Properties

Label 9680.2.a.bt.1.1
Level $9680$
Weight $2$
Character 9680.1
Self dual yes
Analytic conductor $77.295$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9680,2,Mod(1,9680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9680.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9680 = 2^{4} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(77.2951891566\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 9680.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.37228 q^{3} +1.00000 q^{5} -2.37228 q^{7} +2.62772 q^{9} -2.00000 q^{13} -2.37228 q^{15} +4.37228 q^{17} +6.37228 q^{19} +5.62772 q^{21} +8.74456 q^{23} +1.00000 q^{25} +0.883156 q^{27} +4.37228 q^{29} +2.37228 q^{31} -2.37228 q^{35} +3.62772 q^{37} +4.74456 q^{39} -11.4891 q^{41} -4.00000 q^{43} +2.62772 q^{45} +8.74456 q^{47} -1.37228 q^{49} -10.3723 q^{51} +13.1168 q^{53} -15.1168 q^{57} -8.74456 q^{59} -0.372281 q^{61} -6.23369 q^{63} -2.00000 q^{65} -8.00000 q^{67} -20.7446 q^{69} +7.11684 q^{71} -7.48913 q^{73} -2.37228 q^{75} -12.7446 q^{79} -9.97825 q^{81} +8.74456 q^{83} +4.37228 q^{85} -10.3723 q^{87} +4.37228 q^{89} +4.74456 q^{91} -5.62772 q^{93} +6.37228 q^{95} -1.25544 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} + 2 q^{5} + q^{7} + 11 q^{9} - 4 q^{13} + q^{15} + 3 q^{17} + 7 q^{19} + 17 q^{21} + 6 q^{23} + 2 q^{25} + 19 q^{27} + 3 q^{29} - q^{31} + q^{35} + 13 q^{37} - 2 q^{39} - 8 q^{43} + 11 q^{45}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.37228 −1.36964 −0.684819 0.728714i \(-0.740119\pi\)
−0.684819 + 0.728714i \(0.740119\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.37228 −0.896638 −0.448319 0.893874i \(-0.647977\pi\)
−0.448319 + 0.893874i \(0.647977\pi\)
\(8\) 0 0
\(9\) 2.62772 0.875906
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) −2.37228 −0.612520
\(16\) 0 0
\(17\) 4.37228 1.06043 0.530217 0.847862i \(-0.322110\pi\)
0.530217 + 0.847862i \(0.322110\pi\)
\(18\) 0 0
\(19\) 6.37228 1.46190 0.730951 0.682430i \(-0.239077\pi\)
0.730951 + 0.682430i \(0.239077\pi\)
\(20\) 0 0
\(21\) 5.62772 1.22807
\(22\) 0 0
\(23\) 8.74456 1.82337 0.911684 0.410893i \(-0.134783\pi\)
0.911684 + 0.410893i \(0.134783\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0.883156 0.169963
\(28\) 0 0
\(29\) 4.37228 0.811912 0.405956 0.913893i \(-0.366939\pi\)
0.405956 + 0.913893i \(0.366939\pi\)
\(30\) 0 0
\(31\) 2.37228 0.426074 0.213037 0.977044i \(-0.431664\pi\)
0.213037 + 0.977044i \(0.431664\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.37228 −0.400989
\(36\) 0 0
\(37\) 3.62772 0.596393 0.298197 0.954504i \(-0.403615\pi\)
0.298197 + 0.954504i \(0.403615\pi\)
\(38\) 0 0
\(39\) 4.74456 0.759738
\(40\) 0 0
\(41\) −11.4891 −1.79430 −0.897150 0.441726i \(-0.854366\pi\)
−0.897150 + 0.441726i \(0.854366\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 2.62772 0.391717
\(46\) 0 0
\(47\) 8.74456 1.27553 0.637763 0.770233i \(-0.279860\pi\)
0.637763 + 0.770233i \(0.279860\pi\)
\(48\) 0 0
\(49\) −1.37228 −0.196040
\(50\) 0 0
\(51\) −10.3723 −1.45241
\(52\) 0 0
\(53\) 13.1168 1.80174 0.900869 0.434092i \(-0.142931\pi\)
0.900869 + 0.434092i \(0.142931\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −15.1168 −2.00227
\(58\) 0 0
\(59\) −8.74456 −1.13845 −0.569223 0.822183i \(-0.692756\pi\)
−0.569223 + 0.822183i \(0.692756\pi\)
\(60\) 0 0
\(61\) −0.372281 −0.0476657 −0.0238329 0.999716i \(-0.507587\pi\)
−0.0238329 + 0.999716i \(0.507587\pi\)
\(62\) 0 0
\(63\) −6.23369 −0.785371
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) −20.7446 −2.49735
\(70\) 0 0
\(71\) 7.11684 0.844614 0.422307 0.906453i \(-0.361220\pi\)
0.422307 + 0.906453i \(0.361220\pi\)
\(72\) 0 0
\(73\) −7.48913 −0.876536 −0.438268 0.898844i \(-0.644408\pi\)
−0.438268 + 0.898844i \(0.644408\pi\)
\(74\) 0 0
\(75\) −2.37228 −0.273927
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.7446 −1.43388 −0.716938 0.697137i \(-0.754457\pi\)
