Properties

Label 9680.2.a.cn
Level $9680$
Weight $2$
Character orbit 9680.a
Self dual yes
Analytic conductor $77.295$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9680.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(77.2951891566\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.725.1
Defining polynomial: \(x^{4} - x^{3} - 3 x^{2} + x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{2} - \beta_{3} ) q^{3} - q^{5} + ( 2 - \beta_{1} - 2 \beta_{2} ) q^{7} + ( -2 \beta_{1} + \beta_{2} ) q^{9} +O(q^{10})\) \( q + ( \beta_{2} - \beta_{3} ) q^{3} - q^{5} + ( 2 - \beta_{1} - 2 \beta_{2} ) q^{7} + ( -2 \beta_{1} + \beta_{2} ) q^{9} + ( -3 \beta_{1} + \beta_{3} ) q^{13} + ( -\beta_{2} + \beta_{3} ) q^{15} + ( 2 - \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{17} + ( 4 - 2 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{19} + ( -3 + 2 \beta_{1} + \beta_{2} - \beta_{3} ) q^{21} + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} ) q^{23} + q^{25} + ( 4 - \beta_{1} ) q^{27} + ( -4 - 2 \beta_{1} - \beta_{2} + 4 \beta_{3} ) q^{29} + ( -5 \beta_{1} + 5 \beta_{3} ) q^{31} + ( -2 + \beta_{1} + 2 \beta_{2} ) q^{35} + ( 6 - 3 \beta_{1} - 3 \beta_{2} - 4 \beta_{3} ) q^{37} + ( 2 + \beta_{1} + 3 \beta_{2} - 4 \beta_{3} ) q^{39} + ( -4 - \beta_{1} + 3 \beta_{2} ) q^{41} + ( 4 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{43} + ( 2 \beta_{1} - \beta_{2} ) q^{45} + ( -\beta_{1} - 3 \beta_{2} + \beta_{3} ) q^{47} + ( 2 + \beta_{1} - 3 \beta_{2} ) q^{49} + ( 1 - \beta_{1} + 2 \beta_{2} ) q^{51} + ( -1 - \beta_{1} - 5 \beta_{2} + 2 \beta_{3} ) q^{53} + ( 2 + \beta_{1} + 7 \beta_{2} - 9 \beta_{3} ) q^{57} + ( 2 - \beta_{1} - 4 \beta_{2} - 4 \beta_{3} ) q^{59} + ( -4 - 2 \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{61} + ( -5 + \beta_{1} + 2 \beta_{2} + 5 \beta_{3} ) q^{63} + ( 3 \beta_{1} - \beta_{3} ) q^{65} + ( 9 - 3 \beta_{1} - 4 \beta_{2} - 3 \beta_{3} ) q^{67} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{69} + ( -3 - 3 \beta_{1} + 5 \beta_{3} ) q^{71} + ( -3 + 3 \beta_{1} + 2 \beta_{2} - 3 \beta_{3} ) q^{73} + ( \beta_{2} - \beta_{3} ) q^{75} + ( 12 - 4 \beta_{1} - 3 \beta_{2} - 2 \beta_{3} ) q^{79} + ( 1 + 6 \beta_{1} + 2 \beta_{2} - 5 \beta_{3} ) q^{81} + ( 2 + \beta_{1} - 3 \beta_{2} - 7 \beta_{3} ) q^{83} + ( -2 + \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{85} + ( -4 + 5 \beta_{1} - 3 \beta_{2} - \beta_{3} ) q^{87} + ( -5 + 6 \beta_{2} ) q^{89} + ( -3 + 2 \beta_{2} + 8 \beta_{3} ) q^{91} + ( 5 \beta_{1} + 5 \beta_{2} - 10 \beta_{3} ) q^{93} + ( -4 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{95} + ( 3 + 2 \beta_{2} + 8 \beta_{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{5} + 3q^{7} + O(q^{10}) \) \( 4q - 4q^{5} + 3q^{7} - q^{13} + q^{17} + 20q^{19} - 10q^{21} - 5q^{23} + 4q^{25} + 15q^{27} - 12q^{29} + 5q^{31} - 3q^{35} + 7q^{37} + 7q^{39} - 11q^{41} + 19q^{43} - 5q^{47} + 3q^{49} + 7q^{51} - 11q^{53} + 5q^{57} - 9q^{59} - 12q^{61} - 5q^{63} + q^{65} + 19q^{67} - 8q^{69} - 5q^{71} - 11q^{73} + 34q^{79} + 4q^{81} - 11q^{83} - q^{85} - 19q^{87} - 8q^{89} + 8q^{91} - 5q^{93} - 20q^{95} + 32q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - x^{3} - 3 x^{2} + x + 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 1 \)
