Properties

Label 968.2.i.q.729.1
Level $968$
Weight $2$
Character 968.729
Analytic conductor $7.730$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(9,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.i (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.1305015625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 5x^{6} - 9x^{5} + 29x^{4} + 36x^{3} + 80x^{2} + 64x + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 729.1
Root \(-1.26332 + 0.917858i\) of defining polynomial
Character \(\chi\) \(=\) 968.729
Dual form 968.2.i.q.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.482546 - 1.48512i) q^{3} +(-2.88136 - 2.09343i) q^{5} +(-0.965093 + 2.97025i) q^{7} +(0.454306 - 0.330072i) q^{9} +O(q^{10})\) \(q+(-0.482546 - 1.48512i) q^{3} +(-2.88136 - 2.09343i) q^{5} +(-0.965093 + 2.97025i) q^{7} +(0.454306 - 0.330072i) q^{9} +(-4.14468 + 3.01129i) q^{13} +(-1.71861 + 5.28935i) q^{15} +(1.61803 + 1.17557i) q^{17} +(1.23607 + 3.80423i) q^{19} +4.87689 q^{21} +2.43845 q^{23} +(2.37469 + 7.30854i) q^{25} +(-4.49939 - 3.26900i) q^{27} +(1.58313 - 4.87236i) q^{29} +(4.49939 - 3.26900i) q^{31} +(8.99878 - 6.53800i) q^{35} +(-2.33665 + 7.19146i) q^{37} +(6.47214 + 4.70228i) q^{39} +(0.347059 + 1.06814i) q^{41} +7.12311 q^{43} -2.00000 q^{45} +(2.47214 + 7.60845i) q^{47} +(-2.22786 - 1.61864i) q^{49} +(0.965093 - 2.97025i) q^{51} +(-9.90739 + 7.19814i) q^{53} +(5.05329 - 3.67143i) q^{57} +(2.41273 - 7.42562i) q^{59} +(0.908612 + 0.660145i) q^{61} +(0.541951 + 1.66795i) q^{63} +18.2462 q^{65} +9.56155 q^{67} +(-1.17666 - 3.62140i) q^{69} +(7.02604 + 5.10471i) q^{71} +(-1.58313 + 4.87236i) q^{73} +(9.70820 - 7.05342i) q^{75} +(-8.99878 + 6.53800i) q^{79} +(-2.16312 + 6.65740i) q^{81} +(0.709422 + 0.515426i) q^{83} +(-2.20116 - 6.77448i) q^{85} -8.00000 q^{87} +2.68466 q^{89} +(-4.94427 - 15.2169i) q^{91} +(-7.02604 - 5.10471i) q^{93} +(4.40232 - 13.5490i) q^{95} +(-12.5896 + 9.14685i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{3} - 3 q^{5} - 2 q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - q^{3} - 3 q^{5} - 2 q^{7} - 3 q^{9} - 2 q^{13} + 7 q^{15} + 4 q^{17} - 8 q^{19} + 72 q^{21} + 36 q^{23} - 3 q^{25} - 7 q^{27} - 2 q^{29} + 7 q^{31} + 14 q^{35} + 11 q^{37} + 16 q^{39} + 6 q^{41} + 24 q^{43} - 16 q^{45} - 16 q^{47} - 22 q^{49} + 2 q^{51} - 8 q^{53} - 4 q^{57} + 5 q^{59} - 6 q^{61} - 20 q^{63} + 80 q^{65} + 60 q^{67} - 13 q^{69} + 5 q^{71} + 2 q^{73} + 24 q^{75} - 14 q^{79} + 14 q^{81} + 10 q^{83} + 6 q^{85} - 64 q^{87} - 28 q^{89} + 32 q^{91} - 5 q^{93} - 12 q^{95} - 27 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.482546 1.48512i −0.278598 0.857437i −0.988245 0.152879i \(-0.951145\pi\)
0.709647 0.704558i \(-0.248855\pi\)
\(4\) 0 0
\(5\) −2.88136 2.09343i −1.28858 0.936210i −0.288806 0.957388i \(-0.593258\pi\)
−0.999776 + 0.0211780i \(0.993258\pi\)
\(6\) 0 0
\(7\) −0.965093 + 2.97025i −0.364771 + 1.12265i 0.585354 + 0.810778i \(0.300956\pi\)
−0.950124 + 0.311871i \(0.899044\pi\)
\(8\) 0 0
\(9\) 0.454306 0.330072i 0.151435 0.110024i
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −4.14468 + 3.01129i −1.14953 + 0.835180i −0.988418 0.151756i \(-0.951507\pi\)
−0.161109 + 0.986937i \(0.551507\pi\)
\(14\) 0 0
\(15\) −1.71861 + 5.28935i −0.443744 + 1.36570i
\(16\) 0 0
\(17\) 1.61803 + 1.17557i 0.392431 + 0.285118i 0.766451 0.642303i \(-0.222021\pi\)
−0.374020 + 0.927421i \(0.622021\pi\)
\(18\) 0 0
\(19\) 1.23607 + 3.80423i 0.283573 + 0.872749i 0.986823 + 0.161806i \(0.0517318\pi\)
−0.703249 + 0.710943i \(0.748268\pi\)
\(20\) 0 0
\(21\) 4.87689 1.06423
\(22\) 0 0
\(23\) 2.43845 0.508451 0.254226 0.967145i \(-0.418179\pi\)
0.254226 + 0.967145i \(0.418179\pi\)
\(24\) 0 0
\(25\) 2.37469 + 7.30854i 0.474938 + 1.46171i
\(26\) 0 0
\(27\) −4.49939 3.26900i −0.865908 0.629119i
\(28\) 0 0
\(29\) 1.58313 4.87236i 0.293979 0.904775i −0.689583 0.724207i \(-0.742206\pi\)
0.983562 0.180569i \(-0.0577938\pi\)
\(30\) 0 0
\(31\) 4.49939 3.26900i 0.808114 0.587130i −0.105169 0.994454i \(-0.533538\pi\)
0.913283 + 0.407325i \(0.133538\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.99878 6.53800i 1.52107 1.10512i
\(36\) 0 0