−0.716938 + 0.697137i \(0.754457\pi\)
\(80\) 0 0
\(81\) −9.97825 −1.10869
\(82\) 0 0
\(83\) 8.74456 0.959840 0.479920 0.877312i \(-0.340666\pi\)
0.479920 + 0.877312i \(0.340666\pi\)
\(84\) 0 0
\(85\) 4.37228 0.474240
\(86\) 0 0
\(87\) −10.3723 −1.11203
\(88\) 0 0
\(89\) 4.37228 0.463461 0.231730 0.972780i \(-0.425561\pi\)
0.231730 + 0.972780i \(0.425561\pi\)
\(90\) 0 0
\(91\) 4.74456 0.497365
\(92\) 0 0
\(93\) −5.62772 −0.583567
\(94\) 0 0
\(95\) 6.37228 0.653782
\(96\) 0 0
\(97\) −1.25544 −0.127470 −0.0637352 0.997967i \(-0.520301\pi\)
−0.0637352 + 0.997967i \(0.520301\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −13.4891 −1.32912 −0.664562 0.747234i \(-0.731382\pi\)
−0.664562 + 0.747234i \(0.731382\pi\)
\(104\) 0 0
\(105\) 5.62772 0.549209
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −7.48913 −0.717328 −0.358664 0.933467i \(-0.616768\pi\)
−0.358664 + 0.933467i \(0.616768\pi\)
\(110\) 0 0
\(111\) −8.60597 −0.816842
\(112\) 0 0
\(113\) 14.7446 1.38705 0.693526 0.720432i \(-0.256056\pi\)
0.693526 + 0.720432i \(0.256056\pi\)
\(114\) 0 0
\(115\) 8.74456 0.815435
\(116\) 0 0
\(117\) −5.25544 −0.485865
\(118\) 0 0
\(119\) −10.3723 −0.950825
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 27.2554 2.45754
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 9.48913 0.835471
\(130\) 0 0
\(131\) 4.88316 0.426643 0.213322 0.976982i \(-0.431572\pi\)
0.213322 + 0.976982i \(0.431572\pi\)
\(132\) 0 0
\(133\) −15.1168 −1.31080
\(134\) 0 0
\(135\) 0.883156 0.0760100
\(136\) 0 0
\(137\) −2.74456 −0.234484 −0.117242 0.993103i \(-0.537405\pi\)
−0.117242 + 0.993103i \(0.537405\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) −20.7446 −1.74701
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.37228 0.363098
\(146\) 0 0
\(147\) 3.25544 0.268504
\(148\) 0 0
\(149\) 18.6060 1.52426 0.762130 0.647424i \(-0.224154\pi\)
0.762130 + 0.647424i \(0.224154\pi\)
\(150\) 0 0
\(151\) 22.2337 1.80935 0.904676 0.426100i \(-0.140113\pi\)
0.904676 + 0.426100i \(0.140113\pi\)
\(152\) 0 0
\(153\) 11.4891 0.928841
\(154\) 0 0
\(155\) 2.37228 0.190546
\(156\) 0 0
\(157\) 3.62772 0.289523 0.144762 0.989467i \(-0.453758\pi\)
0.144762 + 0.989467i \(0.453758\pi\)
\(158\) 0 0
\(159\) −31.1168 −2.46773
\(160\) 0 0
\(161\) −20.7446 −1.63490
\(162\) 0 0
\(163\) 23.1168 1.81065 0.905325 0.424718i \(-0.139627\pi\)
0.905325 + 0.424718i \(0.139627\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.3723 −0.802631 −0.401316 0.915940i \(-0.631447\pi\)
−0.401316 + 0.915940i \(0.631447\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 16.7446 1.28049
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) −2.37228 −0.179328
\(176\) 0 0
\(177\) 20.7446 1.55926
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0.883156 0.0652848
\(184\) 0 0
\(185\) 3.62772 0.266715
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2.09509 −0.152396
\(190\) 0 0
\(191\) −17.4891 −1.26547 −0.632734 0.774369i \(-0.718067\pi\)
−0.632734 + 0.774369i \(0.718067\pi\)
\(192\) 0 0
\(193\) 13.8614 0.997766 0.498883 0.866669i \(-0.333744\pi\)
0.498883 + 0.866669i \(0.333744\pi\)
\(194\) 0 0
\(195\) 4.74456 0.339765
\(196\) 0 0
\(197\) 9.25544 0.659423 0.329711 0.944082i \(-0.393049\pi\)
0.329711 + 0.944082i \(0.393049\pi\)
\(198\) 0 0
\(199\) −0.883156 −0.0626053 −0.0313026 0.999510i \(-0.509966\pi\)
−0.0313026 + 0.999510i \(0.509966\pi\)
\(200\) 0 0
\(201\) 18.9783 1.33862
\(202\) 0 0
\(203\) −10.3723 −0.727991
\(204\) 0 0
\(205\) −11.4891 −0.802435
\(206\) 0 0
\(207\) 22.9783 1.59710
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) 0 0
\(213\) −16.8832 −1.15681
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) −5.62772 −0.382034
\(218\) 0 0
\(219\) 17.7663 1.20054
\(220\) 0 0
\(221\) −8.74456 −0.588223
\(222\) 0 0
\(223\) 7.25544 0.485860 0.242930 0.970044i \(-0.421891\pi\)
0.242930 + 0.970044i \(0.421891\pi\)
\(224\) 0 0