\(\beta_{3}\)\(=\)\( \nu^{3} - \nu^{2} - 2 \nu + 1 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + \beta_{1} + 1\)
\(\nu^{3}\)\(=\)\(\beta_{3} + \beta_{2} + 3 \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.477260
0.737640
2.09529
−1.35567
0 −1.91300 0 −1.00000 0 3.06719 0 0.659557 0
1.2 0 −0.575493 0 −1.00000 0 3.64941 0 −2.66881 0
1.3 0 −0.323071 0 −1.00000 0 −2.68522 0 −2.89563 0
1.4 0 2.81156 0 −1.00000 0 −1.03138 0 4.90488 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9680.2.a.cn 4
4.b odd 2 1 605.2.a.j 4
11.b odd 2 1 9680.2.a.cm 4
11.c even 5 2 880.2.bo.h 8
12.b even 2 1 5445.2.a.bp 4
20.d odd 2 1 3025.2.a.bd 4
44.c even 2 1 605.2.a.k 4
44.g even 10 2 605.2.g.e 8
44.g even 10 2 605.2.g.k 8
44.h odd 10 2 55.2.g.b 8
44.h odd 10 2 605.2.g.m 8
132.d odd 2 1 5445.2.a.bi 4
132.o even 10 2 495.2.n.e 8
220.g even 2 1 3025.2.a.w 4
220.n odd 10 2 275.2.h.a 8
220.v even 20 4 275.2.z.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.g.b 8 44.h odd 10 2
275.2.h.a 8 220.n odd 10 2
275.2.z.a 16 220.v even 20 4
495.2.n.e 8 132.o even 10 2
605.2.a.j 4 4.b odd 2 1
605.2.a.k 4 44.c even 2 1
605.2.g.e 8 44.g even 10 2
605.2.g.k 8 44.g even 10 2
605.2.g.m 8 44.h odd 10 2
880.2.bo.h 8 11.c even 5 2
3025.2.a.w 4 220.g even 2 1
3025.2.a.bd 4 20.d odd 2 1
5445.2.a.bi 4 132.d odd 2 1
5445.2.a.bp 4 12.b even 2 1
9680.2.a.cm 4 11.b odd 2 1
9680.2.a.cn 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9680))\):

\( T_{3}^{4} - 6 T_{3}^{2} - 5 T_{3} - 1 \)
\( T_{7}^{4} - 3 T_{7}^{3} - 11 T_{7}^{2} + 23 T_{7} + 31 \)
\( T_{13}^{4} + T_{13}^{3} - 25 T_{13}^{2} - 7 T_{13} + 139 \)
\( T_{17}^{4} - T_{17}^{3} - 20 T_{17}^{2} + 32 T_{17} + 19 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( -1 - 5 T - 6 T^{2} + T^{4} \)
$5$ \( ( 1 + T )^{4} \)
$7$ \( 31 + 23 T - 11 T^{2} - 3 T^{3} + T^{4} \)
$11$ \( T^{4} \)
$13$ \( 139 - 7 T - 25 T^{2} + T^{3} + T^{4} \)
$17$ \( 19 + 32 T - 20 T^{2} - T^{3} + T^{4} \)
$19$ \( 25 - 275 T + 130 T^{2} - 20 T^{3} + T^{4} \)
$23$ \( -11 - 10 T + 4 T^{2} + 5 T^{3} + T^{4} \)
$29$ \( -451 - 171 T + 20 T^{2} + 12 T^{3} + T^{4} \)
$31$ \( 625 + 125 T - 75 T^{2} - 5 T^{3} + T^{4} \)
$37$ \( -1151 + 826 T - 100 T^{2} - 7 T^{3} + T^{4} \)
$41$ \( -319 - 174 T + 6 T^{2} + 11 T^{3} + T^{4} \)
$43$ \( 211 - 289 T + 121 T^{2} - 19 T^{3} + T^{4} \)
$47$ \( 169 - 65 T - 21 T^{2} + 5 T^{3} + T^{4} \)
$53$ \( 941 - 311 T - 43 T^{2} + 11 T^{3} + T^{4} \)
$59$ \( -829 - 549 T - 73 T^{2} + 9 T^{3} + T^{4} \)
$61$ \( -169 - 78 T + 23 T^{2} + 12 T^{3} + T^{4} \)
$67$ \( -4079 + 1014 T + 22 T^{2} - 19 T^{3} + T^{4} \)
$71$ \( -131 - 170 T - 46 T^{2} + 5 T^{3} + T^{4} \)
$73$ \( -11 - 12 T + 10 T^{2} + 11 T^{3} + T^{4} \)
$79$ \( -6779 - 299 T + 336 T^{2} - 34 T^{3} + T^{4} \)
$83$ \( -1699 - 1239 T - 99 T^{2} + 11 T^{3} + T^{4} \)
$89$ \( 1861 - 472 T - 102 T^{2} + 8 T^{3} + T^{4} \)
$97$ \( -3011 + 896 T + 210 T^{2} - 32 T^{3} + T^{4} \)
show more
show less