\(37\) −2.33665 + 7.19146i −0.384143 + 1.18227i 0.552958 + 0.833209i \(0.313499\pi\)
−0.937100 + 0.349060i \(0.886501\pi\)
\(38\) 0 0
\(39\) 6.47214 + 4.70228i 1.03637 + 0.752968i
\(40\) 0 0
\(41\) 0.347059 + 1.06814i 0.0542015 + 0.166815i 0.974493 0.224419i \(-0.0720484\pi\)
−0.920291 + 0.391234i \(0.872048\pi\)
\(42\) 0 0
\(43\) 7.12311 1.08626 0.543132 0.839648i \(-0.317238\pi\)
0.543132 + 0.839648i \(0.317238\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 2.47214 + 7.60845i 0.360598 + 1.10981i 0.952692 + 0.303938i \(0.0983015\pi\)
−0.592094 + 0.805869i \(0.701699\pi\)
\(48\) 0 0
\(49\) −2.22786 1.61864i −0.318266 0.231234i
\(50\) 0 0
\(51\) 0.965093 2.97025i 0.135140 0.415918i
\(52\) 0 0
\(53\) −9.90739 + 7.19814i −1.36089 + 0.988741i −0.362497 + 0.931985i \(0.618076\pi\)
−0.998388 + 0.0567560i \(0.981924\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.05329 3.67143i 0.669325 0.486293i
\(58\) 0 0
\(59\) 2.41273 7.42562i 0.314111 0.966734i −0.662008 0.749497i \(-0.730295\pi\)
0.976119 0.217237i \(-0.0697045\pi\)
\(60\) 0 0
\(61\) 0.908612 + 0.660145i 0.116336 + 0.0845229i 0.644432 0.764662i \(-0.277094\pi\)
−0.528096 + 0.849185i \(0.677094\pi\)
\(62\) 0 0
\(63\) 0.541951 + 1.66795i 0.0682793 + 0.210142i
\(64\) 0 0
\(65\) 18.2462 2.26316
\(66\) 0 0
\(67\) 9.56155 1.16813 0.584065 0.811707i \(-0.301461\pi\)
0.584065 + 0.811707i \(0.301461\pi\)
\(68\) 0 0
\(69\) −1.17666 3.62140i −0.141654 0.435965i
\(70\) 0 0
\(71\) 7.02604 + 5.10471i 0.833837 + 0.605818i 0.920642 0.390407i \(-0.127666\pi\)
−0.0868052 + 0.996225i \(0.527666\pi\)
\(72\) 0 0
\(73\) −1.58313 + 4.87236i −0.185291 + 0.570267i −0.999953 0.00966869i \(-0.996922\pi\)
0.814662 + 0.579936i \(0.196922\pi\)
\(74\) 0 0
\(75\) 9.70820 7.05342i 1.12101 0.814459i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.99878 + 6.53800i −1.01244 + 0.735582i −0.964720 0.263278i \(-0.915196\pi\)
−0.0477221 + 0.998861i \(0.515196\pi\)
\(80\) 0 0
\(81\) −2.16312 + 6.65740i −0.240347 + 0.739711i
\(82\) 0 0
\(83\) 0.709422 + 0.515426i 0.0778692 + 0.0565753i 0.626039 0.779792i \(-0.284675\pi\)
−0.548170 + 0.836367i \(0.684675\pi\)
\(84\) 0 0
\(85\) −2.20116 6.77448i −0.238749 0.734795i
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) 2.68466 0.284573 0.142287 0.989825i \(-0.454555\pi\)
0.142287 + 0.989825i \(0.454555\pi\)
\(90\) 0 0
\(91\) −4.94427 15.2169i −0.518301 1.59516i
\(92\) 0 0
\(93\) −7.02604 5.10471i −0.728566 0.529334i
\(94\) 0 0
\(95\) 4.40232 13.5490i 0.451669 1.39009i
\(96\) 0 0
\(97\) −12.5896 + 9.14685i −1.27828 + 0.928722i −0.999500 0.0316339i \(-0.989929\pi\)
−0.278777 + 0.960356i \(0.589929\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.61803 + 1.17557i −0.161000 + 0.116974i −0.665368 0.746515i \(-0.731726\pi\)
0.504368 + 0.863489i \(0.331726\pi\)
\(102\) 0 0
\(103\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(104\) 0 0
\(105\) −14.0521 10.2094i −1.37134 0.996338i
\(106\) 0 0
\(107\) 4.13135 + 12.7150i 0.399392 + 1.22920i 0.925488 + 0.378778i \(0.123655\pi\)
−0.526095 + 0.850426i \(0.676345\pi\)
\(108\) 0 0
\(109\) −12.2462 −1.17297 −0.586487 0.809959i \(-0.699490\pi\)
−0.586487 + 0.809959i \(0.699490\pi\)
\(110\) 0 0
\(111\) 11.8078 1.12074
\(112\) 0 0
\(113\) −0.135488 0.416988i −0.0127456 0.0392269i 0.944481 0.328565i \(-0.106565\pi\)
−0.957227 + 0.289338i \(0.906565\pi\)
\(114\) 0 0
\(115\) −7.02604 5.10471i −0.655181 0.476017i
\(116\) 0 0
\(117\) −0.889009 + 2.73609i −0.0821889 + 0.252952i
\(118\) 0 0
\(119\) −5.05329 + 3.67143i −0.463234 + 0.336560i
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 1.41884 1.03085i 0.127933 0.0929487i
\(124\) 0 0
\(125\) 2.95468 9.09358i 0.264275 0.813354i
\(126\) 0 0
\(127\) 5.05329 + 3.67143i 0.448407 + 0.325787i 0.788967 0.614436i \(-0.210616\pi\)
−0.340559 + 0.940223i \(0.610616\pi\)
\(128\) 0 0
\(129\) −3.43723 10.5787i −0.302631 0.931403i
\(130\) 0 0
\(131\) −13.3693 −1.16808 −0.584041 0.811724i \(-0.698529\pi\)
−0.584041 + 0.811724i \(0.698529\pi\)
\(132\) 0 0
\(133\) −12.4924 −1.08323
\(134\) 0 0
\(135\) 6.12094 + 18.8383i 0.526806 + 1.62134i
\(136\) 0 0
\(137\) 6.82685 + 4.95999i 0.583257 + 0.423761i 0.839897 0.542746i \(-0.182615\pi\)
−0.256640 + 0.966507i \(0.582615\pi\)