\(225\) 2.62772 0.175181
\(226\) 0 0
\(227\) 8.74456 0.580397 0.290199 0.956966i \(-0.406279\pi\)
0.290199 + 0.956966i \(0.406279\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.37228 0.286438 0.143219 0.989691i \(-0.454255\pi\)
0.143219 + 0.989691i \(0.454255\pi\)
\(234\) 0 0
\(235\) 8.74456 0.570432
\(236\) 0 0
\(237\) 30.2337 1.96389
\(238\) 0 0
\(239\) −3.25544 −0.210577 −0.105288 0.994442i \(-0.533577\pi\)
−0.105288 + 0.994442i \(0.533577\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) 21.0217 1.34855
\(244\) 0 0
\(245\) −1.37228 −0.0876718
\(246\) 0 0
\(247\) −12.7446 −0.810917
\(248\) 0 0
\(249\) −20.7446 −1.31463
\(250\) 0 0
\(251\) 8.74456 0.551952 0.275976 0.961165i \(-0.410999\pi\)
0.275976 + 0.961165i \(0.410999\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −10.3723 −0.649537
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −8.60597 −0.534749
\(260\) 0 0
\(261\) 11.4891 0.711159
\(262\) 0 0
\(263\) 3.86141 0.238105 0.119052 0.992888i \(-0.462014\pi\)
0.119052 + 0.992888i \(0.462014\pi\)
\(264\) 0 0
\(265\) 13.1168 0.805761
\(266\) 0 0
\(267\) −10.3723 −0.634773
\(268\) 0 0
\(269\) 2.74456 0.167339 0.0836695 0.996494i \(-0.473336\pi\)
0.0836695 + 0.996494i \(0.473336\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) −11.2554 −0.681210
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.25544 0.0754319 0.0377160 0.999289i \(-0.487992\pi\)
0.0377160 + 0.999289i \(0.487992\pi\)
\(278\) 0 0
\(279\) 6.23369 0.373201
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 16.7446 0.995361 0.497680 0.867360i \(-0.334185\pi\)
0.497680 + 0.867360i \(0.334185\pi\)
\(284\) 0 0
\(285\) −15.1168 −0.895445
\(286\) 0 0
\(287\) 27.2554 1.60884
\(288\) 0 0
\(289\) 2.11684 0.124520
\(290\) 0 0
\(291\) 2.97825 0.174588
\(292\) 0 0
\(293\) −0.510875 −0.0298456 −0.0149228 0.999889i \(-0.504750\pi\)
−0.0149228 + 0.999889i \(0.504750\pi\)
\(294\) 0 0
\(295\) −8.74456 −0.509128
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −17.4891 −1.01142
\(300\) 0 0
\(301\) 9.48913 0.546944
\(302\) 0 0
\(303\) 14.2337 0.817704
\(304\) 0 0
\(305\) −0.372281 −0.0213168
\(306\) 0 0
\(307\) 16.7446 0.955663 0.477831 0.878452i \(-0.341423\pi\)
0.477831 + 0.878452i \(0.341423\pi\)
\(308\) 0 0
\(309\) 32.0000 1.82042
\(310\) 0 0
\(311\) −13.6277 −0.772757 −0.386379 0.922340i \(-0.626274\pi\)
−0.386379 + 0.922340i \(0.626274\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) −6.23369 −0.351229
\(316\) 0 0
\(317\) 27.3505 1.53616 0.768079 0.640355i \(-0.221213\pi\)
0.768079 + 0.640355i \(0.221213\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 28.4674 1.58889
\(322\) 0 0
\(323\) 27.8614 1.55025
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 17.7663 0.982479
\(328\) 0 0
\(329\) −20.7446 −1.14368
\(330\) 0 0
\(331\) 14.9783 0.823279 0.411640 0.911347i \(-0.364956\pi\)
0.411640 + 0.911347i \(0.364956\pi\)
\(332\) 0 0
\(333\) 9.53262 0.522385
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −6.88316 −0.374949 −0.187475 0.982269i \(-0.560030\pi\)
−0.187475 + 0.982269i \(0.560030\pi\)
\(338\) 0 0
\(339\) −34.9783 −1.89976
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.8614 1.07242
\(344\) 0 0
\(345\) −20.7446 −1.11685
\(346\) 0 0
\(347\) 2.23369 0.119911 0.0599553 0.998201i \(-0.480904\pi\)
0.0599553 + 0.998201i \(0.480904\pi\)
\(348\) 0 0
\(349\) 3.48913 0.186769 0.0933843 0.995630i \(-0.470231\pi\)
0.0933843 + 0.995630i \(0.470231\pi\)
\(350\) 0 0
\(351\) −1.76631 −0.0942788
\(352\) 0 0
\(353\) −23.4891 −1.25020 −0.625100 0.780545i \(-0.714942\pi\)
−0.625100 + 0.780545i \(0.714942\pi\)
\(354\) 0 0
\(355\) 7.11684 0.377723
\(356\) 0 0
\(357\) 24.6060 1.30229
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.6060 1.13716
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −7.48913 −0.391999
\(366\) 0 0
\(367\) 4.00000 0.208798 0.104399 0.994535i \(-0.466708\pi\)
0.104399 + 0.994535i \(0.466708\pi\)
