.78655 −0.241608
\(790\) 0 0
\(791\) 1.94740 0.0692416
\(792\) 0 0
\(793\) −3.42028 −0.121458
\(794\) 0 0
\(795\) 4.31167 0.152919
\(796\) 0 0
\(797\) 12.0560 0.427045 0.213522 0.976938i \(-0.431506\pi\)
0.213522 + 0.976938i \(0.431506\pi\)
\(798\) 0 0
\(799\) −27.1313 −0.959837
\(800\) 0 0
\(801\) −57.7263 −2.03966
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 1.15367 0.0406614
\(806\) 0 0
\(807\) 63.8541 2.24777
\(808\) 0 0
\(809\) 52.6231 1.85013 0.925064 0.379810i \(-0.124011\pi\)
0.925064 + 0.379810i \(0.124011\pi\)
\(810\) 0 0
\(811\) 48.1470 1.69067 0.845334 0.534238i \(-0.179401\pi\)
0.845334 + 0.534238i \(0.179401\pi\)
\(812\) 0 0
\(813\) 64.0626 2.24677
\(814\) 0 0
\(815\) 13.5139 0.473371
\(816\) 0 0
\(817\) 38.0781 1.33218
\(818\) 0 0
\(819\) −4.47486 −0.156364
\(820\) 0 0
\(821\) 16.2528 0.567226 0.283613 0.958939i \(-0.408467\pi\)
0.283613 + 0.958939i \(0.408467\pi\)
\(822\) 0 0
\(823\) −23.1040 −0.805356 −0.402678 0.915342i \(-0.631921\pi\)
−0.402678 + 0.915342i \(0.631921\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 47.2149 1.64182 0.820911 0.571057i \(-0.193466\pi\)
0.820911 + 0.571057i \(0.193466\pi\)
\(828\) 0 0
\(829\) −40.7983 −1.41698 −0.708491 0.705720i \(-0.750624\pi\)
−0.708491 + 0.705720i \(0.750624\pi\)
\(830\) 0 0
\(831\) −86.9884 −3.01759
\(832\) 0 0
\(833\) 35.6518 1.23526
\(834\) 0 0
\(835\) 3.74944 0.129755
\(836\) 0 0
\(837\) 133.192 4.60380
\(838\) 0 0
\(839\) −43.7775 −1.51137 −0.755683 0.654938i \(-0.772695\pi\)
−0.755683 + 0.654938i \(0.772695\pi\)
\(840\) 0 0
\(841\) −28.9638 −0.998750
\(842\) 0 0
\(843\) 13.3178 0.458690
\(844\) 0 0
\(845\) 3.91869 0.134807
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 22.1574 0.760441
\(850\) 0 0
\(851\) 15.8813 0.544403
\(852\) 0 0
\(853\) −53.4183 −1.82901 −0.914503 0.404579i \(-0.867418\pi\)
−0.914503 + 0.404579i \(0.867418\pi\)
\(854\) 0 0
\(855\) 38.8281 1.32789
\(856\) 0 0
\(857\) 21.6966 0.741143 0.370572 0.928804i \(-0.379162\pi\)
0.370572 + 0.928804i \(0.379162\pi\)
\(858\) 0 0
\(859\) −18.9254 −0.645725 −0.322863 0.946446i \(-0.604645\pi\)
−0.322863 + 0.946446i \(0.604645\pi\)
\(860\) 0 0
\(861\) −5.52028 −0.188131
\(862\) 0 0
\(863\) −25.0747 −0.853553 −0.426776 0.904357i \(-0.640351\pi\)
−0.426776 + 0.904357i \(0.640351\pi\)
\(864\) 0 0
\(865\) 9.68177 0.329190
\(866\) 0 0
\(867\) −30.4859 −1.03536
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −5.22767 −0.177133
\(872\) 0 0
\(873\) 27.1131 0.917639
\(874\) 0 0
\(875\) −0.185958 −0.00628652
\(876\) 0 0
\(877\) 3.41891 0.115448 0.0577242 0.998333i \(-0.481616\pi\)
0.0577242 + 0.998333i \(0.481616\pi\)
\(878\) 0 0
\(879\) −27.7847 −0.937155
\(880\) 0 0
\(881\) 1.37318 0.0462636 0.0231318 0.999732i \(-0.492636\pi\)
0.0231318 + 0.999732i \(0.492636\pi\)
\(882\) 0 0
\(883\) −46.2204 −1.55544 −0.777720 0.628610i \(-0.783624\pi\)
−0.777720 + 0.628610i \(0.783624\pi\)
\(884\) 0 0
\(885\) 1.96741 0.0661338
\(886\) 0 0
\(887\) −32.4716 −1.09029 −0.545145 0.838342i \(-0.683525\pi\)
−0.545145 + 0.838342i \(0.683525\pi\)
\(888\) 0 0
\(889\) 0.204306 0.00685219
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −25.7747 −0.862516
\(894\) 0 0
\(895\) 10.9136 0.364802
\(896\) 0 0
\(897\) −61.9649 −2.06895
\(898\) 0 0
\(899\) −1.53474 −0.0511864
\(900\) 0 0
\(901\) −6.65845 −0.221825
\(902\) 0 0
\(903\) 4.82658 0.160618
\(904\) 0 0
\(905\) 8.06298 0.268023