\(138\) 0 0
\(139\) −4.67330 + 14.3829i −0.396384 + 1.21994i 0.531495 + 0.847062i \(0.321631\pi\)
−0.927879 + 0.372882i \(0.878369\pi\)
\(140\) 0 0
\(141\) 10.1066 7.34286i 0.851128 0.618381i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −14.7615 + 10.7249i −1.22588 + 0.890651i
\(146\) 0 0
\(147\) −1.32883 + 4.08972i −0.109600 + 0.337314i
\(148\) 0 0
\(149\) 3.43526 + 2.49586i 0.281427 + 0.204469i 0.719540 0.694451i \(-0.244353\pi\)
−0.438112 + 0.898920i \(0.644353\pi\)
\(150\) 0 0
\(151\) 2.89528 + 8.91075i 0.235614 + 0.725147i 0.997039 + 0.0768934i \(0.0245001\pi\)
−0.761425 + 0.648253i \(0.775500\pi\)
\(152\) 0 0
\(153\) 1.12311 0.0907977
\(154\) 0 0
\(155\) −19.8078 −1.59100
\(156\) 0 0
\(157\) −1.37156 4.22121i −0.109462 0.336890i 0.881290 0.472576i \(-0.156676\pi\)
−0.990752 + 0.135687i \(0.956676\pi\)
\(158\) 0 0
\(159\) 15.4709 + 11.2403i 1.22692 + 0.891412i
\(160\) 0 0
\(161\) −2.35333 + 7.24280i −0.185468 + 0.570812i
\(162\) 0 0
\(163\) 3.23607 2.35114i 0.253468 0.184156i −0.453794 0.891107i \(-0.649930\pi\)
0.707263 + 0.706951i \(0.249930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.47214 4.70228i 0.500829 0.363874i −0.308505 0.951223i \(-0.599829\pi\)
0.809334 + 0.587349i \(0.199829\pi\)
\(168\) 0 0
\(169\) 4.09330 12.5979i 0.314870 0.969069i
\(170\) 0 0
\(171\) 1.81722 + 1.32029i 0.138967 + 0.100965i
\(172\) 0 0
\(173\) −3.78429 11.6468i −0.287714 0.885493i −0.985572 0.169257i \(-0.945863\pi\)
0.697858 0.716236i \(-0.254137\pi\)
\(174\) 0 0
\(175\) −24.0000 −1.81423
\(176\) 0 0
\(177\) −12.1922 −0.916425
\(178\) 0 0
\(179\) −1.98959 6.12333i −0.148709 0.457679i 0.848760 0.528778i \(-0.177349\pi\)
−0.997469 + 0.0710987i \(0.977349\pi\)
\(180\) 0 0
\(181\) 1.06413 + 0.773138i 0.0790964 + 0.0574669i 0.626631 0.779316i \(-0.284433\pi\)
−0.547534 + 0.836783i \(0.684433\pi\)
\(182\) 0 0
\(183\) 0.541951 1.66795i 0.0400621 0.123299i
\(184\) 0 0
\(185\) 21.7875 15.8296i 1.60185 1.16381i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 14.0521 10.2094i 1.02214 0.742627i
\(190\) 0 0
\(191\) −3.22566 + 9.92755i −0.233400 + 0.718333i 0.763929 + 0.645300i \(0.223268\pi\)
−0.997330 + 0.0730324i \(0.976732\pi\)
\(192\) 0 0
\(193\) −7.38075 5.36243i −0.531278 0.385996i 0.289558 0.957161i \(-0.406492\pi\)
−0.820836 + 0.571165i \(0.806492\pi\)
\(194\) 0 0
\(195\) −8.80464 27.0979i −0.630514 1.94052i
\(196\) 0 0
\(197\) 14.4924 1.03254 0.516271 0.856425i \(-0.327320\pi\)
0.516271 + 0.856425i \(0.327320\pi\)
\(198\) 0 0
\(199\) −12.4924 −0.885564 −0.442782 0.896629i \(-0.646009\pi\)
−0.442782 + 0.896629i \(0.646009\pi\)
\(200\) 0 0
\(201\) −4.61389 14.2001i −0.325439 1.00160i
\(202\) 0 0
\(203\) 12.9443 + 9.40456i 0.908510 + 0.660071i
\(204\) 0 0
\(205\) 1.23607 3.80423i 0.0863307 0.265699i
\(206\) 0 0
\(207\) 1.10780 0.804864i 0.0769975 0.0559419i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 6.87051 4.99172i 0.472986 0.343644i −0.325618 0.945501i \(-0.605572\pi\)
0.798604 + 0.601857i \(0.205572\pi\)
\(212\) 0 0
\(213\) 4.19075 12.8978i 0.287145 0.883743i
\(214\) 0 0
\(215\) −20.5242 14.9117i −1.39974 1.01697i
\(216\) 0 0
\(217\) 5.36741 + 16.5192i 0.364364 + 1.12140i
\(218\) 0 0
\(219\) 8.00000 0.540590
\(220\) 0 0
\(221\) −10.2462 −0.689235
\(222\) 0 0
\(223\) −3.64880 11.2299i −0.244342 0.752006i −0.995744 0.0921621i \(-0.970622\pi\)
0.751402 0.659844i \(-0.229378\pi\)
\(224\) 0 0
\(225\) 3.49118 + 2.53649i 0.232746 + 0.169100i
\(226\) 0 0
\(227\) −7.14543 + 21.9914i −0.474259 + 1.45962i 0.372695 + 0.927954i \(0.378434\pi\)
−0.846954 + 0.531665i \(0.821566\pi\)
\(228\) 0 0
\(229\) −11.8801 + 8.63143i −0.785062 + 0.570381i −0.906494 0.422219i \(-0.861251\pi\)
0.121432 + 0.992600i \(0.461251\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.96190 + 4.33158i −0.390577 + 0.283771i −0.765692 0.643207i \(-0.777603\pi\)
0.375115 + 0.926978i \(0.377603\pi\)
\(234\) 0 0
\(235\) 8.80464 27.0979i 0.574352 1.76767i
\(236\) 0 0
\(237\) 14.0521 + 10.2094i 0.912780 + 0.663174i
\(238\) 0 0
\(239\) 1.50704 + 4.63820i 0.0974825 + 0.300020i 0.987893 0.155139i \(-0.0495824\pi\)
−0.890410 + 0.455159i \(0.849582\pi\)
\(240\) 0 0