\(368\) 0 0
\(369\) −30.1902 −1.57164
\(370\) 0 0
\(371\) −31.1168 −1.61551
\(372\) 0 0
\(373\) −8.51087 −0.440676 −0.220338 0.975424i \(-0.570716\pi\)
−0.220338 + 0.975424i \(0.570716\pi\)
\(374\) 0 0
\(375\) −2.37228 −0.122504
\(376\) 0 0
\(377\) −8.74456 −0.450368
\(378\) 0 0
\(379\) −34.2337 −1.75847 −0.879233 0.476392i \(-0.841944\pi\)
−0.879233 + 0.476392i \(0.841944\pi\)
\(380\) 0 0
\(381\) −18.9783 −0.972285
\(382\) 0 0
\(383\) 2.23369 0.114136 0.0570681 0.998370i \(-0.481825\pi\)
0.0570681 + 0.998370i \(0.481825\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.5109 −0.534298
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 38.2337 1.93356
\(392\) 0 0
\(393\) −11.5842 −0.584347
\(394\) 0 0
\(395\) −12.7446 −0.641249
\(396\) 0 0
\(397\) −20.9783 −1.05287 −0.526434 0.850216i \(-0.676471\pi\)
−0.526434 + 0.850216i \(0.676471\pi\)
\(398\) 0 0
\(399\) 35.8614 1.79532
\(400\) 0 0
\(401\) 7.62772 0.380910 0.190455 0.981696i \(-0.439004\pi\)
0.190455 + 0.981696i \(0.439004\pi\)
\(402\) 0 0
\(403\) −4.74456 −0.236343
\(404\) 0 0
\(405\) −9.97825 −0.495823
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 36.2337 1.79164 0.895820 0.444417i \(-0.146589\pi\)
0.895820 + 0.444417i \(0.146589\pi\)
\(410\) 0 0
\(411\) 6.51087 0.321158
\(412\) 0 0
\(413\) 20.7446 1.02077
\(414\) 0 0
\(415\) 8.74456 0.429254
\(416\) 0 0
\(417\) 9.48913 0.464684
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −24.2337 −1.18108 −0.590539 0.807009i \(-0.701085\pi\)
−0.590539 + 0.807009i \(0.701085\pi\)
\(422\) 0 0
\(423\) 22.9783 1.11724
\(424\) 0 0
\(425\) 4.37228 0.212087
\(426\) 0 0
\(427\) 0.883156 0.0427389
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.9783 0.528804 0.264402 0.964413i \(-0.414825\pi\)
0.264402 + 0.964413i \(0.414825\pi\)
\(432\) 0 0
\(433\) −29.7228 −1.42839 −0.714194 0.699948i \(-0.753206\pi\)
−0.714194 + 0.699948i \(0.753206\pi\)
\(434\) 0 0
\(435\) −10.3723 −0.497313
\(436\) 0 0
\(437\) 55.7228 2.66558
\(438\) 0 0
\(439\) −26.9783 −1.28760 −0.643801 0.765193i \(-0.722643\pi\)
−0.643801 + 0.765193i \(0.722643\pi\)
\(440\) 0 0
\(441\) −3.60597 −0.171713
\(442\) 0 0
\(443\) −6.51087 −0.309341 −0.154670 0.987966i \(-0.549432\pi\)
−0.154670 + 0.987966i \(0.549432\pi\)
\(444\) 0 0
\(445\) 4.37228 0.207266
\(446\) 0 0
\(447\) −44.1386 −2.08768
\(448\) 0 0
\(449\) −16.9783 −0.801253 −0.400627 0.916241i \(-0.631208\pi\)
−0.400627 + 0.916241i \(0.631208\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −52.7446 −2.47816
\(454\) 0 0
\(455\) 4.74456 0.222429
\(456\) 0 0
\(457\) −35.3505 −1.65363 −0.826814 0.562475i \(-0.809849\pi\)
−0.826814 + 0.562475i \(0.809849\pi\)
\(458\) 0 0
\(459\) 3.86141 0.180235
\(460\) 0 0
\(461\) 1.11684 0.0520166 0.0260083 0.999662i \(-0.491720\pi\)
0.0260083 + 0.999662i \(0.491720\pi\)
\(462\) 0 0
\(463\) −34.2337 −1.59097 −0.795487 0.605970i \(-0.792785\pi\)
−0.795487 + 0.605970i \(0.792785\pi\)
\(464\) 0 0
\(465\) −5.62772 −0.260979
\(466\) 0 0
\(467\) 13.6277 0.630616 0.315308 0.948989i \(-0.397892\pi\)
0.315308 + 0.948989i \(0.397892\pi\)
\(468\) 0 0
\(469\) 18.9783 0.876334
\(470\) 0 0
\(471\) −8.60597 −0.396542
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 6.37228 0.292380
\(476\) 0 0
\(477\) 34.4674 1.57815
\(478\) 0 0
\(479\) −17.4891 −0.799099 −0.399549 0.916712i \(-0.630833\pi\)
−0.399549 + 0.916712i \(0.630833\pi\)
\(480\) 0 0
\(481\) −7.25544 −0.330819
\(482\) 0 0
\(483\) 49.2119 2.23922
\(484\) 0 0
\(485\) −1.25544 −0.0570065
\(486\) 0 0
\(487\) −20.0000 −0.906287 −0.453143 0.891438i \(-0.649697\pi\)
−0.453143 + 0.891438i \(0.649697\pi\)
\(488\) 0 0
\(489\) −54.8397 −2.47994
\(490\) 0 0
\(491\) −1.62772 −0.0734579 −0.0367290 0.999325i \(-0.511694\pi\)
−0.0367290 + 0.999325i \(0.511694\pi\)
\(492\) 0 0
\(493\) 19.1168 0.860979
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.8832 −0.757313
\(498\) 0 0
\(499\) 10.5109 0.470531 0.235266 0.971931i \(-0.424404\pi\)