\(906\) 0 0
\(907\) −35.6120 −1.18248 −0.591238 0.806497i \(-0.701361\pi\)
−0.591238 + 0.806497i \(0.701361\pi\)
\(908\) 0 0
\(909\) 2.30964 0.0766060
\(910\) 0 0
\(911\) 5.40562 0.179096 0.0895481 0.995982i \(-0.471458\pi\)
0.0895481 + 0.995982i \(0.471458\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 3.76178 0.124361
\(916\) 0 0
\(917\) 1.46713 0.0484490
\(918\) 0 0
\(919\) 46.5266 1.53477 0.767386 0.641185i \(-0.221557\pi\)
0.767386 + 0.641185i \(0.221557\pi\)
\(920\) 0 0
\(921\) −19.0910 −0.629069
\(922\) 0 0
\(923\) 39.3898 1.29653
\(924\) 0 0
\(925\) −2.55988 −0.0841683
\(926\) 0 0
\(927\) −138.859 −4.56072
\(928\) 0 0
\(929\) −31.5053 −1.03365 −0.516827 0.856090i \(-0.672887\pi\)
−0.516827 + 0.856090i \(0.672887\pi\)
\(930\) 0 0
\(931\) 33.8691 1.11001
\(932\) 0 0
\(933\) −3.41329 −0.111746
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −43.5043 −1.42122 −0.710612 0.703584i \(-0.751582\pi\)
−0.710612 + 0.703584i \(0.751582\pi\)
\(938\) 0 0
\(939\) 26.2966 0.858156
\(940\) 0 0
\(941\) −24.2949 −0.791991 −0.395996 0.918252i \(-0.629600\pi\)
−0.395996 + 0.918252i \(0.629600\pi\)
\(942\) 0 0
\(943\) −55.5657 −1.80947
\(944\) 0 0
\(945\) 3.07263 0.0999528
\(946\) 0 0
\(947\) 37.0312 1.20335 0.601676 0.798740i \(-0.294500\pi\)
0.601676 + 0.798740i \(0.294500\pi\)
\(948\) 0 0
\(949\) 2.69431 0.0874611
\(950\) 0 0
\(951\) 70.9164 2.29962
\(952\) 0 0
\(953\) −12.5995 −0.408139 −0.204070 0.978956i \(-0.565417\pi\)
−0.204070 + 0.978956i \(0.565417\pi\)
\(954\) 0 0
\(955\) −12.7826 −0.413636
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.942547 0.0304364
\(960\) 0 0
\(961\) 33.9779 1.09606
\(962\) 0 0
\(963\) −97.2180 −3.13281
\(964\) 0 0
\(965\) 10.4395 0.336058
\(966\) 0 0
\(967\) 18.4170 0.592251 0.296126 0.955149i \(-0.404305\pi\)
0.296126 + 0.955149i \(0.404305\pi\)
\(968\) 0 0
\(969\) −82.4890 −2.64993
\(970\) 0 0
\(971\) 1.95940 0.0628800 0.0314400 0.999506i \(-0.489991\pi\)
0.0314400 + 0.999506i \(0.489991\pi\)
\(972\) 0 0
\(973\) −1.55374 −0.0498105
\(974\) 0 0
\(975\) 9.98803 0.319873
\(976\) 0 0
\(977\) −8.09382 −0.258944 −0.129472 0.991583i \(-0.541328\pi\)
−0.129472 + 0.991583i \(0.541328\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −112.544 −3.59326
\(982\) 0 0
\(983\) 9.43861 0.301045 0.150522 0.988607i \(-0.451904\pi\)
0.150522 + 0.988607i \(0.451904\pi\)
\(984\) 0 0
\(985\) −19.4651 −0.620211
\(986\) 0 0
\(987\) −3.26706 −0.103992
\(988\) 0 0
\(989\) 48.5831 1.54485
\(990\) 0 0
\(991\) 44.9960 1.42934 0.714672 0.699459i \(-0.246576\pi\)
0.714672 + 0.699459i \(0.246576\pi\)
\(992\) 0 0
\(993\) −59.8811 −1.90027
\(994\) 0 0
\(995\) −16.0219 −0.507929
\(996\) 0 0
\(997\) −23.5984 −0.747369 −0.373684 0.927556i \(-0.621906\pi\)
−0.373684 + 0.927556i \(0.621906\pi\)
\(998\) 0 0
\(999\) 42.2976 1.33824
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9680.2.a.cy.1.1 6
4.3 odd 2 4840.2.a.be.1.6 6
11.7 odd 10 880.2.bo.j.401.3 12
11.8 odd 10 880.2.bo.j.801.3 12
11.10 odd 2 9680.2.a.cx.1.1 6
44.7 even 10 440.2.y.b.401.1 yes 12
44.19 even 10 440.2.y.b.361.1 12
44.43 even 2 4840.2.a.bf.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.y.b.361.1 12 44.19 even 10
440.2.y.b.401.1 yes 12 44.7 even 10
880.2.bo.j.401.3 12 11.7 odd 10
880.2.bo.j.801.3 12 11.8 odd 10
4840.2.a.be.1.6 6 4.3 odd 2
4840.2.a.bf.1.6 6 44.43 even 2
9680.2.a.cx.1.1 6 11.10 odd 2
9680.2.a.cy.1.1 6 1.1 even 1 trivial