\(241\) −29.1231 −1.87598 −0.937992 0.346657i \(-0.887317\pi\)
−0.937992 + 0.346657i \(0.887317\pi\)
\(242\) 0 0
\(243\) −5.75379 −0.369106
\(244\) 0 0
\(245\) 3.03077 + 9.32774i 0.193629 + 0.595927i
\(246\) 0 0
\(247\) −16.5787 12.0451i −1.05488 0.766414i
\(248\) 0 0
\(249\) 0.423142 1.30230i 0.0268155 0.0825298i
\(250\) 0 0
\(251\) −1.26332 + 0.917858i −0.0797402 + 0.0579347i −0.626941 0.779067i \(-0.715693\pi\)
0.547201 + 0.837001i \(0.315693\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −8.99878 + 6.53800i −0.563526 + 0.409425i
\(256\) 0 0
\(257\) 3.63212 11.1785i 0.226565 0.697297i −0.771563 0.636152i \(-0.780525\pi\)
0.998129 0.0611444i \(-0.0194750\pi\)
\(258\) 0 0
\(259\) −19.1054 13.8809i −1.18715 0.862515i
\(260\) 0 0
\(261\) −0.889009 2.73609i −0.0550283 0.169360i
\(262\) 0 0
\(263\) −19.1231 −1.17918 −0.589591 0.807702i \(-0.700711\pi\)
−0.589591 + 0.807702i \(0.700711\pi\)
\(264\) 0 0
\(265\) 43.6155 2.67928
\(266\) 0 0
\(267\) −1.29547 3.98705i −0.0792816 0.244004i
\(268\) 0 0
\(269\) 16.7779 + 12.1899i 1.02297 + 0.743229i 0.966889 0.255197i \(-0.0821404\pi\)
0.0560781 + 0.998426i \(0.482140\pi\)
\(270\) 0 0
\(271\) 8.80464 27.0979i 0.534844 1.64608i −0.209142 0.977885i \(-0.567067\pi\)
0.743986 0.668195i \(-0.232933\pi\)
\(272\) 0 0
\(273\) −20.2132 + 14.6857i −1.22336 + 0.888820i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.5623 + 10.5801i −0.874964 + 0.635699i −0.931914 0.362678i \(-0.881862\pi\)
0.0569502 + 0.998377i \(0.481862\pi\)
\(278\) 0 0
\(279\) 0.965093 2.97025i 0.0577786 0.177824i
\(280\) 0 0
\(281\) 13.1435 + 9.54928i 0.784073 + 0.569662i 0.906199 0.422852i \(-0.138971\pi\)
−0.122126 + 0.992515i \(0.538971\pi\)
\(282\) 0 0
\(283\) −6.18034 19.0211i −0.367383 1.13069i −0.948475 0.316851i \(-0.897374\pi\)
0.581092 0.813838i \(-0.302626\pi\)
\(284\) 0 0
\(285\) −22.2462 −1.31775
\(286\) 0 0
\(287\) −3.50758 −0.207046
\(288\) 0 0
\(289\) −4.01722 12.3637i −0.236307 0.727279i
\(290\) 0 0
\(291\) 19.6593 + 14.2833i 1.15245 + 0.837301i
\(292\) 0 0
\(293\) 1.04118 3.20441i 0.0608262 0.187204i −0.916026 0.401119i \(-0.868622\pi\)
0.976852 + 0.213915i \(0.0686215\pi\)
\(294\) 0 0
\(295\) −22.4970 + 16.3450i −1.30982 + 0.951642i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.1066 + 7.34286i −0.584479 + 0.424649i
\(300\) 0 0
\(301\) −6.87446 + 21.1574i −0.396237 + 1.21949i
\(302\) 0 0
\(303\) 2.52665 + 1.83572i 0.145152 + 0.105459i
\(304\) 0 0
\(305\) −1.23607 3.80423i −0.0707770 0.217829i
\(306\) 0 0
\(307\) 32.4924 1.85444 0.927220 0.374516i \(-0.122191\pi\)
0.927220 + 0.374516i \(0.122191\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.01409 + 9.27640i 0.170913 + 0.526017i 0.999423 0.0339575i \(-0.0108111\pi\)
−0.828510 + 0.559974i \(0.810811\pi\)
\(312\) 0 0
\(313\) 7.93465 + 5.76486i 0.448493 + 0.325849i 0.789000 0.614393i \(-0.210599\pi\)
−0.340508 + 0.940242i \(0.610599\pi\)
\(314\) 0 0
\(315\) 1.93019 5.94050i 0.108754 0.334709i
\(316\) 0 0
\(317\) 11.4818 8.34199i 0.644880 0.468533i −0.216643 0.976251i \(-0.569511\pi\)
0.861523 + 0.507718i \(0.169511\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 16.8898 12.2711i 0.942695 0.684908i
\(322\) 0 0
\(323\) −2.47214 + 7.60845i −0.137553 + 0.423346i
\(324\) 0 0
\(325\) −31.8504 23.1407i −1.76674 1.28362i
\(326\) 0 0
\(327\) 5.90936 + 18.1872i 0.326789 + 1.00575i
\(328\) 0 0
\(329\) −24.9848 −1.37746
\(330\) 0 0
\(331\) 34.9309 1.91997 0.959987 0.280044i \(-0.0903491\pi\)
0.959987 + 0.280044i \(0.0903491\pi\)
\(332\) 0 0
\(333\) 1.31215 + 4.03839i 0.0719055 + 0.221302i
\(334\) 0 0
\(335\) −27.5502 20.0164i −1.50523 1.09361i
\(336\) 0 0
\(337\) 5.17252 15.9194i 0.281765 0.867184i −0.705584 0.708626i \(-0.749315\pi\)
0.987350 0.158558i \(-0.0506846\pi\)
\(338\) 0 0
\(339\) −0.553900 + 0.402432i −0.0300837 + 0.0218571i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −10.7287 + 7.79484i −0.579294 + 0.420882i
\(344\) 0 0
\(345\) −4.19075 + 12.8978i −0.225622 + 0.694394i
\(346\) 0 0
\(347\) 18.3959 + 13.3654i 0.987546 + 0.717494i 0.959382 0.282109i \(-0.0910341\pi\)
0.0281636 + 0.999603i \(0.491034\pi\)
\(348\) 0 0
\(349\) 9.96463 + 30.6680i 0.533394 + 1.64162i 0.747093 + 0.664719i \(0.231449\pi\)