0.235266 + 0.971931i \(0.424404\pi\)
\(500\) 0 0
\(501\) 24.6060 1.09931
\(502\) 0 0
\(503\) 10.9783 0.489496 0.244748 0.969587i \(-0.421295\pi\)
0.244748 + 0.969587i \(0.421295\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) 21.3505 0.948210
\(508\) 0 0
\(509\) 44.2337 1.96062 0.980312 0.197455i \(-0.0632678\pi\)
0.980312 + 0.197455i \(0.0632678\pi\)
\(510\) 0 0
\(511\) 17.7663 0.785935
\(512\) 0 0
\(513\) 5.62772 0.248470
\(514\) 0 0
\(515\) −13.4891 −0.594402
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −14.2337 −0.624790
\(520\) 0 0
\(521\) 35.4891 1.55481 0.777403 0.629002i \(-0.216536\pi\)
0.777403 + 0.629002i \(0.216536\pi\)
\(522\) 0 0
\(523\) −14.9783 −0.654953 −0.327477 0.944859i \(-0.606198\pi\)
−0.327477 + 0.944859i \(0.606198\pi\)
\(524\) 0 0
\(525\) 5.62772 0.245614
\(526\) 0 0
\(527\) 10.3723 0.451824
\(528\) 0 0
\(529\) 53.4674 2.32467
\(530\) 0 0
\(531\) −22.9783 −0.997171
\(532\) 0 0
\(533\) 22.9783 0.995299
\(534\) 0 0
\(535\) −12.0000 −0.518805
\(536\) 0 0
\(537\) −28.4674 −1.22846
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.88316 0.123957 0.0619783 0.998077i \(-0.480259\pi\)
0.0619783 + 0.998077i \(0.480259\pi\)
\(542\) 0 0
\(543\) 23.7228 1.01804
\(544\) 0 0
\(545\) −7.48913 −0.320799
\(546\) 0 0
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) 0 0
\(549\) −0.978251 −0.0417507
\(550\) 0 0
\(551\) 27.8614 1.18694
\(552\) 0 0
\(553\) 30.2337 1.28567
\(554\) 0 0
\(555\) −8.60597 −0.365303
\(556\) 0 0
\(557\) 40.9783 1.73630 0.868152 0.496298i \(-0.165308\pi\)
0.868152 + 0.496298i \(0.165308\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.2337 1.10562 0.552809 0.833308i \(-0.313556\pi\)
0.552809 + 0.833308i \(0.313556\pi\)
\(564\) 0 0
\(565\) 14.7446 0.620308
\(566\) 0 0
\(567\) 23.6712 0.994098
\(568\) 0 0
\(569\) 26.7446 1.12119 0.560595 0.828090i \(-0.310572\pi\)
0.560595 + 0.828090i \(0.310572\pi\)
\(570\) 0 0
\(571\) 9.62772 0.402907 0.201454 0.979498i \(-0.435433\pi\)
0.201454 + 0.979498i \(0.435433\pi\)
\(572\) 0 0
\(573\) 41.4891 1.73323
\(574\) 0 0
\(575\) 8.74456 0.364673
\(576\) 0 0
\(577\) −8.97825 −0.373769 −0.186885 0.982382i \(-0.559839\pi\)
−0.186885 + 0.982382i \(0.559839\pi\)
\(578\) 0 0
\(579\) −32.8832 −1.36658
\(580\) 0 0
\(581\) −20.7446 −0.860629
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −5.25544 −0.217286
\(586\) 0 0
\(587\) 3.86141 0.159377 0.0796887 0.996820i \(-0.474607\pi\)
0.0796887 + 0.996820i \(0.474607\pi\)
\(588\) 0 0
\(589\) 15.1168 0.622879
\(590\) 0 0
\(591\) −21.9565 −0.903170
\(592\) 0 0
\(593\) 35.4891 1.45736 0.728682 0.684852i \(-0.240133\pi\)
0.728682 + 0.684852i \(0.240133\pi\)
\(594\) 0 0
\(595\) −10.3723 −0.425222
\(596\) 0 0
\(597\) 2.09509 0.0857465
\(598\) 0 0
\(599\) −0.605969 −0.0247592 −0.0123796 0.999923i \(-0.503941\pi\)
−0.0123796 + 0.999923i \(0.503941\pi\)
\(600\) 0 0
\(601\) 39.4891 1.61080 0.805398 0.592735i \(-0.201952\pi\)
0.805398 + 0.592735i \(0.201952\pi\)
\(602\) 0 0
\(603\) −21.0217 −0.856072
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −23.1168 −0.938284 −0.469142 0.883123i \(-0.655437\pi\)
−0.469142 + 0.883123i \(0.655437\pi\)
\(608\) 0 0
\(609\) 24.6060 0.997084
\(610\) 0 0
\(611\) −17.4891 −0.707534
\(612\) 0 0
\(613\) −43.4891 −1.75651 −0.878255 0.478193i \(-0.841292\pi\)
−0.878255 + 0.478193i \(0.841292\pi\)
\(614\) 0 0
\(615\) 27.2554 1.09905
\(616\) 0 0
\(617\) 32.2337 1.29768 0.648840 0.760925i \(-0.275255\pi\)
0.648840 + 0.760925i \(0.275255\pi\)
\(618\) 0 0
\(619\) −24.4674 −0.983427 −0.491713 0.870757i \(-0.663629\pi\)
−0.491713 + 0.870757i \(0.663629\pi\)
\(620\) 0 0
\(621\) 7.72281 0.309906
\(622\) 0 0
\(623\) −10.3723 −0.415557
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.8614 0.632436
\(630\) 0 0
\(631\) −24.8832 −0.990583 −0.495291 0.868727i \(-0.664939\pi\)
−0.495291 + 0.868727i \(0.664939\pi\)
\(632\) 0 0
\(633\) 26.3723 1.04820
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 2.74456 0.108744
\(638\) 0 0
\(639\) 18.7011 0.739803
\(640\) 0 0
\(641\) 36.0951 1.42567 0.712835 0.701332i \(-0.247411\pi\)
0.712835 + 0.701332i \(0.247411\pi\)
\(642\) 0 0
\(643\) 23.1168 0.911639 0.455820 0.890072i \(-0.349346\pi\)
0.455820 + 0.890072i \(0.349346\pi\)
\(644\) 0 0
\(645\) 9.48913 0.373634
\(646\) 0 0
\(647\) −19.7228 −0.775384 −0.387692 0.921789i \(-0.626728\pi\)
−0.387692 + 0.921789i \(0.626728\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 13.3505 0.523249
\(652\) 0 0
\(653\) 16.3723 0.640697 0.320348 0.947300i \(-0.396200\pi\)
0.320348 + 0.947300i \(0.396200\pi\)
\(654\) 0 0
\(655\) 4.88316 0.190801
\(656\) 0 0
\(657\) −19.6793 −0.767763
\(658\) 0 0
\(659\) −15.8614 −0.617873 −0.308936 0.951083i \(-0.599973\pi\)
−0.308936 + 0.951083i \(0.599973\pi\)
\(660\) 0 0
\(661\) 31.4891 1.22479 0.612393 0.790554i \(-0.290207\pi\)
0.612393 + 0.790554i \(0.290207\pi\)
\(662\) 0 0
\(663\) 20.7446 0.805652
\(664\) 0 0
\(665\) −15.1168 −0.586206
\(666\) 0 0
\(667\) 38.2337 1.48041
\(668\) 0 0
\(669\) −17.2119 −0.665452
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 13.8614 0.534318 0.267159 0.963652i \(-0.413915\pi\)
0.267159 + 0.963652i \(0.413915\pi\)
\(674\) 0 0
\(675\) 0.883156 0.0339927
\(676\) 0 0
\(677\) −14.7446 −0.566680 −0.283340 0.959020i \(-0.591442\pi\)
−0.283340 + 0.959020i \(0.591442\pi\)
\(678\) 0 0
\(679\) 2.97825 0.114295
\(680\) 0 0
\(681\) −20.7446 −0.794933
\(682\) 0 0
\(683\) 34.3723 1.31522 0.657609 0.753359i \(-0.271568\pi\)
0.657609 + 0.753359i \(0.271568\pi\)
\(684\) 0 0
\(685\) −2.74456 −0.104864
\(686\) 0 0
\(687\) 23.7228 0.905082
\(688\) 0 0
\(689\) −26.2337 −0.999424
\(690\) 0 0
\(691\) −5.76631 −0.219361 −0.109680 0.993967i \(-0.534983\pi\)
−0.109680 + 0.993967i \(0.534983\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) −50.2337 −1.90274
\(698\) 0 0
\(699\) −10.3723 −0.392316
\(700\) 0 0
\(701\) 31.6277 1.19456 0.597281 0.802032i \(-0.296248\pi\)
0.597281 + 0.802032i \(0.296248\pi\)
\(702\) 0 0
\(703\) 23.1168 0.871868
\(704\) 0 0
\(705\) −20.7446 −0.781285
\(706\) 0 0
\(707\) 14.2337 0.535313
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) −33.4891 −1.25594
\(712\) 0 0
\(713\) 20.7446 0.776890
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 7.72281 0.288414
\(718\) 0 0
\(719\) −31.1168 −1.16046 −0.580231 0.814452i \(-0.697038\pi\)
−0.580231 + 0.814452i \(0.697038\pi\)
\(720\) 0 0
\(721\) 32.0000 1.19174
\(722\) 0 0
\(723\) −52.1902 −1.94097
\(724\) 0 0
\(725\) 4.37228 0.162382
\(726\) 0 0
\(727\) −10.2337 −0.379546 −0.189773 0.981828i \(-0.560775\pi\)
−0.189773 + 0.981828i \(0.560775\pi\)
\(728\) 0 0
\(729\) −19.9348 −0.738324
\(730\) 0 0
\(731\) −17.4891 −0.646859
\(732\) 0 0
\(733\) −11.7663 −0.434599 −0.217299 0.976105i \(-0.569725\pi\)
−0.217299 + 0.976105i \(0.569725\pi\)
\(734\) 0 0
\(735\) 3.25544 0.120079
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 48.4674 1.78290 0.891451 0.453118i \(-0.149688\pi\)
0.891451 + 0.453118i \(0.149688\pi\)
\(740\) 0 0
\(741\) 30.2337 1.11066
\(742\) 0 0
\(743\) −10.3723 −0.380522 −0.190261 0.981734i \(-0.560933\pi\)
−0.190261 + 0.981734i \(0.560933\pi\)
\(744\) 0 0
\(745\) 18.6060 0.681670
\(746\) 0 0
\(747\) 22.9783 0.840730
\(748\) 0 0
\(749\) 28.4674 1.04018
\(750\) 0 0
\(751\) 19.8614 0.724753 0.362377 0.932032i \(-0.381965\pi\)
0.362377 + 0.932032i \(0.381965\pi\)
\(752\) 0 0
\(753\) −20.7446 −0.755974
\(754\) 0 0
\(755\) 22.2337 0.809167
\(756\) 0 0
\(757\) 24.9783 0.907850 0.453925 0.891040i \(-0.350023\pi\)
0.453925 + 0.891040i \(0.350023\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.9783 1.48546 0.742730 0.669591i \(-0.233531\pi\)
0.742730 + 0.669591i \(0.233531\pi\)
\(762\) 0 0
\(763\) 17.7663 0.643184
\(764\) 0 0
\(765\) 11.4891 0.415390
\(766\) 0 0
\(767\) 17.4891 0.631496
\(768\) 0 0