−0.213699 + 0.976900i \(0.568551\pi\)
\(350\) 0 0
\(351\) 28.4924 1.52081
\(352\) 0 0
\(353\) −24.0540 −1.28026 −0.640132 0.768265i \(-0.721120\pi\)
−0.640132 + 0.768265i \(0.721120\pi\)
\(354\) 0 0
\(355\) −9.55816 29.4170i −0.507295 1.56129i
\(356\) 0 0
\(357\) 7.89098 + 5.73313i 0.417635 + 0.303430i
\(358\) 0 0
\(359\) −1.38823 + 4.27255i −0.0732682 + 0.225496i −0.980984 0.194090i \(-0.937825\pi\)
0.907716 + 0.419586i \(0.137825\pi\)
\(360\) 0 0
\(361\) 2.42705 1.76336i 0.127740 0.0928082i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.7615 10.7249i 0.772652 0.561365i
\(366\) 0 0
\(367\) 7.08603 21.8086i 0.369888 1.13840i −0.576976 0.816761i \(-0.695767\pi\)
0.946863 0.321636i \(-0.104233\pi\)
\(368\) 0 0
\(369\) 0.510233 + 0.370706i 0.0265617 + 0.0192982i
\(370\) 0 0
\(371\) −11.8187 36.3743i −0.613598 1.88846i
\(372\) 0 0
\(373\) 8.24621 0.426973 0.213486 0.976946i \(-0.431518\pi\)
0.213486 + 0.976946i \(0.431518\pi\)
\(374\) 0 0
\(375\) −14.9309 −0.771027
\(376\) 0 0
\(377\) 8.11053 + 24.9616i 0.417713 + 1.28559i
\(378\) 0 0
\(379\) −0.155522 0.112993i −0.00798864 0.00580408i 0.583784 0.811909i \(-0.301572\pi\)
−0.591772 + 0.806105i \(0.701572\pi\)
\(380\) 0 0
\(381\) 3.01409 9.27640i 0.154416 0.475245i
\(382\) 0 0
\(383\) 1.66170 1.20730i 0.0849090 0.0616900i −0.544521 0.838747i \(-0.683288\pi\)
0.629430 + 0.777057i \(0.283288\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.23607 2.35114i 0.164499 0.119515i
\(388\) 0 0
\(389\) 1.10058 3.38724i 0.0558016 0.171740i −0.919271 0.393625i \(-0.871221\pi\)
0.975073 + 0.221885i \(0.0712209\pi\)
\(390\) 0 0
\(391\) 3.94549 + 2.86657i 0.199532 + 0.144969i
\(392\) 0 0
\(393\) 6.45132 + 19.8551i 0.325426 + 1.00156i
\(394\) 0 0
\(395\) 39.6155 1.99327
\(396\) 0 0
\(397\) 10.4924 0.526600 0.263300 0.964714i \(-0.415189\pi\)
0.263300 + 0.964714i \(0.415189\pi\)
\(398\) 0 0
\(399\) 6.02817 + 18.5528i 0.301786 + 0.928802i
\(400\) 0 0
\(401\) −24.6689 17.9230i −1.23191 0.895032i −0.234874 0.972026i \(-0.575468\pi\)
−0.997032 + 0.0769941i \(0.975468\pi\)
\(402\) 0 0
\(403\) −8.80464 + 27.0979i −0.438590 + 1.34984i
\(404\) 0 0
\(405\) 20.1695 14.6540i 1.00223 0.728163i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 18.1968 13.2207i 0.899771 0.653722i −0.0386358 0.999253i \(-0.512301\pi\)
0.938407 + 0.345531i \(0.112301\pi\)
\(410\) 0 0
\(411\) 4.07194 12.5321i 0.200854 0.618165i
\(412\) 0 0
\(413\) 19.7275 + 14.3328i 0.970724 + 0.705273i
\(414\) 0 0
\(415\) −0.965093 2.97025i −0.0473745 0.145804i
\(416\) 0 0
\(417\) 23.6155 1.15646
\(418\) 0 0
\(419\) −32.4924 −1.58736 −0.793679 0.608336i \(-0.791837\pi\)
−0.793679 + 0.608336i \(0.791837\pi\)
\(420\) 0 0
\(421\) 0.770201 + 2.37043i 0.0375373 + 0.115528i 0.968069 0.250683i \(-0.0806550\pi\)
−0.930532 + 0.366210i \(0.880655\pi\)
\(422\) 0 0
\(423\) 3.63445 + 2.64058i 0.176713 + 0.128389i
\(424\) 0 0
\(425\) −4.74938 + 14.6171i −0.230379 + 0.709033i
\(426\) 0 0
\(427\) −2.83769 + 2.06170i −0.137325 + 0.0997728i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.9431 15.9426i 1.05696 0.767926i 0.0834362 0.996513i \(-0.473411\pi\)
0.973523 + 0.228587i \(0.0734105\pi\)
\(432\) 0 0
\(433\) −7.00994 + 21.5744i −0.336876 + 1.03680i 0.628914 + 0.777475i \(0.283500\pi\)
−0.965790 + 0.259324i \(0.916500\pi\)
\(434\) 0 0
\(435\) 23.0509 + 16.7474i 1.10520 + 0.802978i
\(436\) 0 0
\(437\) 3.01409 + 9.27640i 0.144183 + 0.443751i
\(438\) 0 0
\(439\) −4.49242 −0.214412 −0.107206 0.994237i \(-0.534190\pi\)
−0.107206 + 0.994237i \(0.534190\pi\)
\(440\) 0 0
\(441\) −1.54640 −0.0736380
\(442\) 0 0
\(443\) 3.49663 + 10.7615i 0.166130 + 0.511296i 0.999118 0.0419957i \(-0.0133716\pi\)
−0.832988 + 0.553291i \(0.813372\pi\)
\(444\) 0 0
\(445\) −7.73546 5.62014i −0.366696 0.266420i
\(446\) 0 0
\(447\) 2.04899 6.30615i 0.0969141 0.298271i
\(448\) 0 0
\(449\) 29.5667 21.4814i 1.39534 1.01377i 0.400081 0.916480i \(-0.368982\pi\)
0.995256 0.0972917i \(-0.0310180\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 11.8365 8.59970i 0.556126 0.404049i
\(454\) 0 0
\(455\) −17.6093 + 54.1958i −0.825536 + 2.54074i
\(456\) 0 0
\(457\) 19.3046 + 14.0256i 0.903029 + 0.656089i 0.939242 0.343255i \(-0.111530\pi\)
−0.0362133 + 0.999344i \(0.511530\pi\)
\(458\) 0 0
\(459\) −3.43723 10.5787i −0.160436 0.493772i
\(460\) 0 0
\(461\) −1.12311 −0.0523082 −0.0261541 0.999658i \(-0.508326\pi\)
−0.0261541 + 0.999658i \(0.508326\pi\)
\(462\) 0 0
\(463\) 15.3153 0.711764 0.355882 0.934531i \(-0.384180\pi\)
0.355882 + 0.934531i \(0.384180\pi\)
\(464\) 0 0
\(465\) 9.55816 + 29.4170i 0.443249 + 1.36418i
\(466\) 0 0
\(467\) −22.8953 16.6344i −1.05947 0.769750i −0.0854794 0.996340i \(-0.527242\pi\)
−0.973990 + 0.226590i \(0.927242\pi\)
\(468\) 0 0
\(469\) −9.22778 + 28.4002i −0.426100 + 1.31140i
\(470\) 0 0
\(471\) −5.60719 + 4.07386i −0.258366 + 0.187714i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −24.8681 + 18.0677i −1.14103 + 0.829004i
\(476\) 0 0
\(477\) −2.12508 + 6.54032i −0.0973006 + 0.299460i
\(478\) 0 0
\(479\) −12.9443 9.40456i −0.591439 0.429705i 0.251391 0.967886i \(-0.419112\pi\)
−0.842830 + 0.538180i \(0.819112\pi\)
\(480\) 0 0
\(481\) −11.9709 36.8426i −0.545826 1.67988i
\(482\) 0 0
\(483\) 11.8920 0.541107
\(484\) 0 0
\(485\) 55.4233 2.51664
\(486\) 0 0
\(487\) 4.61389 + 14.2001i 0.209075 + 0.643468i 0.999521 + 0.0309362i \(0.00984886\pi\)
−0.790446 + 0.612532i \(0.790151\pi\)
\(488\) 0 0
\(489\) −5.05329 3.67143i −0.228518 0.166028i
\(490\) 0 0
\(491\) −4.25015 + 13.0806i −0.191807 + 0.590321i 0.808192 + 0.588919i \(0.200446\pi\)
−0.999999 + 0.00140182i \(0.999554\pi\)
\(492\) 0 0
\(493\) 8.28936 6.02257i 0.373334 0.271243i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.9431 + 15.9426i −0.984280 + 0.715122i
\(498\) 0 0
\(499\) −8.95681 + 27.5662i −0.400962 + 1.23403i 0.523258 + 0.852174i \(0.324716\pi\)
−0.924220 + 0.381860i \(0.875284\pi\)
\(500\) 0 0
\(501\) −10.1066 7.34286i −0.451529 0.328055i
\(502\) 0 0
\(503\) 9.76974 + 30.0682i 0.435611 + 1.34067i 0.892459 + 0.451128i \(0.148978\pi\)
−0.456848 + 0.889545i \(0.651022\pi\)
\(504\) 0 0
\(505\) 7.12311 0.316974
\(506\) 0 0
\(507\) −20.6847 −0.918638
\(508\) 0 0
\(509\) −5.65507 17.4045i −0.250657 0.771441i −0.994654 0.103260i \(-0.967073\pi\)
0.743998 0.668182i \(-0.232927\pi\)
\(510\) 0 0
\(511\) −12.9443 9.40456i −0.572621 0.416033i
\(512\) 0 0
\(513\) 6.87446 21.1574i 0.303515 0.934122i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −15.4709 + 11.2403i −0.679098 + 0.493394i
\(520\) 0 0
\(521\) 0.406463 1.25096i 0.0178075 0.0548057i −0.941758 0.336292i \(-0.890827\pi\)
0.959565 + 0.281486i \(0.0908272\pi\)
\(522\) 0 0
\(523\) −9.70820 7.05342i −0.424510 0.308425i 0.354940 0.934889i \(-0.384501\pi\)
−0.779450 + 0.626464i \(0.784501\pi\)
\(524\) 0 0
\(525\) 11.5811 + 35.6430i 0.505441 + 1.55559i
\(526\) 0 0
\(527\) 11.1231 0.484530
\(528\) 0 0
\(529\) −17.0540 −0.741477
\(530\) 0 0
\(531\) −1.35488 4.16988i −0.0587966 0.180957i
\(532\) 0 0
\(533\) −4.65491 3.38199i −0.201627 0.146490i
\(534\) 0 0
\(535\) 14.7140 45.2851i 0.636142 1.95784i
\(536\) 0 0
\(537\) −8.13384 + 5.90958i −0.351001 + 0.255017i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19.3046 + 14.0256i −0.829968 + 0.603007i −0.919550 0.392973i \(-0.871447\pi\)
0.0895826 + 0.995979i \(0.471447\pi\)
\(542\) 0 0
\(543\) 0.634713 1.95345i 0.0272382 0.0838304i
\(544\) 0 0
\(545\) 35.2857 + 25.6366i 1.51147 + 1.09815i
\(546\) 0 0
\(547\) 13.0548 + 40.1785i 0.558183 + 1.71791i 0.687386 + 0.726292i \(0.258758\pi\)
−0.129203 + 0.991618i \(0.541242\pi\)
\(548\) 0 0
\(549\) 0.630683 0.0269169
\(550\) 0 0
\(551\) 20.4924 0.873007
\(552\) 0 0
\(553\) −10.7348 33.0384i −0.456491 1.40494i
\(554\) 0 0
\(555\) −34.0224 24.7187i −1.44417 1.04925i
\(556\) 0 0
\(557\) 1.15998 3.57007i 0.0491501 0.151269i −0.923469 0.383673i \(-0.874659\pi\)
0.972619 + 0.232404i \(0.0746591\pi\)
\(558\) 0 0
\(559\) −29.5230 + 21.4497i −1.24869 + 0.907226i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.8148 14.3963i 0.835094 0.606731i −0.0859021 0.996304i \(-0.527377\pi\)
0.920996 + 0.389573i \(0.127377\pi\)
\(564\) 0 0
\(565\) −0.482546 + 1.48512i −0.0203009 + 0.0624797i
\(566\) 0 0
\(567\) −17.6865 12.8500i −0.742764 0.539650i
\(568\) 0 0
\(569\) 8.30542 + 25.5614i 0.348181 + 1.07159i 0.959859 + 0.280484i \(0.0904951\pi\)
−0.611677 + 0.791107i \(0.709505\pi\)