\(769\) 22.0000 0.793340 0.396670 0.917961i \(-0.370166\pi\)
0.396670 + 0.917961i \(0.370166\pi\)
\(770\) 0 0
\(771\) −42.7011 −1.53784
\(772\) 0 0
\(773\) 6.60597 0.237600 0.118800 0.992918i \(-0.462095\pi\)
0.118800 + 0.992918i \(0.462095\pi\)
\(774\) 0 0
\(775\) 2.37228 0.0852149
\(776\) 0 0
\(777\) 20.4158 0.732412
\(778\) 0 0
\(779\) −73.2119 −2.62309
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 3.86141 0.137995
\(784\) 0 0
\(785\) 3.62772 0.129479
\(786\) 0 0
\(787\) 24.4674 0.872168 0.436084 0.899906i \(-0.356365\pi\)
0.436084 + 0.899906i \(0.356365\pi\)
\(788\) 0 0
\(789\) −9.16034 −0.326117
\(790\) 0 0
\(791\) −34.9783 −1.24368
\(792\) 0 0
\(793\) 0.744563 0.0264402
\(794\) 0 0
\(795\) −31.1168 −1.10360
\(796\) 0 0
\(797\) −11.4891 −0.406966 −0.203483 0.979079i \(-0.565226\pi\)
−0.203483 + 0.979079i \(0.565226\pi\)
\(798\) 0 0
\(799\) 38.2337 1.35261
\(800\) 0 0
\(801\) 11.4891 0.405948
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −20.7446 −0.731150
\(806\) 0 0
\(807\) −6.51087 −0.229194
\(808\) 0 0
\(809\) −18.0000 −0.632846 −0.316423 0.948618i \(-0.602482\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(810\) 0 0
\(811\) 16.1386 0.566703 0.283351 0.959016i \(-0.408554\pi\)
0.283351 + 0.959016i \(0.408554\pi\)
\(812\) 0 0
\(813\) 37.9565 1.33119
\(814\) 0 0
\(815\) 23.1168 0.809748
\(816\) 0 0
\(817\) −25.4891 −0.891752
\(818\) 0 0
\(819\) 12.4674 0.435645
\(820\) 0 0
\(821\) 11.4891 0.400973 0.200487 0.979696i \(-0.435748\pi\)
0.200487 + 0.979696i \(0.435748\pi\)
\(822\) 0 0
\(823\) 28.0000 0.976019 0.488009 0.872838i \(-0.337723\pi\)
0.488009 + 0.872838i \(0.337723\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.02175 0.0355297 0.0177649 0.999842i \(-0.494345\pi\)
0.0177649 + 0.999842i \(0.494345\pi\)
\(828\) 0 0
\(829\) −13.2554 −0.460380 −0.230190 0.973146i \(-0.573935\pi\)
−0.230190 + 0.973146i \(0.573935\pi\)
\(830\) 0 0
\(831\) −2.97825 −0.103314
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) −10.3723 −0.358948
\(836\) 0 0
\(837\) 2.09509 0.0724171
\(838\) 0 0
\(839\) −34.9783 −1.20758 −0.603792 0.797142i \(-0.706344\pi\)
−0.603792 + 0.797142i \(0.706344\pi\)
\(840\) 0 0
\(841\) −9.88316 −0.340798
\(842\) 0 0
\(843\) 42.7011 1.47070
\(844\) 0 0
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −39.7228 −1.36328
\(850\) 0 0
\(851\) 31.7228 1.08744
\(852\) 0 0
\(853\) −30.4674 −1.04318 −0.521592 0.853195i \(-0.674661\pi\)
−0.521592 + 0.853195i \(0.674661\pi\)
\(854\) 0 0
\(855\) 16.7446 0.572652
\(856\) 0 0
\(857\) 15.3505 0.524364 0.262182 0.965018i \(-0.415558\pi\)
0.262182 + 0.965018i \(0.415558\pi\)
\(858\) 0 0
\(859\) 31.2554 1.06642 0.533211 0.845982i \(-0.320985\pi\)
0.533211 + 0.845982i \(0.320985\pi\)
\(860\) 0 0
\(861\) −64.6576 −2.20352
\(862\) 0 0
\(863\) −32.7446 −1.11464 −0.557319 0.830299i \(-0.688170\pi\)
−0.557319 + 0.830299i \(0.688170\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) −5.02175 −0.170548
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) −3.29894 −0.111652
\(874\) 0 0
\(875\) −2.37228 −0.0801977
\(876\) 0 0
\(877\) 8.97825 0.303174 0.151587 0.988444i \(-0.451562\pi\)
0.151587 + 0.988444i \(0.451562\pi\)
\(878\) 0 0
\(879\) 1.21194 0.0408777
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 2.37228 0.0798336 0.0399168 0.999203i \(-0.487291\pi\)
0.0399168 + 0.999203i \(0.487291\pi\)
\(884\) 0 0
\(885\) 20.7446 0.697321
\(886\) 0 0
\(887\) 34.9783 1.17445 0.587227 0.809422i \(-0.300219\pi\)
0.587227 + 0.809422i \(0.300219\pi\)
\(888\) 0 0
\(889\) −18.9783 −0.636510
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 55.7228 1.86469
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 41.4891 1.38528
\(898\) 0 0
\(899\) 10.3723 0.345935
\(900\) 0 0
\(901\) 57.3505 1.91062
\(902\) 0 0
\(903\) −22.5109 −0.749115
\(904\) 0 0
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) 40.6060 1.34830 0.674150 0.738595i \(-0.264510\pi\)
0.674150 + 0.738595i \(0.264510\pi\)
\(908\) 0 0
\(909\) −15.7663 −0.522936
\(910\) 0 0
\(911\) 48.6060 1.61039 0.805194 0.593012i \(-0.202061\pi\)
0.805194 + 0.593012i \(0.202061\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0.883156 0.0291962
\(916\) 0 0
\(917\) −11.5842 −0.382545
\(918\) 0 0
\(919\) −26.9783 −0.889930 −0.444965 0.895548i \(-0.646784\pi\)
−0.444965 + 0.895548i \(0.646784\pi\)
\(920\) 0 0
\(921\) −39.7228 −1.30891
\(922\) 0 0
\(923\) −14.2337 −0.468508
\(924\) 0 0
\(925\) 3.62772 0.119279
\(926\) 0 0
\(927\) −35.4456 −1.16419
\(928\) 0 0
\(929\) −27.3505 −0.897342 −0.448671 0.893697i \(-0.648102\pi\)
−0.448671 + 0.893697i \(0.648102\pi\)
\(930\) 0 0
\(931\) −8.74456 −0.286591
\(932\) 0 0
\(933\) 32.3288 1.05840
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 51.4891 1.68208 0.841038 0.540976i \(-0.181945\pi\)
0.841038 + 0.540976i \(0.181945\pi\)
\(938\) 0 0
\(939\) 52.1902 1.70316
\(940\) 0 0
\(941\) −48.0951 −1.56786 −0.783928 0.620852i \(-0.786787\pi\)
−0.783928 + 0.620852i \(0.786787\pi\)
\(942\) 0 0
\(943\) −100.467 −3.27167
\(944\) 0 0
\(945\) −2.09509 −0.0681534
\(946\) 0 0
\(947\) −20.1386 −0.654416 −0.327208 0.944952i \(-0.606108\pi\)
−0.327208 + 0.944952i \(0.606108\pi\)
\(948\) 0 0
\(949\) 14.9783 0.486215
\(950\) 0 0
\(951\) −64.8832 −2.10398
\(952\) 0 0
\(953\) −22.8832 −0.741258 −0.370629 0.928781i \(-0.620858\pi\)
−0.370629 + 0.928781i \(0.620858\pi\)
\(954\) 0 0
\(955\) −17.4891 −0.565935
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.51087 0.210247
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) 0 0
\(963\) −31.5326 −1.01612
\(964\) 0 0
\(965\) 13.8614 0.446214
\(966\) 0 0
\(967\) 7.39403 0.237776 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(968\) 0 0
\(969\) −66.0951 −2.12328
\(970\) 0 0
\(971\) 46.9783 1.50760 0.753802 0.657102i \(-0.228218\pi\)
0.753802 + 0.657102i \(0.228218\pi\)
\(972\) 0 0
\(973\) 9.48913 0.304207
\(974\) 0 0
\(975\) 4.74456 0.151948
\(976\) 0 0
\(977\) −20.2337 −0.647333 −0.323667 0.946171i \(-0.604916\pi\)
−0.323667 + 0.946171i \(0.604916\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −19.6793 −0.628312
\(982\) 0 0
\(983\) −43.7228 −1.39454 −0.697271 0.716808i \(-0.745602\pi\)
−0.697271 + 0.716808i \(0.745602\pi\)
\(984\) 0 0
\(985\) 9.25544 0.294903
\(986\) 0 0
\(987\) 49.2119 1.56643
\(988\) 0 0
\(989\) −34.9783 −1.11224
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) −35.5326 −1.12759
\(994\) 0 0
\(995\) −0.883156 −0.0279979
\(996\) 0 0
\(997\) 12.2337 0.387445 0.193722 0.981056i \(-0.437944\pi\)
0.193722 + 0.981056i \(0.437944\pi\)
\(998\) 0 0
\(999\) 3.20384 0.101365
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9680.2.a.bt.1.1 2
4.3 odd 2 1210.2.a.r.1.2 2
11.10 odd 2 880.2.a.n.1.1 2
20.19 odd 2 6050.2.a.cb.1.1 2
33.32 even 2 7920.2.a.bq.1.2 2
44.43 even 2 110.2.a.d.1.2 2
55.32 even 4 4400.2.b.p.4049.3 4
55.43 even 4 4400.2.b.p.4049.2 4
55.54 odd 2 4400.2.a.bl.1.2 2
88.21 odd 2 3520.2.a.bj.1.2 2
88.43 even 2 3520.2.a.bq.1.1 2
132.131 odd 2 990.2.a.m.1.1 2
220.43 odd 4 550.2.b.f.199.4 4
220.87 odd 4 550.2.b.f.199.1 4
220.219 even 2 550.2.a.n.1.1 2
308.307 odd 2 5390.2.a.bp.1.1 2
660.263 even 4 4950.2.c.bc.199.2 4
660.527 even 4 4950.2.c.bc.199.3 4
660.659 odd 2 4950.2.a.bw.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.a.d.1.2 2 44.43 even 2
550.2.a.n.1.1 2 220.219 even 2
550.2.b.f.199.1 4 220.87 odd 4
550.2.b.f.199.4 4 220.43 odd 4
880.2.a.n.1.1 2 11.10 odd 2
990.2.a.m.1.1 2 132.131 odd 2
1210.2.a.r.1.2 2 4.3 odd 2
3520.2.a.bj.1.2 2 88.21 odd 2
3520.2.a.bq.1.1 2 88.43 even 2
4400.2.a.bl.1.2 2 55.54 odd 2
4400.2.b.p.4049.2 4 55.43 even 4
4400.2.b.p.4049.3 4 55.32 even 4
4950.2.a.bw.1.2 2 660.659 odd 2
4950.2.c.bc.199.2 4 660.263 even 4
4950.2.c.bc.199.3 4 660.527 even 4
5390.2.a.bp.1.1 2 308.307 odd 2
6050.2.a.cb.1.1 2 20.19 odd 2
7920.2.a.bq.1.2 2 33.32 even 2
9680.2.a.bt.1.1 2 1.1 even 1 trivial