\(570\) 0 0
\(571\) −16.4924 −0.690186 −0.345093 0.938568i \(-0.612153\pi\)
−0.345093 + 0.938568i \(0.612153\pi\)
\(572\) 0 0
\(573\) 16.3002 0.680950
\(574\) 0 0
\(575\) 5.79056 + 17.8215i 0.241483 + 0.743208i
\(576\) 0 0
\(577\) −12.5896 9.14685i −0.524110 0.380788i 0.294040 0.955793i \(-0.405000\pi\)
−0.818150 + 0.575005i \(0.805000\pi\)
\(578\) 0 0
\(579\) −4.40232 + 13.5490i −0.182954 + 0.563075i
\(580\) 0 0
\(581\) −2.21560 + 1.60973i −0.0919186 + 0.0667828i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 8.28936 6.02257i 0.342723 0.249003i
\(586\) 0 0
\(587\) −7.56857 + 23.2937i −0.312389 + 0.961433i 0.664428 + 0.747353i \(0.268675\pi\)
−0.976816 + 0.214080i \(0.931325\pi\)
\(588\) 0 0
\(589\) 17.9976 + 13.0760i 0.741577 + 0.538787i
\(590\) 0 0
\(591\) −6.99327 21.5231i −0.287665 0.885340i
\(592\) 0 0
\(593\) −3.36932 −0.138361 −0.0691806 0.997604i \(-0.522038\pi\)
−0.0691806 + 0.997604i \(0.522038\pi\)
\(594\) 0 0
\(595\) 22.2462 0.912006
\(596\) 0 0
\(597\) 6.02817 + 18.5528i 0.246717 + 0.759316i
\(598\) 0 0
\(599\) 12.9443 + 9.40456i 0.528889 + 0.384260i 0.819942 0.572447i \(-0.194006\pi\)
−0.291053 + 0.956707i \(0.594006\pi\)
\(600\) 0 0
\(601\) −1.15998 + 3.57007i −0.0473168 + 0.145626i −0.971924 0.235297i \(-0.924394\pi\)
0.924607 + 0.380923i \(0.124394\pi\)
\(602\) 0 0
\(603\) 4.34387 3.15601i 0.176896 0.128522i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −37.1029 + 26.9569i −1.50596 + 1.09414i −0.538031 + 0.842925i \(0.680832\pi\)
−0.967930 + 0.251220i \(0.919168\pi\)
\(608\) 0 0
\(609\) 7.72074 23.7620i 0.312860 0.962885i
\(610\) 0 0
\(611\) −33.1574 24.0903i −1.34141 0.974589i
\(612\) 0 0
\(613\) −3.66548 11.2812i −0.148047 0.455643i 0.849343 0.527841i \(-0.176998\pi\)
−0.997390 + 0.0721986i \(0.976998\pi\)
\(614\) 0 0
\(615\) −6.24621 −0.251872
\(616\) 0 0
\(617\) −2.49242 −0.100341 −0.0501706 0.998741i \(-0.515976\pi\)
−0.0501706 + 0.998741i \(0.515976\pi\)
\(618\) 0 0
\(619\) 5.84996 + 18.0043i 0.235130 + 0.723655i 0.997104 + 0.0760479i \(0.0242302\pi\)
−0.761974 + 0.647607i \(0.775770\pi\)
\(620\) 0 0
\(621\) −10.9715 7.97128i −0.440272 0.319876i
\(622\) 0 0
\(623\) −2.59094 + 7.97411i −0.103804 + 0.319476i
\(624\) 0 0
\(625\) 3.53485 2.56822i 0.141394 0.102729i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.2348 + 8.88914i −0.487835 + 0.354433i
\(630\) 0 0
\(631\) −12.9954 + 39.9957i −0.517338 + 1.59220i 0.261648 + 0.965163i \(0.415734\pi\)
−0.778987 + 0.627041i \(0.784266\pi\)
\(632\) 0 0
\(633\) −10.7287 7.79484i −0.426426 0.309817i
\(634\) 0 0
\(635\) −6.87446 21.1574i −0.272805 0.839606i
\(636\) 0 0
\(637\) 14.1080 0.558977
\(638\) 0 0
\(639\) 4.87689 0.192927
\(640\) 0 0
\(641\) −14.3075 44.0341i −0.565114 1.73924i −0.667612 0.744509i \(-0.732684\pi\)
0.102498 0.994733i \(-0.467316\pi\)
\(642\) 0 0
\(643\) 7.42441 + 5.39415i 0.292790 + 0.212725i 0.724477 0.689299i \(-0.242081\pi\)
−0.431687 + 0.902024i \(0.642081\pi\)
\(644\) 0 0
\(645\) −12.2419 + 37.6766i −0.482023 + 1.48351i
\(646\) 0 0
\(647\) −10.9715 + 7.97128i −0.431335 + 0.313383i −0.782183 0.623049i \(-0.785894\pi\)
0.350847 + 0.936433i \(0.385894\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 21.9431 15.9426i 0.860016 0.624838i
\(652\) 0 0
\(653\) 10.8703 33.4554i 0.425388 1.30921i −0.477234 0.878776i \(-0.658360\pi\)
0.902622 0.430434i \(-0.141640\pi\)
\(654\) 0 0
\(655\) 38.5218 + 27.9877i 1.50517 + 1.09357i
\(656\) 0 0
\(657\) 0.889009 + 2.73609i 0.0346836 + 0.106745i
\(658\) 0 0
\(659\) 11.6155 0.452477 0.226238 0.974072i \(-0.427357\pi\)
0.226238 + 0.974072i \(0.427357\pi\)
\(660\) 0 0
\(661\) 41.8078 1.62613 0.813067 0.582170i \(-0.197796\pi\)
0.813067 + 0.582170i \(0.197796\pi\)
\(662\) 0 0
\(663\) 4.94427 + 15.2169i 0.192020 + 0.590976i
\(664\) 0 0
\(665\) 35.9951 + 26.1520i 1.39583 + 1.01413i
\(666\) 0 0
\(667\) 3.86037 11.8810i 0.149474 0.460034i
\(668\) 0 0
\(669\) −14.9170 + 10.8378i −0.576725 + 0.419015i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 26.8845 19.5327i 1.03632 0.752931i 0.0667569 0.997769i \(-0.478735\pi\)
0.969564 + 0.244838i \(0.0787348\pi\)
\(674\) 0 0
\(675\) 13.2070 40.6469i 0.508336 1.56450i
\(676\) 0 0
\(677\) −16.7779 12.1899i −0.644827 0.468494i 0.216678 0.976243i \(-0.430478\pi\)
−0.861505 + 0.507749i \(0.830478\pi\)
\(678\) 0 0
\(679\) −15.0183 46.2217i −0.576351 1.77383i
\(680\) 0 0
\(681\) 36.1080 1.38366
\(682\) 0 0
\(683\) 6.73863 0.257847 0.128923 0.991655i \(-0.458848\pi\)
0.128923 + 0.991655i \(0.458848\pi\)
\(684\) 0 0
\(685\) −9.28719 28.5830i −0.354845 1.09210i
\(686\) 0 0
\(687\) 18.5515 + 13.4784i 0.707782 + 0.514234i
\(688\) 0 0
\(689\) 19.3873 59.6680i 0.738597 2.27317i
\(690\) 0 0
\(691\) 8.04650 5.84613i 0.306103 0.222397i −0.424119 0.905606i \(-0.639416\pi\)
0.730223 + 0.683209i \(0.239416\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 43.5751 31.6591i 1.65290 1.20090i
\(696\) 0 0
\(697\) −0.694117 + 2.13627i −0.0262916 + 0.0809171i
\(698\) 0 0
\(699\) 9.30983 + 6.76398i 0.352130 + 0.255837i
\(700\) 0 0
\(701\) −15.6030 48.0211i −0.589318 1.81373i −0.581192 0.813767i \(-0.697413\pi\)
−0.00812617 0.999967i \(-0.502587\pi\)
\(702\) 0 0
\(703\) −30.2462 −1.14076
\(704\) 0 0
\(705\) −44.4924 −1.67568
\(706\) 0 0
\(707\) −1.93019 5.94050i −0.0725921 0.223415i
\(708\) 0 0
\(709\) −1.77356 1.28856i −0.0666073 0.0483930i 0.553983 0.832528i \(-0.313107\pi\)
−0.620591 + 0.784135i \(0.713107\pi\)
\(710\) 0 0
\(711\) −1.93019 + 5.94050i −0.0723876 + 0.222786i
\(712\) 0 0
\(713\) 10.9715 7.97128i 0.410887 0.298527i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.16109 4.47630i 0.230090 0.167170i
\(718\) 0 0
\(719\) 10.9464 33.6896i 0.408232 1.25641i −0.509935 0.860213i \(-0.670330\pi\)
0.918166 0.396195i \(-0.129670\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 14.0532 + 43.2515i 0.522646 + 1.60854i
\(724\) 0 0
\(725\) 39.3693 1.46214
\(726\) 0 0
\(727\) −23.3153 −0.864718 −0.432359 0.901702i \(-0.642319\pi\)
−0.432359 + 0.901702i \(0.642319\pi\)
\(728\) 0 0
\(729\) 9.26583 + 28.5173i 0.343179 + 1.05620i
\(730\) 0 0
\(731\) 11.5254 + 8.37371i 0.426283 + 0.309713i
\(732\) 0 0
\(733\) −0.347059 + 1.06814i −0.0128189 + 0.0394525i −0.957261 0.289224i \(-0.906603\pi\)
0.944442 + 0.328677i \(0.106603\pi\)
\(734\) 0 0
\(735\) 12.3904 9.00213i 0.457026 0.332049i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −2.12827 + 1.54628i −0.0782896 + 0.0568807i −0.626242 0.779629i \(-0.715408\pi\)
0.547952 + 0.836510i \(0.315408\pi\)
\(740\) 0 0
\(741\) −9.88854 + 30.4338i −0.363265 + 1.11801i
\(742\) 0 0
\(743\) 8.68774 + 6.31201i 0.318722 + 0.231565i 0.735630 0.677384i \(-0.236886\pi\)
−0.416908 + 0.908949i \(0.636886\pi\)
\(744\) 0 0
\(745\) −4.67330 14.3829i −0.171216 0.526950i
\(746\) 0 0
\(747\) 0.492423 0.0180168
\(748\) 0 0
\(749\) −41.7538 −1.52565
\(750\) 0 0
\(751\) 1.71861 + 5.28935i 0.0627131 + 0.193011i 0.977504 0.210916i \(-0.0676448\pi\)
−0.914791 + 0.403928i \(0.867645\pi\)
\(752\) 0 0
\(753\) 1.97275 + 1.43328i 0.0718908 + 0.0522317i
\(754\) 0 0
\(755\) 10.3117 31.7361i 0.375281 1.15500i
\(756\) 0 0
\(757\) −12.7451 + 9.25984i −0.463228 + 0.336555i −0.794796 0.606876i \(-0.792422\pi\)
0.331568 + 0.943431i \(0.392422\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.14468 3.01129i 0.150245 0.109159i −0.510123 0.860101i \(-0.670400\pi\)
0.660368 + 0.750942i \(0.270400\pi\)
\(762\) 0 0
\(763\) 11.8187 36.3743i 0.427867 1.31684i
\(764\) 0 0
\(765\) −3.23607 2.35114i −0.117000 0.0850057i
\(766\) 0 0
\(767\) 12.3607 + 38.0423i 0.446318 + 1.37363i
\(768\) 0 0
\(769\) −25.6155 −0.923720 −0.461860 0.886953i \(-0.652818\pi\)
−0.461860 + 0.886953i \(0.652818\pi\)
\(770\) 0 0
\(771\) −18.3542 −0.661009
\(772\) 0 0
\(773\) 12.5889 + 38.7447i 0.452792 + 1.39355i 0.873708 + 0.486452i \(0.161709\pi\)
−0.420915 + 0.907100i \(0.638291\pi\)
\(774\) 0 0
\(775\) 34.5763 + 25.1211i 1.24202 + 0.902378i
\(776\) 0 0
\(777\) −11.3956 + 35.0720i −0.408814 + 1.25820i
\(778\) 0 0
\(779\) −3.63445 + 2.64058i −0.130218 + 0.0946086i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −23.0509 + 16.7474i −0.823770 + 0.598504i
\(784\) 0 0
\(785\) −4.88487 + 15.0341i −0.174348 + 0.536589i
\(786\) 0 0
\(787\) −24.0713 17.4888i −0.858050 0.623410i 0.0693038 0.997596i \(-0.477922\pi\)
−0.927354 + 0.374186i \(0.877922\pi\)
\(788\) 0 0
\(789\) 9.22778 + 28.4002i 0.328518 + 1.01107i
\(790\) 0